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Preface 
 
 
This book answers the following questions: 
 

1. What techniques exist to maximize student learning and talent development, particularly 
in the context of math? 
 

2. Why are these techniques so impactful, and if they are indeed so impactful, then why are 
they so often absent from traditional classrooms? 
 

3. How does Math Academy leverage these techniques? 
 
The book is admittedly verbose with numerous lengthy quotes pulled from the literature, but we 
believe these receipts are vital for building trust with the reader. Too often, writeups in the field 
of education cite references that don’t even support their claims. Consequently, when faced with 
the decision to (a) build credibility by quoting the literature extensively, versus (b) streamline our 
communication, we have chosen to lean towards credibility. It is our experience that if 
credibility is anything but high, no communication will occur. 
 
The book is written with many different audiences in mind: students, teachers, parents, 
researchers, technologists, math hobbyists, academic coaches, just to name a handful. We have 
done our best to include much information of interest to those who wish to dive deep, while 
simultaneously structuring the information in a way that is skimmable for the surface-level 
reader. 
 
The book is a working draft, about halfway done. It has been written with care but has not 
undergone formal proofreading.  
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I. PRELIMINARIES 
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Chapter 1. The Two-Sigma Solution 
 

Summary: Educational psychologist Benjamin Bloom is widely known for demonstrating that 
one-on-one tutoring produces vastly better learning outcomes than traditional classroom 
teaching, and documenting how talent development differs from traditional schooling. Math 
Academy is addressing these issues by creating an adaptive, fully-automated online mathematical 
talent development platform that emulates the decisions of an expert tutor to provide the most 
effective way to learn math. 

 

Bloom’s Two-Sigma Problem 

In 1984, educational psychologist Benjamin Bloom published a landmark study comparing the 
effectiveness of one-on-one tutoring and traditional classroom teaching. The difference was 
monumental: the average tutored student performed better than 98% of the students in a 
traditional class. 
 
This finding led to a challenge widely known as Bloom’s two-sigma problem: can we develop 
methods of group instruction that are as effective as one-on-one tutoring? (The terminology 
“two-sigma” comes from statistics, where the effects of interventions are often measured in 
standard deviations or sigmas. An effect size of 98% is slightly more than two sigmas.) 
 
To quote Bloom directly (Bloom, 1984): 
 

“...[T]the most striking of the findings is that under the best learning conditions we can devise 
(tutoring), the average student is 2 sigma above the average control student taught under 
conventional group methods of instruction. 
 
The tutoring process demonstrates that most of the students do have the potential to reach this 
high level of learning. I believe that an important task of research and instruction is to seek ways 
of accomplishing this under more practical and realistic conditions than the one-to-one tutoring, 
which is too costly for most societies to bear on a large scale. 
 
This is the ‘2 sigma’ problem. Can researchers and teachers devise teaching-learning conditions 
that will enable the majority of students under group instruction to attain levels of achievement 
that at present can be reached only under good tutoring conditions? 
… 
If the research on the 2 sigma problem yields practical methods … it would be an educational 
contribution of the greatest magnitude. It would change popular notions about human potential 

 

http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
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and would have significant effects on what the schools can and should do with the educational 
years each society requires of its young people.” 

 
Bloom speculated that an equivalent two-sigma effect might be achieved by combining various 
evidence-based learning strategies, especially those involving different objects of change (the 
learner, the instructional material, the home environment or peer group, and the teacher and 
teaching process) and those that occur at different times in the teaching-learning process. 
 
This is Math Academy’s challenge and purpose. Math Academy is solving Bloom’s two-sigma 
problem by bringing together many evidence-based cognitive learning strategies into a single 
online learning platform. Our adaptive, fully-automated platform emulates the decisions of an 
expert tutor to provide the most effective way to learn math. 
 

The Core Essence of Bloom’s Two-Sigma Problem 

As will be discussed in Chapter 13, researchers since Bloom have reproduced a high effect size 
of mastery learning, even if not quite as high as the measure that Bloom observed. But this is 
beside the point. Bloom’s two-sigma problem is front and center in The Math Academy Way 
because it frames the core essence of the problem to be solved: 
 

Properly individualized pedagogy massively elevates student learning outcomes, but society 
cannot afford to equip every student with a human tutor, so what can we do? 

 
The core essence of Bloom’s two-sigma problem is not “the effect size of human tutoring is exactly 
two sigmas.” Instead, it's “there is a ton of student learning that is being left on the table, a ton of 
human potential that is going unrealized – how do we capture it?” 
 
Bloom speculated that the benefit of a human tutor could be largely captured by combining 
various evidence-based learning strategies – but he restricted the search to strategies that could 
be implemented manually (to some degree, not necessarily to the fullest extent). That was the 
fatal flaw: the search came up unsuccessful because the search space was constrained by the 
limits of human teaching labor. This was a reasonable constraint at the time when computer 
technology was far less mature – but things are completely different today. 
 
Since the early-to-mid 2010s, Math Academy’s challenge and purpose has been to carry the torch 
forward and re-attempt a solution, this time overcoming the limitation of human teaching labor, 
leveraging technology to implement individualized learning techniques to a much fuller extent. 
We started out in a public school district, teaching manually while leveraging individualized 

 

https://en.wikipedia.org/wiki/Adaptive_learning
https://en.wikipedia.org/wiki/Expert_system
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learning techniques as much as humanly possible, gradually building up an online system to 
automate pieces of the work and leverage them to a much fuller extent than we could manually. 
And we created a teaching machine that is shockingly effective (think: 8th graders passing the 
AP Calculus BC exam). 
 

Talent Development vs Traditional Schooling 

The core philosophy of Math Academy is centered around talent development as opposed to 
traditional schooling. At surface level, the two ideas may seem similar: after all, isn’t the purpose 
of schooling to develop students’ talents? Bloom, who researched this question extensively, 
discovered that the answer is a resounding “no” – the differences between talent development 
and traditional schooling are so numerous, so striking, and so critical that traditional schooling 
typically cannot even be characterized as supporting talent development. 
 
Around the same time that Bloom coined the two-sigma problem, he was also immersed in a 
massive study of talent development. As summarized by other researchers (Luo & Kiewa, 2020), 
Bloom (1985) discovered striking commonalities in the upbringing of extremely successful 
individuals across a wide variety of fields, leading to a general characterization of the process of 
talent development: 
 

“Research interest on talent development was sown by psychologist Benjamin Bloom’s (1985) 
seminal book, Developing Talent in Young People. Bloom studied 120 highly talented individuals 
across six talent domains and discovered common factors that led to exceptional achievements 
across domains. In an interview, Bloom remarked: 
 
‘We at one time thought that the development of a tennis player would be very different from the 
development of a concert pianist or a sculptor or a mathematician or a neurologist. What we’ve 
found is that even though the content and the procedures may be enormously different in each 
field, there is a common set of characteristics in the home, the instruction, and the like. There is a 
very general process that seems to be central to the development of talent no matter what the field. 
(Brandt, 1985: 34)’” 

 
Bloom believed (Brandt, 1985) that this talent development process was being leveraged much 
more effectively in athletic than in academic contexts, and that there was an opportunity to 
massively elevate students’ degree of learning and academic achievement by reproducing 
favorable conditions for talent development: 
 

“I [Bloom] firmly believe that if we could reproduce the favorable learning and support conditions 
that led to the development of these [extremely successful] people, we could produce great learning 
almost everywhere. 
… 

 

https://journals.sagepub.com/doi/full/10.1177/0261429420934436
https://archive.org/details/developingtalent0000unse
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198509_brandt2.pdf
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[T]hey [educators] do a very good job in sports. There’s nothing we can tell coaches in high schools 
and colleges. But when we get beyond sports, things are sporadic, accidental. Students may have a 
good teacher one year and a very poor one the next. And even in the academic subjects, all kinds 
of chance circumstances are at work. … Schools do not seem to have a great tolerance for students 
who are out of phase with other students in their learning process.” 

 
One of the main differences between traditional schooling and talent development, according to 
Bloom & Sosniak (1981), is that students are grouped primarily by age, rather than ability, and 
each group progresses through the curriculum in lockstep. Each member of the group engages 
in the same tasks, and it is expected that different students will learn skills to different levels. 
 

"The school schedule and standards are largely determined by the age of the child. The curriculum 
and learning experiences are presumably appropriate to most students at that age or grade. While 
there may be some adjustments for different rates of progress and some adjustment of standards 
for individuals within a grade or classroom, each individual is instructed as a member of a group 
with some notion that all are to get as nearly equal treatment as the teacher and the instructional 
material can supply. 
… 
[T]he group is central in the school learning process and only minimal adjustments are made for 
individual children. If the group as a whole has difficulty, the teacher will reteach the task or skill 
until some portion of the group has learned it. But generally, all the children are not expected to 
learn a task or skill to the same level and little is done with the use of feedback-corrective 
procedures to bring all children to the same standard of accomplishment.  
 
Since it is not expected that each child will learn to the same standard or level, relative standards 
are emphasized, but the tasks are the same. Certain children are expected to learn a task to a high 
level while others are expected to learn it only to a much lower level.” 

 
In talent development, however, instruction is completely individualized. Learning tasks are 
chosen based on the specific needs of individual students, each student must learn each skill to a 
sufficient level of mastery before moving on to more advanced skills. Students progress through 
skills at different rates, but learn skills to the same threshold of performance. Their progress is 
measured not by their level of learning in courses that they have taken, but rather by how 
advanced the skills are that they can execute to a sufficient threshold of performance. 
 

"Part or all of the instruction the talented individual received was on a one-to-one basis. The 
pianists had weekly or twice weekly private lessons. … The swimmers worked with many other 
swimmers in the pool, but the instruction was individualized and personalized. The 
mathematicians had much less systematic instruction in the early years, but they almost always 
learned alone or with one adult or peer. 
 
Some of the instruction each week was provided by a teacher (tutor) who diagnosed what was 
needed, set learning objectives, and provided instruction with frequent feedback and correctives. 
The teacher also suggested appropriate practice, emphasizing specific points or problems to be 
solved, and set a time by which the individual was expected to attain the objectives to a particular 
standard. At the end of the set time, the child performed and the teacher noted the gains and what 
had still to be accomplished, gave corrective instruction, and then gave further instruction for new 
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material and procedures. The teacher praised and encouraged the child for his or her 
accomplishments, and when the standard was attained, set a new task and further objectives and 
standards. The cycle of learning tasks, objectives, standards, and motivation was repeated over 
and over as the child progressed. 
 
In talent development, each child was seen as unique and the teacher (tutor) set appropriate 
learning tasks for the child, gave rewards which the child valued or responded to, and set the pace 
of learning believed to be appropriate for the individual child. The child's learning rate was 
central and there was continual adjustment to the child learning the talent. The objectives and 
standards set by the teacher were always in terms of specific tasks to be accomplished in particular 
ways by the individual child. While the child was frequently judged in comparison with other 
children, emphasis was on the accomplishment or mastery of the particular learning tasks set for 
the individual." 

 
To recap, Bloom & Sosniak (1981) summarized these differences as follows: 
 

"In general, school learning emphasizes group learning and the subject or skills to be learned. 
Talent development typically emphasizes the individual and his or her progress in a particular 
activity. In school group learning, little is done to help each individual solve his or her special 
learning problems, while in talent learning the instruction is regarded as good, at least by the 
parents, only if it helps the individual make clear progress, overcome learning difficulties, and 
move to higher and higher standards of attainment." 

 
They also noted that these differences are closely related to the scope of a teacher’s 
responsibility: in traditional schooling, teachers focus on a “cross section” of many students 
covering a small subset of curriculum over a short period of time, whereas in talent 
development, teachers have “longitudinal” accountability for fewer students each learning long 
progressions of skills over a long periods of time. 
 

"...[In talent development, the teacher] emphasizes the child's progress from lesson to lesson with 
the child's stage at one time as the benchmark for noting progress or gains. … The teacher is 
concerned with the child's growth and progress toward what is possible at the highest level. This 
stems from the likelihood that the teacher will remain with the child over a number of years and 
also from the teacher's long term view of what is possible for the particular child. 
 
In contrast, the schools are arranged by courses. Although the curriculum in a particular subject 
may extend over a period of ten or more years, each teacher has the child only for a term, year, or 
course. And the teacher is responsible only for what happens during that period of time. The 
teacher judges each child in terms of how well he or she is doing in comparison with other 
children at that grade level or in that class. Each teacher at a particular grade level is primarily 
concerned with the teaching and learning appropriate to that grade. Little attention is paid to 
what the child has already learned, or to what each child will need to effectively enter the next 
grade or course." 

 
Bloom & Sosniak (1981) also observed that these differences are so critical that traditional 
schooling typically cannot even be characterized as supporting talent development. As Bloom 
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describes, talent development is not only different from schooling, but in many cases completely 
orthogonal to schooling: 
 

"For one portion of our sample, talent development and schooling were almost two separate 
spheres of their life. … Usually the student made the adjustments, resolving the conflict by doing 
all that was a part of schooling and then finding the additional time, energy, and resources for 
talent development. … Mathematicians found and worked through special books and engaged in 
special projects and programs outside of school. 
 
Sometimes the schools or particular teachers made minor adjustments to dissipate the conflict. 
Mathematicians were sometimes excused from a class they were too advanced for and allowed to 
work on their own in the library. Sometimes they were accelerated one grade as a concession to 
their outside learning. 
... 
Whether the individual or the school made these adjustments, it was clear that these adjustments 
minimized conflict but did little to assist in talent development. The individual was able to work 
at both schooling and talent development, although with minimum interaction. … Talent 
development and schooling were isolated from one another. Schooling did not assist in talent 
development, but in these instances it did not interfere with talent development." 

 
And while other participants that Bloom studied had more overlap between schooling and talent 
development, the overlap was not always positive. Rather, it yielded a mixed bag of experiences: 
 

“For a second portion of our sample, school experiences were a negative influence on their talent 
development. For these individuals the conflicting requirements of talent development and 
schooling could rarely be resolved. Schooling was truly something to be suffered through. These 
individuals found that their efforts in the talent field were not well received by teachers, 
principals, or peers. 
… 
For the third portion of our sample, we find the most encouraging role of the schools in talent 
development. School experiences became a major source of support, encouragement, motivation, 
and reward for the development of talent. … Some individuals found private support for their 
development of talent from teachers or principals. These teachers or principals noticed the child’s 
special development and recognized the quality of his or her work. … They recognized the student’s 
seriousness and shared with the student an eagerness for working toward very high standards and 
a commitment to excellence.” 

 
The general orthogonality of schooling and talent development, and the mixed bag of positive 
and negative experiences resulting from any overlap between them, echo one of Bloom’s quotes 
(Brandt, 1985) at the beginning of this chapter: 
 

“...[W]hen we get beyond sports, things are sporadic, accidental. Students may have a good teacher 
one year and a very poor one the next. And even in the academic subjects, all kinds of chance 
circumstances are at work.” 
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Talent Development is Prohibitively Expensive 

Unfortunately, in most fields and particularly in mathematics, there is no widely available 
solution to the lack of talent development by traditional schools other than 1-on-1 private 
coaching, which is prohibitively expensive for most families and schools. 
 
To understand just how expensive this is, let’s work through the cost computation. The question 
that we seek to answer is as follows: 
 

How much would it cost to develop a student’s mathematical talent to the maximum degree with a 
1-on-1 private coach, assuming a reasonable amount of daily work time that is in line with the 
amount of time that students would be working anyway during the school year? 

 
In an academic subject like mathematics, 1-on-1 private coaching would be obtained from a 
tutor. Note, however, that we are not concerned with the question “how much does typical usage 
of supplemental tutoring cost.” We are not supposing that the tutor functions as a supplemental 
assistant who helps a student through their class homework. Instead, we are supposing that the 
tutor functions as a main instructor, specifically, a private coach who engages the student in 
1-on-1 talent development using a personalized training program that is tailored and constantly 
adapting to their individual needs. 
 
We are supposing that the tutor is hired to completely replace the student’s mathematical 
training from school, which, as a conservative estimate, is approximately 1 hour per day, 5 days 
per week. (This estimate is conservative because students typically have 50 minutes of class each 
day plus 30-60 minutes of homework.) A tutor typically charges at least $50/hour, and $50 × 5 
days/week × 52 weeks/year = $13,000. 
 
This ballpark lower bound is in line with Guryan et al. (2023), who describe a successful low-cost 
tutoring intervention (40 minutes per school day, 1 tutor per 2 students) that cost about $4,000 
per student per year, with tutors being paid a yearly stipend of only $16,000 (plus benefits) while 
working through the entire school day (6 class periods). Under these conditions, a full hour of 
fully individualized tutoring (1 tutor per student) each school day would cost $12,000 per student 
per year (= $4,000 × 2 × 60/40). 
 
It’s important to note that while these tutors described by Guryan et al. (2023) possessed strong 
math skills, they were not long-term expert coaches in the sense of the preceding discussion on 
talent development. Rather, tutors were “willing to devote one year to public service – for example, 
recent college graduates, retirees or career-switchers – but do not necessarily have extensive prior training 

 

https://www.aeaweb.org/articles?id=10.1257/aer.20210434
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or experience as teachers.” Needless to say, long-term expert coaches would be far more costly and 
harder to find. 
 
Additionally, while there do exist mathematical “talent search” competitions in which top 
competitors are selected for free talent development, only a tiny proportion of highly talented 
students take the exam and make the cut, and the duration of talent development that they 
receive is brief. To quote mathematician George Berzsenyi (2019): 
 

“Participation in each of these [exams] is based on performance in the previous competition(s), 
and hence to a great extent the entire process is aimed at finding about 60 students for the 
three-week Mathematical Olympiad Summer Program (MOSP), where six students are selected to 
represent the United States at the International Mathematical Olympiad (IMO). 
 
It always bothered me to have several hundred thousand students take the AMC, learn that tens of 
thousands of them are talented, and then select 60 for a brief talent development program and 
ignore the rest, expecting them to develop their own capabilities and, if not discouraged, come 
back the following year to prove themselves again.” 

 
The goal of Math Academy is to make mathematical talent development widely available to 
serious students who are motivated to undertake it – and bringing the $13,000 figure down to 
$499/year (26x cheaper) via Math Academy makes mathematical talent development accessible to 
many, many more people. 
 

Stages of Talent Development 

| Bloom’s 3-Stage Talent Development Process 

As summarized by researcher Gordon Bloom (2002), Benjamin Bloom (1985) observed that the 
journey to developing a talent could be divided into three phases in which the student’s activity 
in the talent area transitioned from fun and exciting playtime, to intense and strenuous skill 
refinement, to developing their individual style and pushing the boundaries of the field. 
 

“Bloom’s (1985) research identified three phases of talent development of expert performers … 
labeled the early years, the middle developmental years, and the final years of perfecting the skills. 
… 
[The early years began] when individuals were introduced to activities in their sport. … The 
coach/teacher provided the performer with considerable amounts of positive feedback and 
approval and allowed the children to play and explore all aspects of the sport. Rewards were 
garnered for effort rather than for achievement, and rarely was the coach critical of the children. 
… 
In the second phase or middle years … individuals became fully committed to their performance 
goals. For the tennis players, the sport became more than a “game,” it became “real business.” … In 

 

https://community.ams.org/journals/notices/201909/rnoti-p1471.pdf
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the early years of development, the coaches had been good at getting the athletes interested in and 
excited about their sport. In the middle years, however, the athletes and their parents felt they 
needed someone to teach them precision and technique as well as strategy. They also needed to 
tailor their skills to emphasize their own personal strengths and to compensate for any weaknesses 
they might have. … The cultivation of talent now became a top priority for the performer. Coaches 
demanded more hard work, commitment, and discipline from their athletes. The athletes’ training 
regimens became more intense and advanced as coaches introduced them to more strenuous and 
strategic areas of their sport. 
… 
Later Years. Athletes who achieved high levels of success auditioned for the opportunity to work 
with … an individual widely recognized as a master teacher or expert in the domain. … [The 
athletes] were totally committed to their chosen activity and would do whatever was necessary to 
excel. … [including making] a number of sacrifices … such as greater expenses and often moving to 
a new city. … The relationship between athlete and expert coach evolved into one of mutual 
respect and collegiality with both parties focusing less on instructional methods and more on 
tactical refinement and the development of the individual’s style. … These coaches challenged 
their proteges to excel beyond their perceived human capabilities. ‘This was especially true of the 
Olympic swimmers, who were expected to exceed records beyond that ever previously 
accomplished by any human being. So, too, was it true of the mathematicians, who were expected 
to solve problems that had never been solved before’ (Bloom, 1985, p. 525).” 

 
Math Academy carries students through the second stage of talent development, which centers 
around intense and strenuous skill development. In this stage, it is assumed that students are 
motivated, be it intrinsically or extrinsically, to engage in particularly effortful forms of practice 
that maximize their learning. 
 
Note that Math Academy may not be appropriate for students who remain in Bloom’s first stage 
and desire a form of educational “playtime,” or students who have progressed to the third stage 
and are developing original research in mathematics. 
 

| Bloom’s Taxonomy is Often Misinterpreted 

It’s worth pointing out that while Bloom is widely known for Bloom’s Taxonomy of Learning, 
this taxonomy is often misinterpreted in a way that is not aligned with Bloom’s 3-Stage Talent 
Development Process discussed above. 
 
The misinterpretation arises from assuming that the makeup of every year in a student’s 
education should be balanced the same way across Bloom’s Taxonomy – whereas Bloom’s Talent 
Development Process suggests that the time allocation should change drastically as a student 
progresses through their education (i.e., heavily focused on the lower parts of the taxonomy in 
the middle years, and heavily focused on the higher parts of the taxonomy in the later years). Put 
simply, Bloom’s Talent Development Process argues for front-loading foundational skill 
development and then shifting to creative production afterwards. 

 

https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
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Why does order matter? Why not just split the time 50-50 between foundational skill 
development and creative production throughout the whole talent development process? The 
answer, to be elaborated further in chapter 8, is this: 
 

● there’s a mountain of empirical evidence that one can increase the number of examples & 
problem-solving experiences in a student’s knowledge base, 

 
● but a lack of evidence that one can increase the student’s ability to generalize from those 

examples by engaging in other pedagogical techniques (that is, techniques other than 
equipping the student with progressively more advanced examples & problem-solving 
experiences). 

 
In other words, research indicates that the best way to improve a student’s problem-solving 
ability in any domain is simply by having them acquire more foundational skills in that domain. 
Below are some entry points into the literature: 
 

Teaching General Problem-Solving Skills Is Not a Substitute for, or a Viable Addition to, 
Teaching Mathematics (Sweller, Clark, & Kirschner, 2010) 
 
Putting Students on the Path to Learning: The Case for Fully Guided Instruction (Clark, 
Kirschner, & Sweller, 2012) 
 
Should There Be a Three-Strikes Rule Against Pure Discovery Learning? (Mayer, 2004) 
 
Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of 
Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching (Mayer, 
2004) 
 
Radical Constructivism and Cognitive Psychology (Anderson, Reder, & Simon, 1998) 

 
Armed with this information, if your goal is to maximize your depth within a talent domain, 
then the optimal rational strategy is a greedy approach: 
 

1. Augment your knowledge base with all the examples and problem-solving experiences in 
the intended direction, as quickly as possible. 
 

2. Upon reaching the edge of human knowledge in that direction, and only then, switch 
over to creative production. 

 
Creative production is a substantially less efficient means of acquiring skills within a talent 
domain, so you want to save it for the end when it’s the only way to continue moving forward. 

 

https://ams.org/notices/201010/rtx101001303p.pdf
https://ams.org/notices/201010/rtx101001303p.pdf
https://aft.org/sites/default/files/Clark.pdf
https://app.nova.edu/toolbox/instructionalproducts/ITDE_8005/weeklys/2004-Mayer.pdf
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https://tandfonline.com/doi/pdf/10.1207/s15326985ep4102_1
https://andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
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(To briefly fend off an expected critique: the act of perpetually avoiding the leap into creative 
production, opting instead to indefinitely “expand sideways,” acquiring skills that are not 
foundational for the talent domain, does not constitute the above strategy.) 
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https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198111_bloom.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198509_brandt2.pdf
https://journals.sagepub.com/doi/full/10.1177/0261429420934436


The Math Academy Way – Working Draft  |  35 

performance. 
 
 

● Bloom, B. S., ed. (1985). Developing Talent in Young People. New York: Ballantine Books. 
 
Bloom, G. (2002). Role of the elite coach in the development of talent. Psychological 
foundations of sport, 466-483. 
 
Importance: The journey to developing a talent can be divided into three phases in which the student’s activity 
in the talent area transitioned from fun and exciting playtime, to intense and strenuous skill refinement, to 
developing their individual style and pushing the boundaries of the field. 

 

 

https://archive.org/details/developingtalent0000unse
https://www.mcgill.ca/sportpsych/files/sportpsych/2002_-_bloom_g.a._2002._role_of_the_elite_coach_in_the_development_of_talent._in_j.m._silva_d.e._stevens_eds._psychological_foundations_of_sport_pp._466-483._boston-_allyn_and_bacon.pdf
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Chapter 2. The Science of Learning 
 

Summary: Math Academy leverages evidence-based cognitive learning strategies including active 
learning, deliberate practice, mastery learning, minimizing cognitive load, developing 
automaticity, layering, non-interference, spaced repetition (distributed practice), interleaving, the 
testing effect (retrieval practice), and gamification. These methods are backed by decades of 
research, but they clash with traditional educational practices, which are held in place by 
convenient misconceptions about learning. By systematically applying these strategies, Math 
Academy accelerates student learning by 4x, meaning that serious students learn 4x the amount of 
material in the same time as compared to traditional classrooms. 

 

Cognitive Learning Strategies 

The science of learning has advanced significantly over the past century. Numerous effective 
cognitive learning strategies have been identified and researched extensively since the early to 
mid-1900s, with key findings being successfully reproduced over and over again. 
 
At a glance, here are some of the highlights: 
 

● Active Learning – students learn more when they are actively performing learning 
exercises as opposed to passively consuming educational content. 
 

● Deliberate Practice – effective learning feels like a workout with a personal trainer and 
should center around individualized training activities that are chosen to improve 
specific aspects of one’s performance through repetition and successive refinement. 
 

● Mastery Learning – each individual student needs to demonstrate proficiency on 
prerequisite topics before moving on to more advanced topics. 
 

● Minimizing Cognitive Load – because our brains can only process small amounts of 
new information at once, it’s critical to break down skills and concepts into tiny steps. 
 

● Developing Automaticity – to free up mental processing power, it’s also critical to 
practice low-level skills enough that they can be carried out without requiring conscious 
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effort. 
 

● Layering – learning is about making connections. The more connections there are to a 
piece of knowledge, the more ingrained, organized, and deeply understood it is, and the 
easier it is to recall. The most efficient way to increase the number of connections to 
existing knowledge is to continue layering on top of it – that is, continually acquiring 
new knowledge that exercises prerequisite or component knowledge. 
 

● Non-Interference – conceptually related pieces of knowledge should be spaced out over 
time so that they are less likely to interfere with each other’s recall. New concepts should 
be taught alongside dissimilar material. 
 

● Spaced Repetition (Distributed Practice) – reviews should be spaced out or distributed 
over multiple sessions (as opposed to being crammed or massed into a single session) so 
that memory is not only restored, but also further consolidated into long-term storage, 
which slows its decay. 
 

● Interleaving (Mixed Practice) – the effectiveness of practice is diminished when a single 
skill is practiced many times consecutively beyond a minimum effective dose. Review 
problems should be spread out or interleaved over multiple review assignments that each 
cover a broad mix of previously-learned topics. In addition to being more efficient, this 
also helps students match problems with the appropriate solution techniques. 
 

● The Testing Effect (Retrieval Practice) – to maximize the amount by which your 
memory is extended when solving review problems, it’s necessary to avoid looking back 
at reference material unless you are totally stuck and cannot remember how to proceed. 
For this reason, it’s necessary to test frequently as a part of the learning process itself. 
 

● Gamification – when game-like elements (such as points and leaderboards) are properly  
integrated into student learning environments, students typically not only learn more 
and engage more with the content, but also enjoy it more. However, these gamified 
elements must be aligned with the goals of the course, the motivations of the students, 
and the context of the educational setting. Further, they need to be resistant to “hacking” 
behaviors that attempt to bypass learning by exploiting loopholes in the rules of the 
game. 
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The Persistence of Tradition 

One might expect to find these strategies being leveraged in today’s classrooms to drastically 
improve the depth, pace, and overall success of student learning. However, the disappointing 
reality is that the practice of education has barely changed, and in many ways remains in direct 
opposition to the strategies outlined above. 
 

● Classes still march through linear sequences of topics according to a predetermined 
schedule. Students are tethered to the pace of the class, which means that students who 
get lost are continually asked to learn new topics despite not having mastered the 
prerequisites, and students who learn quickly are prevented from learning more 
advanced concepts that come later in the class schedule or in a higher grade level (even if 
they have already mastered the prerequisites). 
 

● Units of related material are taught in subsequent lessons, which promotes confusion, 
impedes recall, and places a severe bottleneck on how many topics can be successfully 
taught simultaneously, thereby creating lots of friction and massively slowing down the 
learning process. 
 

● After learning a topic during class and practicing it on the homework, students forget 
about it until it’s time to study for a test – and there are only a handful of tests given 
throughout the entire duration of a course. After the test, students are rarely required to 
practice the topic again, unless it just happens that some new topic requires them to 
remember the old one. The end result is that students end up forgetting most of what 
they learn. 
 

● All students are given the same homework and assessments. This creates opportunities 
for coordinated cheating, a wide-open loophole in the grading system. Many students 
habitually exploit this loophole to bypass learning and obtain grades that do not reflect 
their (lack of) knowledge. 

 
As lamented by Weinstein, Madan, & Sumeracki (2018): 
 

“The science of learning has made a considerable contribution to our understanding of effective 
teaching and learning strategies. However, few instructors outside of the field are privy to this 
research. 
 
In particular, a review published 10 years ago identified a limited number of study techniques that 
have received solid evidence from multiple replications testing their effectiveness in and out of the 
classroom (Pashler et al., 2007). 

 

https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
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A recent textbook analysis (Pomerance, Greenberg, & Walsh, 2016) took the six key learning 
strategies from this report by Pashler and colleagues, and found that very few teacher-training 
textbooks cover any of these six principles – and none cover them all, suggesting that these 
strategies are not systematically making their way into the classroom. 
 
This is the case in spite of multiple recent academic (e.g., Dunlosky et al., 2013) and general 
audience (e.g., Dunlosky, 2013) publications about these strategies.” 

 
Kirschner & Hendrick sum it up as follows (2024, pp.275): 
 

“...[M]ost students, and also many or even most teachers, don’t have an accurate picture of the 
effectiveness of their study approach. 
 
After more than a hundred years of research into learning and memory, there are a few things that 
we know about good and less good approaches. Since the turn of this century, people have been 
trying to figure out how to remember as much as possible, how to ensure that we forget as little as 
possible, and how to do this in as little time as possible. 
 
The reason we have our doubts with respect to teachers is because the findings that have emerged 
from this research aren’t yet included in textbooks for teachers (both in research in the US, as well 
as in the Netherlands and Flanders; Pomerance, Greenberg, & Walsh, 2016; Surma, 
Vanhoyweghen, Camp, & Kirschner, 2018).” 

 
As Halpern & Hakel (2003) emphasize more sharply: 
 

“Those outside academia further assume that because we are college faculty, we actually have a 
reasonable understanding of how people learn and that we apply this knowledge in our teaching. 
… It would be reasonable for anyone reading these fine words to assume that the faculty who 
prepare students to meet these lofty goals must have had considerable academic preparation to 
equip them for this task. But this seemingly plausible assumption is, for the most part, just plain 
wrong. 
 
The preparation of virtually every college teacher consists of in-depth study in an academic 
discipline: chemistry professors study advanced chemistry, historians study historical methods and 
periods, and so on. Very little, if any, of our formal training addresses topics like adult learning, 
memory, or transfer of learning. 
 
And these observations are just as applicable to the cognitive, organizational, and educational 
psychologists who teach topics like principles of learning and performing, or evidence-based 
decision-making.  We have found precious little evidence that content experts in the learning 
sciences actually apply the principles they teach in their own classrooms. Like virtually all college 
faculty, they teach the way they were taught. 
 
But, ironically (and embarrassingly), it would be difficult to design an educational model that is 
more at odds with the findings of current research about human cognition than the one being used 
today at most colleges and universities. 
… 
There is a large amount of well-intentioned, feel-good psychobabble about teaching out there that 
falls apart upon investigation of the validity of its supporting evidence.” 

 

https://www.taylorfrancis.com/books/mono/10.4324/9781003395713/learning-happens-paul-kirschner-carl-hendrick
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
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These sentiments are also echoed by Rohrer & Hartwig (2020): 
 

“We fear, however, that continued advocacy might fall on deaf ears. … [E]mpirical evidence is not 
highly valued by many of the educators who recommend learning methods and train teachers (e.g., 
Robinson, Levin, Thomas, Pituch, & Vaughn, 2007; Sylvester Dacy, Nihalani, Cestone, & 
Robinson, 2011). Against this backdrop, it might be difficult to inspire the kind of support for 
evidence-based interventions like those that sparked the dramatic improvements in Western 
medicine over the last century. Doing so, we believe, is the most pressing challenge facing learning 
scientists.” 

 

A Common Theme Preventing Adoption 

| Theme and Examples 

So, what happened? Why have these cognitive learning strategies been rejected by the education 
system? The common theme throughout the literature is that effective cognitive learning strategies 
often deviate from traditional conventions, which are held in place by convenient misconceptions about 
learning. 
 
The most obvious example of this theme is active learning. 
 

● Traditionally, classes are taught using passive learning: the instructor lectures, and 
students listen, maybe answering a question here and there. Unsurprisingly, this is not 
nearly as effective as an active learning class where students spend most of their time 
actively performing learning exercises. 
 

● However, it has been shown (Deslauriers et al., 2019) that even though students in active 
learning classes learn more, they mistakenly perceive that they learn less. Active learning 
produces more learning by increasing cognitive activation, but students often mistakenly 
interpret extra cognitive effort (such as productive struggle and occasional confusion) as 
an indication that they are not learning as well, when in fact the opposite is true. 
 

● Of course, this misconception is a convenient belief for students who want to minimize 
the amount of effort that they expend during class while still “feeling” as though they are 
learning (even if it is not really happening). It is also a convenient belief for teachers who 
enjoy the spotlight and art of lecturing and the “feeling” that their students are learning, 
do not want to nag students to stay focused during class, and do not suffer repercussions 
for the reality that is their students’ lack of learning. 

 

https://files.eric.ed.gov/fulltext/ED611861.pdf
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
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Another example of this theme is interleaving (mixed practice). 
 

● Traditionally, homework assignments focus on a single topic (or group of closely related 
topics) that are practiced many times consecutively beyond a minimum effective dose. 
This is not nearly as effective as spreading out or interleaving those problems over 
multiple review assignments that each cover a broad mix of previously-learned topics, 
which is more efficient and also helps students learn to match problems with the 
appropriate solution techniques. 
 

● However, it has been shown (see Rohrer, 2009 for a review) that even though interleaving 
promotes vastly superior retention and generalization, students again mistakenly believe 
that they are learning less due to the increased cognitive effort. Teachers can be fooled, 
too, because although interleaving increases performance on cumulative tests, it actually 
lowers performance on homework (which is otherwise artificially high if students settle 
into a robotic rhythm of mindlessly applying one type of solution to one type of 
problem). 
 

● Again, this misconception is a convenient belief for students who want to get through 
homework as quickly and effortlessly as possible while “feeling” as though they are 
mastering new skills (even if they are unable to consistently reproduce those skills in true 
assessment situations). It is also a convenient belief for teachers who want to assign good 
homework grades and “feel” as though these grades represent their students’ learning, 
but don’t want to spend extra effort organizing a properly spaced mixed review schedule 
and fielding a greater number and variety of homework questions from students. 

 
A similar example can be constructed for every cognitive learning strategy that was mentioned 
earlier in this chapter. In some way or another, each strategy increases the intensity of effort 
required from students and/or instructors, and the extra effort is then converted into an outsized 
gain in learning. However, the extra effort also exposes the reality that students didn’t actually 
learn as much as they (and their teachers) “felt” they did under less effortful conditions. This 
reality is inconvenient to students and teachers alike; therefore, it is common to simply believe 
the illusion of learning and avoid activities that might present evidence to the contrary. 
 
More generally, while “innocent until proven guilty” is a good model for a legal system, 
“competent until proven incompetent” is a poor model for an educational system. If students are 
not made to demonstrate measurable learning at each step of the way, until they are able to 
consistently reproduce learned skills in true assessment situations, then the most likely outcome 

 

http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
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is that very little learning will happen. Whereas the casualties of the legal system are those who 
are jailed without just cause, the casualties of the education system are those students who are 
hopelessly pushed to learn advanced skills despite not having actually mastered the 
prerequisites. Empowering students requires ensuring their learning, and ensuring learning 
requires interrogating their knowledge. 
 

| Desirable Difficulty vs Illusion of Comprehension 

This theme is so well-documented in the literature that it even has a catchy name: a practice 
condition that makes the task harder, slowing down the learning process yet improving recall 
and transfer, is known as a desirable difficulty. As summarized by Rohrer (2009): 
 

“A feature that decreases practice performance while increasing test performance has been 
described by Bjork and his colleagues as a desirable difficulty, and spacing and mixing are two of 
the most robust ones. As these researchers have noted, students and teachers sometimes avoid 
desirable difficulties such as spacing and mixing because they falsely believe that features yielding 
inferior practice performance must also yield inferior learning.” 

 
Many types of cognitive learning strategies introduce desirable difficulties – for instance, Bjork 
& Bjork (2011) list a few more: 
 

“Such desirable difficulties (Bjork, 1994; 2013) include varying the conditions of learning, rather 
than keeping them constant and predictable; interleaving instruction on separate topics, rather 
than grouping instruction by topic (called blocking); spacing, rather than massing, study sessions 
on a given topic; and using tests, rather than presentations, as study events.” 

 
As Bjork & Bjork (2023, pp.21-22) elaborate, desirable difficulties make practice more 
representative of true assessment conditions. Consequently, it is easy for students (and their 
teachers) to vastly overestimate their knowledge if they do not leverage desirable difficulties 
during practice, a phenomenon known as the illusion of comprehension: 
 

“A general characteristic of desirable difficulties (such as the spacing or interleaving of study or 
practice trials) is that they present challenges (i.e., difficulties) for the learner, and hence can even 
appear to be slowing the rate at which learning is occurring. In contrast, their opposites (such as 
massing or blocking of study or practice trials) often make performance improve rapidly and can 
appear to be enhancing learning. 
 
Thus, as either learners or teachers, we are vulnerable to being misled as to whether we or our 
students are actually learning effectively, and, indeed, we can easily be misled into thinking that 
these latter types of conditions, such as massing or blocking, are actually better for learning. Such 
dynamics probably play a major role in why students often report that their most preferred and 
frequently used types of study activity include activities such as rereading chapters (e.g., Bjork et 
al., 2013), typically right away after an initial reading. Such activities can provide a sense of 

 

https://en.wikipedia.org/wiki/Desirable_difficulty
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://burrell.edu/wp-content/uploads/2020/09/EBjorkRBjork_FABBSchapter2014-2nd-ed._WithCoverPage.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf#page=27


44  |  The Math Academy Way – Working Draft 

familiarity or perceptual fluency that we can interpret as reflecting understanding or 
comprehension and, thus, produce in us what we have sometimes called an ‘illusion of 
comprehension’ (Bjork, 1999; Jacoby et al., 1994). 
 
Similarly, when information comes readily to mind, which frequently is the case in blocked 
practice, or with no contextual variation in a repeated study or practice setting, we can be led to 
believe that such immediate access reflects real learning when, in fact, such access is likely to be 
the product of cues that continue to be present in the unchanging study situation, but that are 
unlikely to be present at a later time, such as on an exam. As both learners and teachers, we need 
to be suspicious of conditions of learning, such as massing and blocking, that frequently make 
performance improve rapidly, but then typically fail to support long-term retention and transfer. 
To the extent that we interpret current performance as a valid measure of learning, we become 
susceptible both to mis-judging whether learning has or has not occurred and to preferring poorer 
conditions of learning over better conditions of learning.” 

 

| The Educational System Prefers Illusion 

As Bjork (1994) explains, the typical teacher is incentivized to maximize the immediate 
performance and/or happiness of their students, which biases them against introducing 
desirable difficulties and incentivizes them to promote illusions of comprehension: 
 

“Recent surveys of the relevant research literatures (see, e.g., Christina & Bjork, 1991; Farr, 1987; 
Reder & Klatzky, 1993; Schmidt & Bjork, 1992) leave no doubt that many of the most effective 
manipulations of training – in terms of post-training retention and transfer – share the property 
that they introduce difficulties for the learner. 
… 
If the research picture is so clear, why then are … nonproductive manipulations such common 
features of real-world training programs? … [T]he typical trainer is overexposed, so to speak, to the 
day-to-day performance and evaluative reactions of his or her trainees. A trainer, in effect, is 
vulnerable to a type of operant conditioning, where the reinforcing events are improvements in the 
[immediate] performance and/or happiness of trainees. 
 
Such a conditioning process, over time, can act to shift the trainer toward manipulations that 
increase the rate of correct responding – that make the trainee’s life easier, so to speak. Doing 
that, of course, will move the trainer away from introducing the types of desirable difficulties 
summarized in the preceding section.” 

 
What’s more, most educational organizations operate in a way that exacerbates this issue: 
 

“The tendency for instructors to be pushed toward training programs that maximize the 
performance or evaluative reaction of their trainees during is exacerbated by certain institutional 
characteristics that are common in real-world organizations. 
 
First, those responsible for training are often themselves evaluated in terms of the performance 
and satisfaction of their trainees during training, or at the end of training. 
 

 

https://gwern.net/doc/psychology/spaced-repetition/1994-bjork.pdf
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Second, individuals with the day-to-day responsibility for training often do not get a chance to 
observe the post-training performance of the people they have trained; a trainee’s later successes 
and failures tend to occur in settings that are far removed from the original training environment, 
and from the trainer himself or herself. 
 
It is also rarely the case that systematic measurements of post-training on-the-job performance 
are even collected, let alone provided to a trainer as a guide to what manipulations do and do not 
achieve the post-training goals of training. 
 
And, finally, where refresher or retraining programs exist, they are typically the concern of 
individuals other than those responsible for the original training.” 

 
As a result, these cognitive learning strategies often ruffle the feathers of educational 
traditionalists, whose immediate response is to lash out against it. Take it directly from John 
Gilmour Sherman (1992), a professor who implemented evidence-based learning strategies in his 
own classroom, only to be shut down for no reason other than his superior’s unsupported 
opinions about how learning works: 
 

“Avoiding a frontal attack, the chairman of the Psychology Department at Georgetown declared 
by fiat that something on the order of 50% of class time must be devoted to lecturing. By reducing 
the possibility of self-pacing to zero, this effectively eliminated PSI [Personalized System of 
Instruction] courses. 
 
He issued this order on the grounds that in the context of lecturing ‘it is the dash of intellects in 
the classroom that informs the student.’ No data were presented on this point! The spectacle of 
purporting to defend scholarship while deciding the merits of instructional methods by assertion is 
silly. 
 
The troubling aspect of all these cases was that data played no part in the decisions. It is 
disturbing when one has to wonder whether research on the education process makes any 
difference.” 

 
Ultimately, Sherman’s experiences led him to conclude that 
 

“...[T]he investment in keeping things as they are may be impossible to overcome. … Improving 
instruction is the goal, but only in the context of not changing anything that is important to any 
vested interest. … [When the role of the teacher] does not conform to what most people think of as 
teaching; this is a problem and an obstacle to implementation.” 

 
This sentiment continues into recent years. As Bjork & Bjork (2023, pp.19) reminisce: 
 

“Having been asked to convey in ‘our own words’ what we most want students and teachers to 
know regarding how to apply findings from the science of learning has led us to think back on our 
efforts to spread the desirable difficulties gospel, so to speak. It verges on laughable that we 
thought 25 years or so ago that we would simply tell people about certain key findings, and they 
would then immediately change how they managed their own learning.” 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf#page=26
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Or, as Rohrer & Hartwig (2020) put it bluntly: 
 

“...[T]he success of an intervention depends partly on whether students and teachers are willing to 
use it. Too often, the classroom is where promising interventions go to die.” 

 

Technology Changes Everything 

| Revival via Technology 

It is unfortunate that Sherman and countless other researchers, practitioners, and proponents of 
evidence-based education are no longer alive to see their life’s work positively transform the 
practice of education – and especially so for those like Sherman (1992) who eventually despaired 
“whether research on the education process makes any difference.” 
 
However, some did maintain hope that one day their contributions might be revived in the 
future when computers advanced far enough to make individualized digital learning 
environments technologically possible and commercially viable.  
 
Indeed, these cognitive learning strategies are now some of the main guiding principles behind 
Math Academy. By leveraging these strategies to their fullest effect and capitalizing on their 
compounding nature, Math Academy is proud to offer a learning environment where students 
can learn many times more than they would otherwise in a traditional classroom. 
 

| Necessity of Technology 

In building this environment, we discovered something interesting: technology not only lets us 
circumvent the opposing inertia in the education system, but also helps us leverage these 
cognitive learning strategies to a degree that would not be feasible for even the most agreeable 
and hard-working human teacher. While it’s true that a human teacher can reap some benefits 
of these strategies while maintaining a reasonable workload (and there really is no good excuse 
for not doing so), technology enables us to leverage these strategies to their full extent and 
produce even better learning outcomes than a human teacher who uses loose approximations of 
these strategies as much as humanly possible. 
 
For instance, consider spaced repetition. While some curricula now adopt a spiral approach 
where material is naturally revisited and further built upon in later textbook chapters and/or 

 

https://files.eric.ed.gov/fulltext/ED611861.pdf
https://en.wikipedia.org/wiki/Evidence-based_education
https://en.wikipedia.org/wiki/Spiral_approach
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grades, this is nowhere near the level of granularity, precision, and individualization that is 
required to capture the maximum benefit of true spaced repetition. Taken to its fullest extent, 
spaced repetition requires the instructor to keep track of a repetition schedule for every student 
for every topic and continually update that schedule based on the student’s performance – and 
each time a student learns (or reviews) an advanced topic, they’re implicitly reviewing many 
simpler topics, all of whose repetition schedules need to be adjusted as a result. 
 
Of course, this is an inhuman amount of work. In fact, before building our online system, we 
actually tried performing a loose approximation of spaced repetition manually while teaching in 
a human-to-human classroom. It turned out that, teaching just two classes with only a handful 
of students in each class, it took more time and effort than a full-time job to implement a very 
loose approximation of spaced repetition for the class as a whole – not even personalized to 
individual students. And that’s just one of many strategies that are necessary for effective 
teaching! 
 
But just because fully leveraging these cognitive learning strategies requires an inhuman 
amount of work, doesn’t mean that there’s little to gain from it (especially when a century of 
research has shown that these strategies lead to immense improvements in learning). All it 
means is that the human teacher is a bottleneck to effective teaching. And what’s always the 
solution when manual human effort is a bottleneck? Technology. 
 

| Accelerating Student Learning by 4x 

By building a system that fully leverages these cognitive strategies, we have accelerated student 
learning by 4x: on Math Academy, serious students learn 4x the amount of material in the same 
time (or the same amount of material in a quarter of the time) as compared to traditional 
classrooms. And that’s being conservative, since our courses tend to be even more 
comprehensive than what you’d find in a traditional classroom. (Our courses aim to cover the 
superset of all content that one could reasonably expect to find in any major textbook or 
standard class syllabus.) 
 
The 4x factor is a hard measurement, backed by concrete numbers: 
 

● We measure our course length in terms of XP. One XP is approximately one minute of 
focused effort, give or take, depending on the individual student. We model our average 
student on a serious (but imperfect) student who works an average of 40 XP per weekday. 
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● Using the AP Calculus BC Course as a comparison, a typical student in a school will 
have a 50-minute class five days per week plus about an hour of homework per night. 
Throughout a typical 32-week school year, that’s a total of (50 minutes class + 60 minutes 
homework average per day) (five days) (32 weeks) = 17,600 minutes.  Add in a couple extra 
hours for each test and quiz throughout each semester and then at least 30-40 hours for 
practice exams and studying for the AP exam, if you want to get a 5. That will put you in 
the ballpark of our calculation of 24,000 minutes. 
 

● The Math Academy AP Calculus BC Course is approximately 6,000 XP (equivalent to 
about 6,000 minutes) and already includes quizzes, reviews, and highly specific test prep. 

 
The rest of the book describes how our technology accomplishes this. 
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Why and How to Apply the Science of Learning in Your Academic Setting (pp. 111-21). Society for 
the Teaching of Psychology. 
 
Importance: A practice condition that makes the task harder, slowing down the learning process yet improving 
recall and transfer, is known as a desirable difficulty. Desirable difficulties include varying the conditions of 
learning, rather than keeping them constant and predictable; interleaving instruction on separate topics, rather 
than grouping instruction by topic (called blocking); spacing, rather than massing, study sessions on a given 
topic; and using tests, rather than presentations, as study events. 
 
 

● Bjork, R. A. (1994). Memory and metamemory considerations in the training of human 
beings.  In J. Metcalfe and A. Shimamura (Eds.), Metacognition: Knowing about knowing 
(pp.185-205). 
 

 

https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
https://burrell.edu/wp-content/uploads/2020/09/EBjorkRBjork_FABBSchapter2014-2nd-ed._WithCoverPage.pdf
https://burrell.edu/wp-content/uploads/2020/09/EBjorkRBjork_FABBSchapter2014-2nd-ed._WithCoverPage.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://gwern.net/doc/psychology/spaced-repetition/1994-bjork.pdf
https://gwern.net/doc/psychology/spaced-repetition/1994-bjork.pdf
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Importance: Many of the most effective manipulations of training – in terms of post-training retention and 
transfer – share the property that they introduce difficulties for the learner. The typical trainer is incentivized to 
maximize the immediate performance and/or happiness of trainees, which biases them against introducing 
these types of desirable difficulties. What’s more, most training organizations are set up to exacerbate this issue. 
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Chapter 3. Core Science: How the Brain Works 
 

Summary: Cognition involves the flow of information through sensory, working, and long-term 
memory banks in the brain. Sensory memory temporarily holds raw data, working memory 
manipulates and organizes information, and long-term memory stores it indefinitely by creating 
strategic electrical wiring between neurons. Learning amounts to increasing the quantity, depth, 
retrievability, and generalizability of concepts and skills in a student’s long-term memory. Limited 
working memory capacity creates a bottleneck in the transfer of information into long-term 
memory, but cognitive learning strategies can be used to mitigate the effects of this bottleneck. 

 

Sensory, Working, and Long-Term Memory 

In order to develop a good intuitive sense of how learning can be optimized, it’s crucial to 
understand – at a concrete, physical level in the brain – what learning actually is. At the most 
fundamental level, learning is the creation of strategic electrical wiring between neurons 
(“brain cells”) that improves the brain’s ability to perform a task. 
 
When the brain thinks about objects, concepts, associations, etc, it represents these things by 
activating different patterns of neurons with electrical impulses. Whenever a neuron is activated 
with electrical impulses, the impulses naturally travel through its outward connections to reach 
other neurons, potentially causing those other neurons to activate as well. By creating strategic 
connections between neurons, the brain can more easily, quickly, accurately, and reliably 
activate more intricate patterns of neurons. 
 
As one might expect, it is extraordinarily complicated to understand what these specific brain 
patterns are, how they interact, and how the brain identifies strategic ways to improve its 
connectivity. However, to some extent, these are just nature’s way of implementing cognition – 
and the overarching cognitive processes of the brain are much better understood. 
 
At a high level, human cognition is characterized by the flow of information across three 
memory banks: 
 

1. Sensory memory temporarily holds a large amount of raw data observed through the 
senses (sight, hearing, taste, smell, and touch), only for several seconds at most, while 

 

https://en.wikipedia.org/wiki/Sensory_memory
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relevant data is transferred to short-term memory for more sophisticated processing. 
 

2. Short-term memory, and more generally, working memory, has a much lower capacity 
than sensory memory, but it can store the information about ten times longer. Working 
memory consists of short-term memory along with capabilities for organizing, 
manipulating, and generally “working” with the information stored in short-term 
memory. The brain’s working memory capacity represents the degree to which it can 
focus activation on relevant neural patterns and persistently maintain their simultaneous 
activation, a process known as rehearsal. 
 

3. Long-term memory effortlessly holds indefinitely many facts, experiences, concepts, and 
procedures, for indefinitely long, in the form of strategic electrical wiring between 
neurons. Wiring induces a “domino effect” by which entire patterns of neurons are 
automatically activated as a result of initially activating a much smaller number of 
neurons in the pattern. The process of storing new information in long-term memory is 
known as consolidation. At a cognitive level, learning can be described as a positive 
change in long-term memory. 

 
These memory banks work together to form the following pipeline for processing information: 
 

1. Sensory memory receives a stimulus from the environment and passes on important 
details to working memory. 
 

2. Working memory holds and manipulates those details, often augmenting or substituting 
them with related information that was previously stored in long-term memory. 
 

3. Long-term memory curates important information as though it were writing a 
“reference book” for the working memory. 
 

Note, however, that there is a crucial conceptual difference between long-term memory and a 
reference textbook: long-term memory can be forgotten. The text in a reference book remains 
there forever, accessible as always, regardless of whether you read it – but the representations in 
long-term memory gradually, over time, become harder to retrieve if they are not used, resulting 
in forgetting. The phenomenon of forgetting in long-term memory has been widely researched 
and can be characterized as follows (Hardt, Nader, & Nadel, 2013): 
 

“...[F]orgetting refers to the absence of expression of previously properly acquired memory in a 
situation that normally would cause such expression. This can reflect actual memory loss or a 
failure to retrieve existing memory.” 

 

https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Memory_rehearsal
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Memory_consolidation
https://www.mcgill.ca/science/files/science/channels/attach/hardt_et_al_-_decay_happens_-_the_role_of_active_forgetting_in_memory.pdf
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However, the lower-level mechanisms underlying forgetting in long-term memory are not yet 
well understood. 
 

 
 
There are two complementary perspectives by which we can think about this pipeline. 
 

● encoding perspective – the pipeline converts or “encodes” information from the 
outside world into a representation that can be stored in long-term memory and 
later recalled. 
 

● executive function (or cognitive control) perspective – the pipeline is centered 
around working memory, which pulls relevant information from sensory and 
long-term memory into an area where it can be combined, transformed, and used 
to guide behavior to achieve goals.  

 
In the context of mathematical talent development, once a student is beyond the stage of 
learning how to read and count, we are less concerned with their sensory memory and more 

 

https://en.wikipedia.org/wiki/Encoding_(memory)
https://en.wikipedia.org/wiki/Executive_functions
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concerned with their long-term memory. The goal of instruction is to increase the quantity, 
depth, retrievability, and generalizability of mathematical concepts and skills in the student’s 
long-term memory. 
 
The student’s working memory capacity is a bottleneck in the transfer of information into their 
long-term memory. However, by leveraging cognitive learning strategies and properly 
scaffolding and adapting instruction to the student’s individual needs, we can minimize the 
degree to which their working memory capacity limits their learning, thereby maximizing the 
transfer of new information and the retention of existing information in long-term memory. 
 

Design Constraints 

The brain’s information-processing pipeline is designed to be incredibly efficient. However, 
even the most efficient designs have limitations. Design is all about balancing trade-offs to 
achieve the best possible outcome in the face of constraints. To understand the constraints and 
the rationale behind a design, it can be helpful to attempt some naive critiques. 
 

Critique: Why is long-term memory needed? Why can’t the brain just hold everything in 
working memory forever through rehearsal? 
 
Rationale: Rehearsal requires a lot of effort. It is very taxing on the brain. When the brain 
engages in rehearsal, it’s like a muscle that is lifting a weight. 
 
Just like a muscle has a limit to the amount of weight it can hold, the brain has a limit to the 
amount of new information it can hold in working memory via rehearsal. Most people can only 
hold about 7 digits (or more generally 4 chunks of coherently grouped items) simultaneously and 
only for about 20 seconds (Miller, 1956; Cowan, 2001; Brown, 1958). And that assumes they aren’t 
needing to perform any mental manipulation of those items – if they do, then fewer items can be 
held due to competition for limited processing resources (Wright, 1981). 
 
Long-term memory solves this problem by providing a place where the brain can store lots of 
information for a long time without requiring much effort. 
 

Critique: Why doesn’t the brain just store everything it encounters in long-term memory? 
That way, it would never forget anything.  

 

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://journals.sagepub.com/doi/abs/10.1080/17470215808416249?journalCode=qjpa
https://academic.oup.com/geronj/article-abstract/36/5/605/550194
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Rationale: When it comes to information storage, more is not always better. In order for it to be 
worthwhile to store a piece of information, the benefit must offset the cost. Creating 
connections between neurons is costly in the sense that it requires biological resources – the 
connections are physical growths between cells, which means they have to be actively 
constructed and maintained by the body. 
 
To illustrate with a concrete example, suppose that you want to buy a biography book that will 
help you understand somebody’s background and their impact on society. One book contains 
300 pages, costs $20, and covers formative experiences in their childhood, their career arc, and 
occasional anecdotes to illustrate key points and themes. Another book contains 10,000 pages, 
costs $1,000, covers all of the information in the first book, and also includes a description of 
every single meal the person ate throughout their life. Unless you have a specific, intense 
interest in this person’s dietary habits (which you probably don’t), it’s easy to see that the first 
option is superior. 
 

Case Study: Information Flow During a Computation 

To illustrate how information flows through these memory banks when solving a math problem, 

let’s analyze what happens as we compute 43 using typical arithmetic strategies while writing 
down some intermediate steps. (Remember that exponentiation is just repeated multiplication: 

43 means to take three 4’s and multiply them together, that is, 43 = 4 × 4 × 4 = 64.) 
 
First, let’s get a sense of how each memory bank will help us solve the problem: 
 

1. Sensory memory will capture visual data that lets us read the problem or any 
intermediate work that we’ve written down, thereby allowing the written information to 
be loaded into working memory. It will also filter out any distractions (e.g. background 
noise) as we solve the problem. 
 

2. Working memory will hold the relevant pieces of the problem, request additional 
information from long-term memory, and apply that information to incrementally 
transform the pieces of the problem into the solution. Our problem-solving narrative 
will take place within the working memory. 
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3. Long-term memory will, upon request from working memory, produce definitions, facts, 
and procedures that we learned previously. It is like an internal “reference book” that we 
can use to look up additional information that would be helpful while solving the current 
problem. 

 
It’s worth re-emphasizing that the problem-solving narrative will take place within the working 
memory. Sensory and long-term memory will supply working memory with information, which 
working memory will combine, transform, and use to guide our behavior to solve the problem. 
As researchers elaborate (Roth & Courtney, 2007): 
 

“Working memory (WM) is the active maintenance of currently relevant information so that it is 
available for use. A crucial component of WM is the ability to update the contents when new 
information becomes more relevant than previously maintained information. New information 
can come from different sources, including from sensory stimuli (SS) or from long-term memory 
(LTM). 
… 
In order for information in working memory to guide behavior optimally … it must reflect the most 
relevant information according to the current context and goals. Since the context and the goals 
change frequently it is necessary to update the contents of WM selectively with the most relevant 
information while protecting the current contents of WM from interference by irrelevant 
information. 
… 
There are … many ways in which WM can be changed, including through the manipulation of 
information being maintained (Cohen et al., 1997; D'Esposito, Postle, Ballard and Lease, 1999), 
the addition or removal of items being maintained (Andres, Van der Linden and Parmentier, 
2004), or the replacement of one item with another (Roth, Serences, and Courtney, 2006).” 

 
Now, let’s walk through the specific steps needed to solve the problem while observing what 
happens in each memory bank. 
 

Sensory Memory 
(SM) 

Working Memory 
(WM) 

Long-Term Memory 
(LTM) 

View problem: 43 

 
Send relevant info to 
WM: 4 exponent 3 
 
 
 
 
 
 
 

 
 
 
 
Rehearsing: 4 exponent 3 
 
Request definition of exponent from LTM. 
 

 
 
Rehearsing: 4 exponent 3, “A exponent B means A multiplied 

 
 
 
 
 
 
 
 
Retrieve definition: “A 
exponent B means A 
multiplied by itself B 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080868/
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by itself B times” 
 
Apply  “A exponent B means A multiplied by itself B times” 
to 4 exponent 3 to get 4 × 4 × 4. Clear out all other WM. 
 
Rehearsing: 4 × 4 × 4 
 
Request procedure of repeated multiplication from LTM. 
 

 
 
Rehearsing: 4 × 4 × 4, “multiply in any order, but left-to-right 
by default” 
 
Apply  “multiply in any order, but left-to-right by default” to 
4 × 4 × 4 to get (4 × 4) × 4. Clear out all other WM. 
 
Rehearsing: (4 × 4) × 4 
 
Request 4 × 4 from LTM. 
 

 
 
Rehearsing: (4 × 4) × 4, 4 × 4 = 16 
 
Apply 4 × 4 = 16 to (4 × 4) × 4, resulting in 16 × 4. Clear out all 
other WM. 
 
Rehearsing: 16 × 4 
 
Request 16 × 4 from LTM. 
 

 
 
Rehearsing: 16 × 4, “multiply place values separately and add 
results” 
 
(Write 16 × 4 on paper for later reloading.) 
 
Apply “multiply place values separately and add results” to 
16 × 4. Tens place value is 10 so multiply 10 × 4. Clear out 16 
× 4 from WM. 
 
Rehearsing: 10 × 4, “multiply place values separately and add 
results” 
 

times” 
 
 
 
 
 
 
 
 
Retrieve procedure: 
“multiply in any order, 
but left-to-right by 
default” 
 
 
 
 
 
 
 
 
Retrieve fact: 4 × 4 = 16 
 
 
 
 
 
 
 
 
 
Unable to retrieve fact 
16 × 4. Automatic 
redirect to retrieve 
procedure: “multiply 
place values separately 
and add results” 
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View written work: 
16 × 4 
40 
 
Send relevant info to 
WM: 16 × 4, “one 
number written down” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
View written work: 
16 × 4 
40 + 24 
 
Send relevant info to 
WM: 40 + 24 
 
 
 
 

Request 10 × 4 from LTM. 
 

 
 
Rehearsing: 10 × 4 = 40, “multiply place values separately and 
add results” 
 
(Write 40 on paper for later reloading) 
 
Reload WM. 
 
 
 

 
 
 
 
Rehearsing: 16 × 4, “multiply place values separately and add 
results”, “one number written down” 
 
Apply “multiply place values separately and add results” and 
“one number written down” to 16 × 4. Next is ones place; 
ones place value is 6 so multiply 6 × 4. Clear out all other 
WM. 
 
Rehearsing: 6 × 4 
 
Request 6 × 4 from LTM. 
 

 
 
Rehearsing: 6 × 4 = 24 
 
(Write 24 on paper for later reloading) 
 
Reload WM. 
 
 
 

 
 
 
Rehearsing: 40 + 24 
 
Request 40 + 24 from LTM. 
 

 
 
Retrieve fact: 10 × 4 = 40 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Retrieve fact: 6 × 4 = 24 
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View written work: 
16 × 4 
40 + 24 
6 
 
Send relevant info to 
WM: 40 + 24, “one 
number written down” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
View written work: 
16 × 4 
40 + 24 
64 

 
 
Rehearsing: 40 + 24, “add digits” 
 
Apply “add digits” to 40 + 24. First digit will be 4 + 2. Clear 
all other WM. 
 
Rehearsing: 4 + 2, “add digits” 
 
Request 4 + 2 from LTM. 
 

 
 
Rehearsing: 4 + 2 = 6, “add digits” 
 
(Write 6 on paper for later reloading) 
 
Reload WM. 
 
 
 
 

 
 
 
 
Rehearsing: 40 + 24, “add digits”, “one number written down” 
 
Apply “add digits” and “one number written down” to 40 + 
24. Second digit will be 0 + 4. Clear out all other WM. 
 
Rehearsing: 0 + 4 
 
Request 0 + 4 from LTM. 
 

 
 
Rehearsing: 0 + 4 = 4 
 
(Write 4 on paper for later reloading) 
 
Reload WM. 
 
 
 
 

Unable to retrieve 40 + 
24. Automatic redirect 
to procedure: “add 
digits” 
 
 
 
 
 
 
 
Retrieve fact: 4 + 2 = 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Retrieve fact: 0 + 4 = 4 
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Send relevant info to 
WM: 64 

 
 
 
Rehearsing: 64 
 
Answer is 64. 
 

 
What learning resulted from this computation? Remember that learning occurs when the wiring 
of long-term memory is changed in a positive way that increases a student’s ability to perform a 
task. This can involve any combination of wiring up new information, wiring up connections 
between existing pieces of information, reorganizing existing wiring so that the information can 
be retrieved more efficiently, etc. 
 
With this in mind, let’s take inventory of the processes that occurred within long-term memory 
in the example above: 
 

● Retrieval of definitions: 
     “A exponent B means A multiplied by itself B times” 
 

● Retrieval of facts: 
     4 × 4 = 16 
     10 × 4 = 40 
     6 × 4 = 24 
     4 + 2 = 6 
     0 + 4 = 4 
 

● Redirects to procedures (and retrieval/execution of those procedures): 
     4 × 4 × 4  →  “multiply in any order, but left-to-right by default” 
     16 × 4  →  “multiply place values separately and add results” 
     40 + 24  →  “add digits” 

 
All of these pieces of information will become further consolidated in long-term memory, and 
there will be additional wiring connecting these component skills as part of a larger procedure 
for computing exponents. 
 

Additionally, the fact 43 = 64 will also begin consolidating in long-term memory (though it will 
soon be forgotten unless it is repeatedly reviewed into the future). Indeed, many people who 
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frequently perform mental math with exponents know their cubes from 13 to 63 by heart and can 
simply retrieve their values as opposed to computing them. 
 

Neuroscience of Working Memory 

Recall that when the brain thinks about objects, concepts, associations, etc, it represents these 
things by activating different patterns of neurons with electrical impulses. Loosely speaking, the 
brain’s working memory capacity represents the degree to which it can focus activation on 
relevant neural patterns and persistently maintain their simultaneous activation. The cognitive 
load of a task represents the level of exertion that the brain would experience while completing 
the task. 
 
(More strictly speaking: higher working memory capacity refers not to the ability to sustain more 
neural activity in the energy sense, but rather, the ability to sustain relevant neural activity while 
suppressing interference from irrelevant neural activity. At a biological level, hitting a working 
memory capacity limit does not entail exhausting one’s ability to maintain more neural activity, 
but rather exhausting one’s ability to maintain focus and attention, that is, appropriate 
concentration or allocation of one’s neural activity.) 
 
As summarized by D'Esposito (2007): 
 

“...[T]he neuroscientific data presented in this paper are consistent with most or all neural 
populations being able to retain information that can be accessed and kept active over several 
seconds, via persistent neural activity in the service of goal-directed behaviour. 
 
The observed persistent neural activity during delay tasks may reflect active rehearsal 
mechanisms. Active rehearsal is hypothesized to consist of the repetitive selection of relevant 
representations or recurrent direction of attention to those items. 
… 
Research thus far suggests that working memory can be viewed as neither a unitary nor a 
dedicated system. A network of brain regions, including the PFC [prefrontal cortex], is critical for 
the active maintenance of internal representations that are necessary for goal-directed behaviour. 
Thus, working memory is not localized to a single brain region but probably is an emergent 
property of the functional interactions between the PFC and the rest of the brain.” 

 
Long-term learning is represented by the creation of strategic electrical wiring between 
neurons. Whenever a neuron is activated with electrical impulses, the impulses naturally travel 
through its outward connections to reach other neurons, potentially causing those other 
neurons to activate as well. By creating strategic connections between neurons, the brain can 
more easily, quickly, accurately, and reliably activate more intricate patterns of neurons. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2429995/
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Talcott (2021) summarizes this process as follows: 
 

“Individual neurons can be thought of as rather simple biological batteries, each maintaining a 
gradient of biochemical ions across its cell membrane, which results in a small, local electrical 
charge – or potential. 
… 
Incoming signals from neighbouring brain cells are communicated to the neuron’s dendrites and 
act to continuously modify the magnitude of the neuron’s electrical charge. When the sum of 
signals from other neurons drives the electrical gradient to and then past a critical voltage, an 
electrical signal – the action potential – is generated and propagated along the neuron’s axon. 
This signal ultimately modulates the activity of other neurons to which it connects. 
 
This process of synaptic transmission comprises the release of neurotransmitter chemicals at the 
junction between two cells – the synapse. Neurotransmitters released in response to the action 
potential in the pre-synaptic cell bind to receptors on the dendrites of the post-synaptic cell. The 
effects of such neurotransmitter binding serve to modify the electrical potential in the cell, either 
exciting it toward generating an action potential or inhibiting it from doing so. 
… 
Cognition – our thinking, reasoning and learning processes – are derived from activity in neural 
networks within the brain … Neurodevelopment is a lifelong process involving the modification of 
the structural and functional properties of the brain … One of the most striking aspects of the 
post-natal neurodevelopmental period in early childhood is in this near continuous refinement of 
neural connectivity, including both the strengthening of productive synapses and elimination of 
those that are less robust or redundant… 
 
Structural and functional connectivity provides mechanisms for implementing adaptation of the 
brain in response to an individual’s experience of the world. As children are born with nearly a full 
complement of brain cells, adaptation of responses to environmental change – the underlying 
basis of learning for any organism – is accomplished mainly through modifying neural 
connectivity. Connectivity increases in parallel with children’s advancement of their cognitive 
capacities and learning achievement. 
 
Adapted from a theory first articulated by Donald Hebb in the 1940, one well-supported principle 
regarding the relationships between brain structure and function in the developing brain is ‘what 
fires together, wires together’ … When reinforced through repetition (experience), this coupling 
increases the probability of their activity being coincident in the future. This feedback process also 
works in reverse, such that connections that are not actively reinforced can be eliminated through 
a competitive elimination process, which favours the survival of more functionally adaptive 
networks at the expense of less efficient or redundant competitor networks through development... 
 
These mechanisms of synaptic plasticity are widely considered to be a predominant way through 
which information is coded and retained in brain networks … Learning and memory (a cognitive 
demonstration of learning through recall of material to which an individual has been exposed) are 
therefore both expressed in the brain and related at the neural level to modification of 
connectivity within neural networks in response to repeated patterns of environmental stimuli and 
their associations.” 

 
Wiring induces a “domino effect” by which entire patterns of neurons are automatically 
activated as a result of initially activating a much smaller number of neurons in the pattern. 

 

https://solportal.ibe-unesco.org/articles/the-neurodevelopmental-underpinnings-of-childrens-learning-connectivity-is-key
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However, when the brain is initially learning something, the corresponding neural pattern has 
not been “wired up” yet, which means that the brain has to devote effort to activating each 
neuron in the pattern. In other words, because the dominos have not been set up yet, each one 
has to be toppled in a separate stroke of effort. This imposes severe limitations on how much 
new information the brain can hold simultaneously in working memory.  
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existing memory. The phenomenon of forgetting in long-term memory has been widely researched, but the 
lower-level mechanisms underlying the phenomenon are not yet well understood. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080868/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080868/
https://www.mcgill.ca/science/files/science/channels/attach/hardt_et_al_-_decay_happens_-_the_role_of_active_forgetting_in_memory.pdf
https://www.mcgill.ca/science/files/science/channels/attach/hardt_et_al_-_decay_happens_-_the_role_of_active_forgetting_in_memory.pdf
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Chapter 4. Core Technology: the Knowledge Graph 
 

Summary: Math Academy utilizes a knowledge graph, an interconnected structure of thousands 
of topics from 4th grade through university-level mathematics, to organize its curriculum and 
facilitate algorithmic decision-making. The knowledge graph allows Math Academy to place each 
student at the edge of their individual “knowledge frontier,” fill in any gaps in foundational 
knowledge, leverage mastery learning to efficiently extend student knowledge, provide spaced 
reviews and remedial reviews when necessary, and capitalize on “encompassing” relationships to 
achieve turbo-boosted learning speed. 

 

Understanding the Knowledge Graph 

| Linking Topics and Prerequisites 

To understand how Math Academy leverages specific cognitive learning strategies, it is helpful 
to have high-level understanding of our knowledge graph, which organizes our curriculum in a 
way that enables algorithmic decision-making. 
 
Here, the word “graph” is a term that readers may be unfamiliar with. Usually, the word “graph” 
refers to a chart illustrating the relationship between two variables, such as a bar chart or a line 
chart. But in our context, the word “graph” refers to a diagram consisting of objects and arrows 
between them. This terminology is common in the mathematical field of graph theory. 
 
Our knowledge graph contains multiple thousands of interlinked topics. Each linkage between 
topics indicates a relationship between them, such as one topic being a prerequisite for another 
topic. (There are lots of different kinds of relationships, but for now, we’ll just focus on 
prerequisites.) 
 
For instance, below is a simple example of a knowledge graph that shows a topic Adding 
Fractions and Whole Numbers Using Models (bottom) that is the prerequisite for three other topics 
(top). After a student learns the topic on the bottom, they will be ready to learn any topic that it 
points to. In other words, the arrows point along potential “learning paths” that the student can 
follow. 
 

 

https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Graph_theory
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However, if multiple arrows point to a higher topic, then that means the higher topic has 
multiple prerequisites that the student needs to learn beforehand. 
 
To illustrate, the topic Adding Fractions With Unlike Denominators has been added to the top of 
the knowledge graph. As indicated by the arrows pointing to it, it has two prerequisites that the 
student needs to learn beforehand: 

1. Adding Fractions With Unlike Denominators Using Models 
2. Adding Fractions and Whole Numbers 

 

 
 

| Zooming Out 

Zooming out more, we see that knowledge graphs can encode a lot of complicated information 
that would otherwise be hard to describe and reason about. 
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Zooming out even more, below is the knowledge graph for an entire course consisting of about 
300 topics. 
 

 
 
Fully zoomed out, Math Academy’s entire curriculum consists of multiple thousands of topics 
spanning 4th Grade through university-level math. All these topics are connected up together in 
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the knowledge graph. In this view, a course is simply a section of our knowledge graph. (In the 
visualization below, different colors represent different courses.) 
 

 
 
The knowledge graph above contains the following courses: 4th Grade Math, 5th Grade Math, 
Pre-Algebra, Algebra I, Geometry, Algebra II, Pre-Calculus, Calculus I, Calculus II, Linear Algebra, 
Multivariable Calculus, *Differential Equations, *Probability & Statistics, *Discrete Mathematics, 
*Abstract Algebra. (As of October 2023, this accounts for most, but not all, of the content in our 
system – courses not listed have large overlap with the preceding list. Asterisks indicate that a 
course is still under development.) 
 

| Course Graph 

On school and university websites, it is common to see courses arranged into a course graph, 
which can be interpreted as a highly-compressed version of a knowledge graph where a single 
entity represents hundreds of topics. Math Academy’s course graph (as of October 2023) is 
shown below: 
 

 



The Math Academy Way – Working Draft  |  71 

 
 
However, it is important to realize that each course is ultimately just a set of topics in the 
knowledge graph. The knowledge graph is the ultimate source of truth; a course graph simply 
summarizes and communicates information about the high-level structure of a knowledge graph 
so that humans can understand it. 
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Using the Knowledge Graph 

| Scaffolded Mastery Learning 

Math Academy’s knowledge graph enables us to implement mastery learning, in which students 
demonstrate proficiency on prerequisites before moving on to more advanced topics. 
 

 
 
Each topic involves a lesson that is broken down into several key pieces of learning called 
knowledge points. Each knowledge point contains a worked example and asks questions 
similar to the worked example. 
 
Knowledge points build on each other to help scaffold students through the lesson: the first 
knowledge point covers the most basic idea or skill of the lesson, and later knowledge points 
gently introduce more advanced cases. 
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To demonstrate mastery of a topic, a student must answer sufficiently many questions correctly 
in each successive knowledge point in the lesson. Once this is accomplished, more advanced 
topics become available for the student to work on. 

 

 

→  

 

 

| Additional Linkages 

> Key Prerequisites Enable Targeted Remediation 

Each knowledge point is linked to one or more key prerequisite topics that represent the 
prerequisite knowledge that is most directly being used in that knowledge point. If a student 
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ever fails a lesson twice at the same knowledge point, we automatically provide remedial reviews 
on the key prerequisites. This helps the student strengthen their foundations in the areas where 
they are most in need of additional practice, so that they are better prepared to pass the lesson 
the next time around. 
 
As a concrete example, suppose that while re-attempting the lesson Exponents with Rational 
Bases, a student 
 

● manages to pass Part 1: Expressing a Product Using an Exponent, e.g. expressing 4 × 4 × 4 as 
43 , but 
 

● gets stuck again at Part 2: Evaluating an Exponential Expression, e.g. computing (–4)3 = (–4) × 
(–4) × (–4). 
 

In this situation, the student has demonstrated that they understand the concept of an exponent, 
but they are struggling to use multiplication to compute the result. 
 
Although multiplication occurs several steps back in the sequence of prerequisites, we have 
linked Part 2: Evaluating an Exponential Expression to the key prerequisite topic Multiplying 
Negative Numbers, which allows us to automatically trigger a targeted remedial review on 
Multiplying Negative Numbers. 
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> Encompassings Enable Turbo-Boosted Learning Speed 

Our knowledge graph also stores encompassing relationships between topics. Advanced 
mathematical problems implicitly practice or “encompass” many simpler skills. Using 
sophisticated algorithms that capitalize on these encompassings, Math Academy enables 
students to spend most of their time learning new material while simultaneously making sure 
they keep getting practice on things they’ve previously learned. This results in turbo-boosted 
learning speed. 
 
How does this work? The main idea is that whenever a student is due to review some 
previously-learned material, we serve them the smallest possible set of learning tasks that 
encompasses all the due review. The student receives all the review they need, in the most 
concentrated form possible. 
 
To illustrate, consider the following multiplication problem, in which we multiply the two-digit 
number 39 by the one-digit number 6: 
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In order to perform the multiplication above, we have to multiply one-digit numbers and add a 
one-digit number to a two-digit number: 
 

● First, we multiply 6 × 9 = 54. We carry the 5 and write the 4 at the bottom. 
 

● Then, we multiply 6 × 3 = 18 and add 18 + 5 = 23. We write 23 at the bottom. 
 
In other words, Multiplying a Two-Digit Number by a One-Digit Number encompasses Multiplying 
One-Digit Numbers and Adding a One-Digit Number to a Two-Digit Number. 
 
We can visualize this using an encompassing graph as shown below. The encompassing graph 
is similar to a prerequisite graph, except the arrows indicate that a simpler topic is encompassed 
by a more advanced topic. (Encompassed topics are usually prerequisites, but prerequisites are 
often not fully encompassed.) 
 

 
 

Now, suppose that a student is due for reviews on all three of these topics. Because of the 
encompassings, the only review that they will actually have to do is Multiplying a Two-Digit 
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Number by a One-Digit Number. When they complete this review, it will implicitly provide 
repetitions on the topics that it encompasses because the student has effectively practiced those 
skills as well. 

 

→  

 

 

| Diagnostic Exams 

When a student joins Math Academy, they take an adaptive diagnostic exam that leverages the 
knowledge graph to quickly identify their knowledge frontier. The knowledge frontier is the 
boundary between what they know and what they don’t know, and it indicates what topics they 
are ready to learn. Following the diagnostic, whenever a student is served new lessons, those 
lessons always cover topics that are on the student’s knowledge frontier. 
 
In addition to assessing knowledge of course content, our diagnostic exams also assess 
knowledge of lower-grade foundations that students need to know in order to succeed in the 
course (i.e. they are prerequisites for the course). It is common for incoming students to be 
excited about a course but lack some foundational knowledge – and our knowledge graph 
enables us to identify and fill in any missing foundational knowledge while simultaneously 
allowing students to learn course topics that don’t rely on that missing foundational knowledge. 
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Chapter 5. Accountability and Incentives 
 

Summary: Students and teachers are often not aligned with the goal of maximizing learning, 
which means that in the absence of accountability and incentives, classrooms are pulled towards a 
state of mediocrity. Accountability and incentives are typically absent in education, which leads 
to a “tragedy of the commons” situation where students pass courses (often with high grades) 
despite severely lacking knowledge of the content. However, Math Academy is properly held 
accountable and incentivized to maximize student learning. 

 

Accountability and Incentives are Necessary but Absent in 
Education 

According to K. Anders Ericsson (1993, with Krampe & Tesch-Romer), one of the most 
influential researchers in the field of human expertise and performance: 
 

“...[D]eliberate practice requires effort and is not inherently enjoyable. Individuals are motivated 
to practice because practice improves performance.” 

 
In other words, maximal learning does not happen naturally as a result of maximizing other 
things like enjoyment, comfort, convenience, and ease of practice. In fact, maximal learning is at 
odds with some of these things. Sacrifices must be made. 
 
At the risk of stating the obvious: if you want to maximize learning, then you should not make 
decisions on the basis of anything other than how those decisions affect measurable learning. 
However, what may not be so obvious is that students and teachers are often not aligned with 
the goal of maximizing learning. 
 
Students often just want to get a good enough grade to avoid angering their parents, or to get 
into college (or get a scholarship to college) – and in college, they often just want to do well 
enough to get their degree and either get a job or be accepted to graduate school. From the 
perspective of such students, the goal is to earn grades that are good enough to keep moving 
along their desired career path, while minimizing the amount of extra effort. Earning sufficient 
grades with minimal effort is totally different from maximizing learning. 
 

 

https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
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Likewise, while teachers generally want their students to learn, they also receive substantial 
pressure from parents and administrators to make the learning process feel comfortable and 
enjoyable, and check boxes on people’s intuitions (however mistaken) about learning, while 
simultaneously ensuring that students don’t fall behind on any standardized tests. A teacher’s 
goal is often for their students to perform well enough not to raise eyebrows from parents and 
administrators, while minimizing the amount of griping from students (and parents) about how 
much effort is required. 
 
These forces pull classrooms towards a state of mediocrity: students need to learn some baseline 
amount that is deemed “enough” for their grade level, but there is no need to learn more than 
that, even if it is possible (and extremely advantageous) to learn much more in the same amount 
of time. 
 
The pull towards mediocrity is not unique to education. However, other industries do a better 
job of counteracting it by leveraging accountability mechanisms and incentives to motivate 
people to maximize performance. For instance, in professional athletics, coaches are held 
accountable for winning (their continued employment depends on it) and they are often 
incentivized with massive financial bonuses for achievements like qualifying for tournaments 
and winning championships. The same is true for players. Along the chain of command from 
team owners to coaches to players, there is also a chain of accountability and incentives. 
 
While it’s true that college rankings can be viewed as some kind of incentive structure, it’s 
important to realize that learning is not the basis of such rankings. The rankings may 
incentivize other things, but not learning. As MIT researchers elaborate (Subirana, Bagiati, & 
Sarma, 2017): 
 

“Taking a look at major University ranking methodologies one can easily observe they 
consistently lack any objective measure of what content knowledge and skills students retain from 
college education in the long term. 
… 
In general, college academics taught in the classroom don’t seem to be recognized explicitly by 
public market indicators. As an example, MIT was ranked number one in the world by US News 
Report in the latest ranking available, however taking a closer look at the ranking methodology 
one can see it does not include any metric of what students retained from the classroom. In fact, 
all major market ranking methodologies consistently lack any objective measure of student college 
academic retention ([MIT office of the provost 2012]).” 

 
Likewise, while it’s true that teacher credentialing can be viewed as some sort of accountability 
mechanism, it’s important to realize that accountability for learning in particular is lacking. As 
discussed in chapter 2, most teacher credentialing programs do not cover, much less assess, 

 

https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
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prospective teachers on their knowledge of the science of learning and ability to leverage 
effective practice techniques to maximize student learning. 
 
It’s also worth noting that university professors generally aren’t required to earn teaching 
credentials, and they’re not even incentivized to teach as their primary concern – they are 
primarily measured in terms of research output, not teaching. Yet, they are also given more 
autonomy in designing their courses, and as a result, college courses tend to be more 
instructor-centered than student-centered (as compared to K-12 courses). A typical university 
professor gives some lectures, assigns weekly problem sets, and then gives a mid-term and a 
final exam that are curved so that no matter how much learning did or did not occur, the result 
is always a normal distribution and a shrug. 
 
We re-emphasize some quotes from chapter 2: 
 

“A recent textbook analysis (Pomerance, Greenberg, & Walsh, 2016) took the six key learning 
strategies from this report by Pashler and colleagues, and found that very few teacher-training 
textbooks cover any of these six principles – and none cover them all, suggesting that these 
strategies are not systematically making their way into the classroom.” – Weinstein, Madan, & 
Sumeracki (2018) 
 
“The preparation of virtually every college teacher consists of in-depth study in an academic 
discipline: chemistry professors study advanced chemistry, historians study historical methods and 
periods, and so on. Very little, if any, of our formal training addresses topics like adult learning, 
memory, or transfer of learning. … [I]ronically (and embarrassingly), it would be difficult to design 
an educational model that is more at odds with the findings of current research about human 
cognition than the one being used today at most colleges and universities.” – Halpern & Hakel 
(2003) 

 

What Happens in the Absence of Accountability and Incentives 

| Tragedy of the Commons 

As discussed in chapter 1, Bloom & Sosniak (1981) noted that teachers typically focus on a “cross 
section” of many students covering a small subset of curriculum over a short period of time. 
 

"Although the curriculum in a particular subject may extend over a period of ten or more years, 
each teacher has the child only for a term, year, or course. And the teacher is responsible only for 
what happens during that period of time." 

 
As a result, maintenance and improvement of students’ mathematical knowledge is a 
responsibility shared by a group of many teachers. 

 

https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198111_bloom.pdf
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However, it is widely known that in the absence of accountability and incentives that promote 
collective interests, people will focus on behaviors that benefit themselves as individuals, and 
pay less attention to how their actions affect the group as a whole. As a result, when a group is 
given responsibility for the maintenance and improvement of a shared resource, the resource 
will typically deteriorate. While some individuals may care for the resource properly, they are 
typically unable or unwilling to pick up the slack of those who do not. This kind of deterioration 
of a shared or “common” resource is known as the tragedy of the commons. 
 
A concrete example of the tragedy of the commons is littering. In the absence of accountability 
and incentives, public spaces will become filled with trash. Even people who dispose of their 
trash properly will generally not be motivated to pick up the trash of others. To prevent a public 
space from becoming filled with trash, it is necessary to create accountability mechanisms, such 
as fines for littering, and incentives, such as paid jobs to incentivize some people to periodically 
clean the space. But if the accountability and incentives are not implemented properly (e.g. the 
fine for littering is too low or unenforceable, or the paid jobs do not hire enough people or do 
not hold them accountable for actually cleaning the entire space), then the space will still 
become filled with trash. 
 
The tragedy of the commons takes place in education in a similar way. Instead of “littering,” the 
tragic action is allowing students to pass courses despite severely lacking knowledge of the 
content. A teacher who “picks up other people’s trash” is a teacher who holds students 
accountable for learning the material in their course, including any prerequisite material that 
they are missing. 
 
When there is a lot of “trash,” i.e. students are severely lacking prerequisite knowledge, a 
teacher who “picks up other people’s trash” puts forth a ton of effort supporting students 
through remedial assignments/assessments and help sessions, while simultaneously holding the 
line on expectations and enduring griping from students who experience a rude awakening 
about how much extra work they have to put in to shore up their missing foundations. Few 
teachers do this, just as few people pick up other people’s trash. Instead, when faced with a 
situation like this, the typical teacher will just run the class as usual, curve (or otherwise inflate) 
the grades, and leave the problem for the next year’s teacher to deal with (or not deal with). 
 
While littering fines and paid janitorial jobs often provide the necessary accountability and 
incentives to keep spaces clean, teachers typically do not face penalties for allowing students to 
pass courses despite severely lacking knowledge of the content, and teachers are given no 
financial incentive for working hard to remedy these kinds of problematic situations that are 

 

https://en.wikipedia.org/wiki/Tragedy_of_the_commons
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created by other teachers. As a result, it is common for students to pass courses despite severely 
lacking knowledge of the content. 
 

| Grades Can’t Be Trusted 

> Evidence for Grade Inflation 

One of the most obvious examples of students passing courses (often with high grades) despite 
severely lacking knowledge of the content is the co-occurrence of extreme learning loss and 
extreme grade inflation during the COVID-19 pandemic. 
 
Researchers have found that the learning loss experienced by students during COVID-19 was 
even more extreme than that experienced by evacuees during Hurricane Katrina, one of the 
deadliest hurricanes to hit the United States (Kuhfeld, Soland, & Lewis, 2022): 
 

“Using test scores from 5.4 million U.S. students in grades 3-8, we tracked changes in math and 
reading achievement across the first two years of the pandemic. Average fall 2021 math test scores 
in grades 3-8 were .20-27 standard deviations (SDs) lower relative to same-grade peers in fall 2019 
… These drops are significantly larger than estimated impacts from other large school disruptions, 
such as after Hurricane Katrina (Sacerdote [2012] when reported math scores dropped .17 SDs in 
one year for New Orleans evacuees).” 

 
Based on the magnitude of this learning loss, one would reasonably expect that student grades 
would have dropped during the pandemic. But instead, the opposite happened: grades 
skyrocketed and remained elevated even after most schools returned to normal in-person 
instruction after the pandemic. As researchers at the CALDER Center (Center for Analysis of 
Longitudinal Data in Education Research) discovered when analyzing educational data from the 
state of Washington (Goldhaber & Young, 2023):  
 

“...[A]lmost no students received an F grade in the spring of 2020. The share of F grades dropped 
from … 9.3% to 1.4% in math courses … between the fall and spring semesters of 2020. The 
distribution of grades higher than F mostly increased for A grades, with the share of A’s jumping 
from 32.9% to 56.3% in math … The average GPA in math jumped from 2.6 to 3.2 … The figures 
also suggest that English and science grades largely returned to pre-pandemic levels by 2021-22, 
but math grades did not. Indeed, the math GPA in 2021-22 was 2.7, 0.4 points higher than it was 
in 2018-19.” 

 

 

https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
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Figures reproduced from Goldhaber & Young (2023) with permission. 
 
However, standardized test scores have not increased commensurately: 
 

“To better understand what these shifts in grading might mean, we perform some simple 
regressions to descriptively assess the extent to which the relationship between grades and test 
scores has changed over time. … [A] student who got an ‘A’ in Algebra 1 was predicted to be in the 
73rd percentile of the test distribution in 2015-16, the 68th percentile in 2018-19, and the 58th 
percentile in 2021-22.” 

 
This phenomenon is not limited to the United States. It is widespread. For instance, a similar 
situation is described in an analysis of student grades in Italy (Doz, 2021): 
 

“...[T]he results showed a statistically significant difference in pre- and post-COVID-19 
quarantine grades. End-of-year grades were higher than those before the COVID-19 confinement. 
Furthermore, the results indicated that more than half of the students in the sample achieved a 
higher grade at the end of the school year. … The findings suggest that greater caution should be 
paid in interpreting students’ grades pre- and post-COVID-19 confinement, since it cannot be 
excluded that such students’ achievements are inflated. Excessively high students’ grades that do 
not represent their actual knowledge and competencies could give educators and legislators 
misleading and even false information about the quality of distance learning and students’ 
knowledge.” 

 
Indeed, grade inflation has been happening for a while, that is, COVID-19 amplified an existing 
trend. As researchers from ACT, Inc. describe, high school grade point averages (HSGPA) have 
increased while standardized test scores – not just aptitude-oriented tests like the SAT, but also 
achievement-oriented tests like the ACT, the NAEP, and even end-of-course exams – have not 
(Sanchez & Moore, 2022). 

 

https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students'_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
https://files.eric.ed.gov/fulltext/ED621326.pdf
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“...[A] mismatch between HSGPA and test scores suggests grade inflation is most likely present. 
HSGPA across time has been compared to ACT® (Bejar & Blew, 1981; Bellott, 1981) and SAT 
scores (Godfrey, 2011), NAEP data (U.S. Department of Education, National Assessment of 
Educational Progress [NAEP], Long-Term Trend Reading Assessments, 2020), and end-of-course 
exams (Gershenson, 2018). Consistently, analyses have shown that HSGPA has steadily increased 
over the last several decades, but standardized assessment scores have remained stagnant or have 
fallen (Bejar & Blew, 1981; Gershenson, 2020).” 

 
As elaborated by Gershenson (2018): 
 

“...[R]ising high school grade point averages (GPAs) have been accompanied by stagnant SAT, 
ACT, and NAEP scores, strongly suggesting lowered classroom standards. And in higher 
education, As are now the most common grade awarded, despite constituting just 15 percent of 
grades in the early 1960s.” 
 
“While many students are awarded good grades, few earn top marks on the statewide 
end-of-course exams for those classes. … In fact, more than one-third of the students who received 
Bs from their teachers in Algebra 1 failed to score ‘proficient’ on the EOC exam.” 
 
“...[E]arning a good grade in a course is no guarantee that a student has learned what the state 
expects her to have learned in that course. Results show that even students who earn the best 
grades often fail to demonstrate mastery of key skills and knowledge when measured on the state 
test. Recall that just 21 percent of A students and 3 percent of B students attain the ‘superior’ 
designation on the EOC, and more than one-third of B students don’t reach proficiency at all.” 

 

> Why Grade Inflation is a Problem 

Gershenson (2018) mentions that grade inflation can create a “vicious cycle” of students being 
set up for failure in future courses: 
 

“That’s clearly a problem since receiving an A or B in a course signals academic success to most 
students and their families. When students earn passing grades despite not mastering the 
academic material, a vicious cycle can follow, whereby they’re set up for failure via unmerited 
promotion to the next course or grade level.” 
 
“...[G]rade inflation results in promoting students to subsequent grades and later accepting them to 
postsecondary institutions for which they are academically ill-prepared. Consequently, they 
struggle and risk dropping out. 
… 
[G]rade inflation may have the political consequence of encouraging families to believe everything 
is going well at school, even when a school is troubled and needs reform. It is easy for parents to 
ignore systemic mediocrity when their children’s grades seem strong.” 

 
This concern is echoed by the Goldhaber & Young (2023): 
 

 

https://files.eric.ed.gov/fulltext/ED598893.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
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“Public opinion surveys point to a discrepancy between what parents believe about their student’s 
level of achievement, i.e., that students have recovered academically, and what test results like 
NAEP suggest about their achievement (Esquivel, 2022; Kane & Reardon, 2023; Vázquez Tonnes, 
2023). 
… 
Algebra 1 – the course for which we noted the greatest weakening in the relationship between test 
scores and grades – is seen as a gateway to more advanced math concepts (Snipes & Finkelstein, 
2015). … Schools use grades in classes such as Algebra 1 to determine whether students need extra 
support, remediation, or even if they must repeat a course before moving on. If this signal is no 
longer accurately conveying a student’s level of achievement, school systems risk under-supporting 
students who need help. 
 
Likewise, families and students use grades as a signal of how a student is doing in school; the 
expectation is that if a student is having academic trouble, that trouble will show up in their 
grades. Decisions such as whether to enroll a child in after school tutoring or summer school may 
rest on a belief that the grades on a report card accurately reflect a student’s levels of achievement. 
As we noted above, many parents are under the impression that their children are not suffering 
from learning loss due to the pandemic; however, test scores indicate otherwise. It is possible that 
without a grade that signals trouble, parents may not choose to get needed extra academic 
support.” 

 
In short, parents typically think that an “A” indicates mastery of grade-level standards, but it 
often doesn’t. If a student’s school says that they’re doing fine in math, then it does not 
automatically follow that the student is keeping college and career doors open that depend on 
mathematical proficiency. Different schools sometimes have their own interpretations of what it 
means for their students to be doing fine in math, and that doesn’t always match up with 
grade-level standards, much less what is expected by colleges and careers. 
 
This is a problem because it sets students up for failure later in life when it matters most. Every 
year, countless first-year college students decide to major in aerospace engineering or 
astrophysics or some other math-heavy subject, only to have that dream crushed when they 
realize they can’t even pass an entry-level math course like Calc II (not even with the help of a 
tutor). These problems can be remedied when students are young, before their knowledge 
deficits grow too large – but problems can only be fixed after they are detected, and grades are 
no longer a reliable tool for detecting these problems. Inflated grades signal to students and 
parents that all career doors remain open, when in fact, many are in the process of being locked 
shut. 
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| Resistance to Objective Measurement 

> Radical Constructivism Rejects the Idea of Measuring Learning Objectively 

As discussed above, there is overwhelming evidence that grades have increased while 
standardized test scores have not. However, because remedying grade inflation and its 
downstream effects requires lots of extra effort from all parties involved (including teachers, 
students, parents, administrators), there is opposing pressure to reject the idea that grade 
inflation is occurring. Given the evidence, the only way to argue against the existence of grade 
inflation is to argue against the very idea of measuring learning objectively. 
 
As prominent psychologists John Anderson, Lynne Reder, and Herbert Simon describe (1998), 
this is indeed a tenet of an educational philosophy known as radical constructivism: 
 

“The denial of the possibility of objective evaluation is perhaps the most radical and far-reaching 
of the constructivist claims. … D. Charney documents that empiricism has become a four-letter 
word in deconstructionist writings. D. H. Jonassen describes the issue from the perspective of a 
radical constructivist: 
 
‘If you believe, as radical constructivists do, that no objective reality is uniformly interpretable by 
all learners, then assessing the acquisition of such a reality is not possible.’” 

 
Take it from Ernst von Glasersfeld (1984) himself, who is widely regarded as the philosopher 
who first formulated radical constructivism: 
 

“Radical constructivism, thus, is radical because it breaks with convention and develops a theory 
of knowledge in which knowledge does not reflect an ‘objective’ ontological reality, but exclusively 
an ordering and organization of a world constituted by our experience.” 

 
To concretely understand the radical constructivist position in the context of grade inflation, 
recall that in the absence of accountability and incentives, public spaces will become filled with 
trash. Logically, the existence of excessive trash in a public space provides an argument for 
increasing accountability and incentives surrounding littering and janitorial work. However, a 
radical constructivist will resist this conclusion on the grounds that “one person’s trash is 
another person’s treasure” and therefore it is impossible to objectively measure the amount of 
trash on the ground. 
 
Clearly, this counterargument is ridiculous and nobody would actually espouse it in the context 
of trash. People who enter a space can see, and agree, about how much trash is on the ground. 
However, the counterargument persists in the context of education because “seeing the trash for 
oneself” often requires a combination of expertise in the subject matter – which most people do 

 

https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://en.wikipedia.org/wiki/Radical_constructivism
https://app.nova.edu/toolbox/instructionalproducts/ITDE_8005/weeklys/1984-vonGlaserfeld_RadicalConstructivism.pdf
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not have, especially in the context of mathematics. And even those who do see the trash often 
turn a blind eye to it out of convenience because they don’t want to put in the extra effort to fix 
the situation, especially when their efforts will be met with griping from others who do not see 
the trash. 
 
As Anderson, Reder, and Simon (1998) elaborate, the radical constructivists’ rejection of 
objective reality leads to other problematic conclusions: 
 

“Another sign of the radical constructivists’ discomfort with evaluation manifests itself in the 
motto that the teacher is the novice and the student the expert. The idea is that every student 
gathers equal value from every learning experience. The teacher’s task is to come to understand 
and value what the student has learned. As J. Confrey writes: 
 
‘Seldom are students’ responses careless or capricious. We must seek out their systematic qualities 
which are typically grounded in the conceptions of the student. … [F]requently when students’ 
responses deviate from our expectations, they possess the seeds of alternative approaches which 
can be compelling, historically supported and legitimate if we are willing to challenge our own 
assumptions.’ 
 
Or, as Cobb, Wood, and Yackel write: 
 
‘The approach respects that students are the best judges of what they find problematical and 
encourages them to construct solutions that they find acceptable given their current ways of 
knowing.’ 
 
If the student is supposed to move, in the course of the learning experiences, from a lower to a 
higher level of competence, why are the student’s judgments of the acceptability of solutions 
considered valid? While the teacher is valued who can appreciate children’s individuality, see 
their insights, and motivate them to do their best and to value learning, definite educational goals 
must be set. More generally, if the ‘student as judge’ attitude were to dominate education, when 
instruction had failed and when it had succeeded, when it was moving forward and when 
backward, would no longer be clear. 
 
Understanding why the student, at a particular stage, is doing what he or she is doing is one thing. 
Helping the student understand how to move from processes that are ‘satisfactory’ in a limited 
range of tasks to processes that are more effective over a wider range is another matter. As L. B. 
Resnick argues, many concepts that children naturally come to (for example, that motion implies 
force) are not what the culture expects of education and in these cases ‘education must follow a 
different path: still constructivist in the sense that simple telling will not work, but much less 
dependent on untutored discovery and exploration.’” 

 

> Radical Constructivism is a Present Force in Education 

Radical constructivism might seem so outlandish that it is hard to imagine anyone seriously 
supporting it. However, it is indeed a present force in education. For instance, one document 
that circulated among educators during the 2021-22 school year (the year that most schools 

 

https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
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returned to in-person instruction after the COVID-19 pandemic) is Where Is Manuel? A Rejection 
of ‘Learning Loss’, which, in a refusal to accept the reality that some demographics were more 
affected by pandemic-induced learning losses than others, outright rejects the idea that learning 
loss occurred during the pandemic. 
 
The document makes a number of outlandish claims, some of are factually incorrect, and others 
of which are so vague that they can neither be proven or falsified (which effectively renders 
them meaningless): 
 

“It is important to note that we believe that learning takes place everywhere and always. … 
Funding and attention to ‘fix learning loss’ disregards our essential and suggested actions [to move 
toward antiracist mathematics education for all students]. 
… 
This farce embodies the assumption that learning didn’t happen, or that it didn’t happen enough. 
This assumption is an insult to educators and families alike. … When teachers could not connect, 
students continued their learning and growing with and within their families and communities. 
Some of this learning was closely matched to traditional school standards, and some of this 
learning was not as aligned to school standards but went deeper and was more authentic than 
anything that could have been learned through a computer screen or even in a school building. 
This learning may be different, but it is not any less important and should not be treated as if it is 
wrong or insufficient. 
 
Let’s revisit Manuel. With persistence, the educators would have discovered that Manuel’s days 
away from class were rich with learning experiences. Instead of attending class remotely, he went 
with his father to work and helped with his younger siblings and animals on the family farm. … 
Manuel and his siblings did some work assigned by their teachers, but they were more motivated 
and engaged in the learning that was acquired outside of school. Manuel has not lost learning. 
The flexibility of remote learning has allowed him to supplement his studies from school with a 
rich mathematical understanding of the world. 
… 
Resist the thinking that students like Manuel are behind, and instead remind yourself that they are 
right where they should be after a pandemic. Resist deficit thinking and do not send deficit 
messages to the students like Manuel, and others who did attend daily, and instead look for what 
knowledge they gained and how they grew. … Resist making the assumption that the learning 
students like Manuel experienced was not enough, and instead assume their experiences 
contributed to their present and future success in ways that are just as good, if not better, than 
what could have been learned through school.” 

 
The organization producing this document, TODOS: Mathematics for ALL, is not just a fringe 
group. Between 2020-23, its leadership has included members of the Riverside and Santa Clara 
County Offices of Education and as well as professors from numerous universities including 
UCLA, UT Austin, The Ohio State University, University of Arizona, San Francisco University, 
University of Alberta, University of Missouri, Iowa State University, East Carolina University, 
University of New Mexico, Texas State University, and Utah Valley University. Furthermore, 
TODOS is a member of the Conference Board of the Mathematical Sciences (CBMS), which 
means that it is recognized by the International Mathematical Union (IMU) as one of the 19 

 

https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
https://www.todos-math.org/
https://en.wikipedia.org/wiki/Conference_Board_of_the_Mathematical_Sciences
https://en.wikipedia.org/wiki/International_Mathematical_Union
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national mathematical societies for the United States. For reference, IMU awards some of the 
highest honors in the mathematical profession, including the Fields Medal, which is widely 
considered to be the mathematical equivalent of the Nobel Prize. 
 
TODOS has released numerous other documents espousing similar viewpoints. For instance, in 
The Mo(ve)ment to Prioritize Antiracist Mathematics: Planning for This and Every School Year (2020), 
released shortly before Where is Manuel, TODOS stated the following: 
 

“Following school closure due to COVID-19, we have noted a resurgence of deficit views of 
students when they are described as ‘behind’ or ‘unable to catch up since they missed so much 
school.’ We believe this description of students is harmful. It frames students as individually 
responsible for a loss of learning and detracts from the broader issues of students and families 
surviving through a pandemic. Mathematics learning is a messy web of interconnected concepts. 
So we assert that instead of being distracted by framing students as lacking skills, we use the fall to 
start anew from an asset-based perspective. We urge policymakers, school district administrators, 
teachers, curriculum developers, and software developers to avoid playing into the fear-inciting 
discourses of students falling behind and ranking them by perceived ability. 
 
To take it a step further, in this moment we must rethink what counts as valid mathematical 
knowledge. …  [W]e must expand our understanding of what it means to be good at mathematics, 
make space for alternative ways of knowing and doing mathematics based in the community, and 
acknowledge the brilliance, both in mathematics and beyond, of BIPOC [Black, Indigenous, and 
People of Color] in our classrooms.” 

 
Likewise, in the joint position statement between TODOS and the National Council of 
Supervisors of Mathematics (NCSM) from 2016: 
 

“...[Deficit views of historically marginalized children can arise from] the continuous labeling of 
children’s readiness to learn mathematics via standardized tests and other institutional tools that 
position and sanction specific forms of mathematics knowledge. … A social justice priority in 
mathematics education is to openly challenge deficit thinking and the institutional tools and 
practices that perpetuate static views about children and their mathematics competencies. 
… 
Second, deficit thinking implies that students “lack” knowledge and experiences expected by the 
dominant group. Deficit thinking ignores, dismisses, or casts as barriers mathematical knowledge 
and experiences children engage with outside of school every day. A social justice approach to 
mathematics education assumes students bring knowledge and experiences from their homes and 
communities that can be leveraged as resources for mathematics teaching and learning (Civil, 
2007; Gonzalez et al., 2005; Leonard & Martin, 2013; Turner et al., 2012). 
… 
Mathematics achievement, often measured by standardized tests, has been used as a gatekeeping 
tool to sort and rank students by race, class, and gender starting in elementary school (Davis & 
Martin, 2008; Ellis, 2008; Spielhagen, 2011).” 

 
Note that while we have discussed radical constructivism at a high level in this chapter, our 
general critique cuts deeper and will continue in chapter 8, where we emphasize that effective 
practice requires direct instruction as opposed to unguided instruction. 

 

https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
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Math Academy is Held Accountable for Student Learning 

Math Academy’s existence depends on its ability to make students learn. If a student gets stuck 
and can’t make progress in our system, then we’re out of a job. If the learning on our system 
doesn’t show up in students’ grades and test scores outside of our system, then we’re out of a 
job. We are properly incentivized to maximize student learning – real learning, not just the 
perception of it. 
 
For this reason, we have no choice but to hold the line on what it means to truly learn 
something. When a student learns a topic on our system, they have to demonstrate that they 
really understand it. They have to solve real problems – successfully – and not just the simplest 
cases. 
 
Perhaps surprisingly, this turns out to be one of our competitive advantages: we hold students 
accountable for learning, and they hold us accountable for providing material that is easy to 
learn from. More generally, we hold our users accountable for getting value out of our product, 
and our users hold us accountable for creating a valuable product. 
 
This differentiates us from other free and ultra-low-cost online learning platforms whose 
dependence on a massive user base forces them to employ ineffective learning strategies that do 
not repel unserious students. Such platforms often cover only the simplest cases of each topic, 
and allow students to move on to more advanced topics despite poor performance on 
prerequisite topics. They are like teachers who go through the motions and check boxes, 
whereas Math Academy is like a tutor whose livelihood depends on the actual learning 
outcomes of its students. 
 
It also differentiates us from typical university courses where the professor can dump a 
mountain of topics onto a syllabus, provide a few handwavy lectures along with a list of 
references to outside resources, and then grade on a curve. We have to actually construct a 
learning path that offers a high probability of success for anyone willing to run through the 
gates. 
 
Granted, we do sometimes have to deliver unfortunate news to incoming students and their 
parents who mistakenly believe, on the basis of their good grades, that they are comprehensively 
proficient in the mathematical subjects that they have taken at school. We can’t promise that 
students and parents will be happy with their diagnostic results. It’s not uncommon for our 
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diagnostic test to expose that a student needs to relearn some things that they supposedly 
“already know” (but don’t actually know) from school. But we can promise that, if our diagnostic 
test reveals any gaps in a student’s knowledge, then we will automatically add those gaps to their 
learning plan to get them back on track. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in 

the acquisition of expert performance. Psychological review, 100(3), 363. 
 
Importance: Deliberate practice requires effort and is not inherently enjoyable. Individuals are motivated to 
practice because practice improves performance. In other words, maximal learning does not happen naturally 
as a result of maximizing other things like enjoyment, comfort, convenience, and ease of practice. In fact, 
maximal learning is at odds with some of these things. Sacrifices must be made. 
 
 

● Subirana, B., Bagiati, A., & Sarma, S. (2017). On the Forgetting of College Academics: at" 
Ebbinghaus Speed"?. Center for Brains, Minds and Machines (CBMM). 
 
Importance: While it’s true that college rankings can be viewed as some kind of incentive structure, it’s 
learning is not the basis of such rankings. Major university ranking methodologies consistently lack any 
objective measure of what content knowledge and skills students retain from college education in the long term. 
The rankings may incentivize other things, but not learning. 
 
 

● Kuhfeld, M., Soland, J., & Lewis, K. (2022). Test score patterns across three 
COVID-19-impacted school years. Educational Researcher, 51(7), 500-506. 
 
Importance: The learning loss experienced by students during COVID-19 was even more extreme than that 
experienced by evacuees during Hurricane Katrina, one of the deadliest hurricanes to hit the United States. 
 
 

● Goldhaber, D., & Young, M. G. (2023). Course Grades as a Signal of Student Achievement: 
Evidence on Grade Inflation Before and After COVID-19. CALDER Research Brief No. 35. 
 
Doz, D. (2021). Students’ mathematics achievements: A comparison between pre-and 
post-COVID-19 pandemic. Education and Self Development, 16(4), 36-47. 
 

 

https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students%27_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students%27_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
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Importance: During the COVID-19 pandemic, grades skyrocketed and remained elevated even after most 
schools returned to normal in-person instruction after the pandemic. This is a widespread phenomenon 
occurring beyond the United States. Grade inflation prevents learning issues from being detected, and schools 
and families risk under-supporting students who need help. 
 
 

● Sanchez, E. I., & Moore, R. (2022). Grade Inflation Continues to Grow in the Past Decade. 
Research Report. ACT, Inc. 
 
Gershenson, S. (2018). Grade Inflation in High Schools (2005-2016). Thomas B. Fordham 
Institute. 
 
Importance: Grade inflation has been happening for a while. High school grade point averages (HSGPA) have 
increased while standardized test scores – not just aptitude-oriented tests like the SAT, but also 
achievement-oriented tests like the ACT, the NAEP, and even end-of-course exams – have not. Grade inflation 
can create a “vicious cycle” of students being set up for failure in future courses. 
 
 

● Anderson, J. R., Reder, L. M., Simon, H. A., Ericsson, K. A., & Glaser, R. (1998). Radical 
constructivism and cognitive psychology. Brookings papers on education policy, (1), 227-278. 
 
Von Glasersfeld, E. (1984). An introduction to radical constructivism. The invented reality, 
1740, 28. 
 
TODOS: Mathematics for All (2020). Where Is Manuel? A Rejection of ‘Learning Loss’. 
 
del Rosario Zavala, Maria, Ma Bernadette Andres-Salgarino, Zandra de Araujo, Amber G. 
Candela, Gladys Krause, and Erin Sylves (2020). The Mo(ve)ment to Prioritize Antiracist 
Mathematics: Planning for This and Every School Year. TODOS: Mathematics for All. 
 
National Council of Supervisors of Mathematics and TODOS: Mathematics for ALL. (2016). 
Mathematics education through the lens of social justice: Acknowledgment, actions, and 
accountability. Joint Position Paper. 
 
Importance: Given the evidence, the only way to argue against the existence of grade inflation is to argue 
against the very idea of measuring learning objectively. Indeed, this outlandish position is taken by proponents 
of the radical constructivist philosophy of education, such as TODOS: Mathematics for ALL. 
 

 

 

https://files.eric.ed.gov/fulltext/ED621326.pdf
https://files.eric.ed.gov/fulltext/ED598893.pdf
http://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
http://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://app.nova.edu/toolbox/instructionalproducts/ITDE_8005/weeklys/1984-vonGlaserfeld_RadicalConstructivism.pdf
https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
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II. ADDRESSING CRITICAL MISCONCEPTIONS 
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Chapter 6. The Persistence of Neuromyths 
 

Summary: Scientifically inaccurate beliefs about the brain endure even among professional 
educators.  They persist because they sound scientific and are convenient to believe, especially if 
they provide a level of comfort, such as reinforcing one’s preconceptions or offering false hope of a 
“quick fix” to someone who is facing a problem. 

 

Neuromyths are Common Misconceptions about the Brain 

Despite the cognitive processes in the brain being fairly well understood at a high level, there 
are countless myths that persist despite decisive evidence to the contrary – even among 
professionals in the field of education. As Grospietsch & Lins (2021) emphasize: 
 

“Numerous empirical studies reveal widespread endorsement of such misconceptions on the topic 
of learning and the brain both among the public at large and among pre-service and in-service 
teachers (e.g., Dekker et al., 2012; Ferrero et al., 2016). Even school principals, award-winning 
teachers and university instructors widely endorse neuromyths like ‘we only use 10% of our brains’, 
‘learning differences due to hemispheric use’, or the ‘existence of learning styles’ (Horvath et al., 
2018; Zhang et al., 2019).” 

 
As Pasquinelli (2012) notes, even high-ranking government officials are not immune to these 
myths: 
 

“In 1998, the state of Florida passed a bill for day-care centers to play classical music to children. 
The same year, the Georgia governor asked for $105,000 for the production and distribution of 
classical music to newborns. He did so because he had read that listening to Mozart’s music can 
boost IQ scores. Too good to be true.” 

 
These misconceptions are so common that they have acquired a special name: neuromyths 
(Grospietsch & Lins, 2021). 
 

“The term ‘neuromyth’ was coined by the neurosurgeon Alan Crockard in the 1980s to describe 
scientifically inaccurate understandings of the brain in medical culture (Howard-Jones, 2010). The 
Organisation for Economic Co-operation and Development (Organisation for Economic 
Co-operation and Development [OECD], 2002) defines-neuromyths as “misconception[s] 
generated by a misunderstanding, a misreading, or a misquoting of facts scientifically established 
(by brain research) to make a case for use of brain research in education and other contexts” (p. 
111).” 

 

https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x
https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
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Why Neuromyths Persist 

Neuromyths can often be characterized as the oversimplification, misinterpretation, and/or 
misapplication of a nuanced complex scientific finding. 
 

“Grospietsch (2019) came to define neuromyths as misconceptions based on a kernel of ‘truth’, 
meaning that they take a scientific term or research finding (= neurofact) as a starting point for 
their argumentation, which morphs into a no-longer-scientifically-accurate implication for 
teaching and learning (= neuromyth) through a series of erroneous conclusions and logical 
fallacies.” 

 
Despite being at best useless, and at worst detrimental, neuromyths persist because they sound 
scientific and are convenient to believe, especially if they provide a level of comfort, such as 
reinforcing one’s preconceptions or offering false hope of a “quick fix” to someone who is facing 
a problem. As Pasquinelli (2012) explains: 
 

“...[W]hy do neuromyths persist independently of their falsity and poor applicative value? It is 
likely that under the urge of application, educators are susceptible of turning toward easy-fixes 
that are presented in a respectable, scientific jargon and are loosely inspired by neuroscience 
(Hirsh-Pasek & Bruer, 2007). 
… 
Certain neuromyths for instance seem to fulfill a ‘‘soothing’’ function. … Bangerter & Heath 
(2004) have shown that the interest in the Mozart effect … positively correlates with lower 
teachers’ salaries and low national tests scores per pupil spending. … [Those] that are more in need 
of good education are easy prey to scientific legends about learning 
… 
Another feature of the human mind that might favor neuro- and other myths is confirmation bias, 
that is, the tendency to seek or interpret fresh information in a way that confirms previous beliefs 
(Nickerson, 1998). 
… 
Finally, it is largely accepted that both adults and children behave as if they had intuitions about 
laws of physics, biology, and psychology (diSessa, 1993). These intuitions are in many cases 
misconceptions that interfere with scientific instruction while preceding and influencing the 
acquisition of knowledge (Bloom & Weisberg, 2007).” 

 
To understand how learning can be optimized in an adaptive learning platform like Math 
Academy, it is important to first remedy any misconceptions about learning that could 
otherwise turn into sources of confusion. 

 

 

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Grospietsch, F., & Lins, I. (2021, July). Review on the prevalence and persistence of 

neuromyths in education–Where we stand and what Is still needed. In Frontiers in Education 
(Vol. 6, p. 665752). Frontiers Media SA. 
 
Betts, K., Miller, M., Tokuhama-Espinosa, T., Shewokis, P. A., Anderson, A., Borja, C., ... & 
Dekker, S. (2019). International Report: Neuromyths and Evidence-Based Practices in Higher 
Education. Online Learning Consortium. 
 
Pasquinelli, E. (2012). Neuromyths: Why do they exist and persist?. Mind, Brain, and 
Education, 6(2), 89-96. 
 
Importance: Despite the cognitive processes in the brain being fairly well understood at a high level, there are 
countless myths that persist despite decisive evidence to the contrary – even among professionals in the field of 
education. These “neuromyths” can often be characterized as the oversimplification, misinterpretation, and/or 
misapplication of a nuanced complex scientific finding. Despite being at best useless, and at worst detrimental, 
neuromyths persist because they sound scientific and are convenient to believe, especially if they provide a level 
of comfort, such as reinforcing one’s preconceptions or offering false hope of a “quick fix” to someone who is 
facing a problem. 

 

 

https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://files.eric.ed.gov/fulltext/ED599002.pdf
https://files.eric.ed.gov/fulltext/ED599002.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x


102  |  The Math Academy Way – Working Draft 

 

 



The Math Academy Way – Working Draft  |  103 

 

Chapter 7. Myths & Realities about 
Individual Differences 

 
Summary: Different people generally have different working memory capacities and learn at 
different rates, but people do not actually learn better in their preferred “learning style.” Instead, 
different people need the same form of practice but in different amounts. Additionally, not 
everybody can learn every level of math, but most people can learn the basics. In practice, 
however, few people actually reach their full mathematical potential because they get knocked off 
course early on by factors such as missing foundations, ineffective practice habits, inability or 
unwillingness to engage in additional practice, or lack of motivation. 

 

People Differ in Learning Speed, Not Learning Style 

Myth: Everybody has the same working memory capacity and learns at the same rate, 
but different people learn differently depending on their preferred learning style. 
 
Reality: The exact opposite is true. Different people generally have different working memory 
capacities and learn at different rates. While people may have preferred learning “styles” (e.g. 
visual vs verbal), they do not actually learn better when given information in their preferred 
style. The myth is that different people need the same amount of practice but in different forms 
– whereas the reality is that different people need the same form of practice but in different 
amounts. 
 

| Learning Style Preferences are Irrelevant 

One of the most widespread – and most widely debunked – neuromyths is that people learn 
better when they receive information in their preferred “learning style.” To quote the authors of 
one of the largest and most comprehensive studies on the persistence of neuromyths (Betts et 
al., 2019): 
 

“Learning styles is one of the most widespread myths in education (Pashler, McDaniel, Rohrer & 
Bjork, 2008; Reiner & Willingham, 2010; Roher & Pashler, 2012). Despite repeated testing of 
hypotheses relating to learning styles, there is no evidence to date showing that individuals learn 

 

https://files.eric.ed.gov/fulltext/ED599002.pdf


104  |  The Math Academy Way – Working Draft 

better when they receive information in their preferred learning styles (Newtown & Miah, 2017; 
Newtown & Miah, 2017). 
… 
In 2006, a learning styles challenge was put forth by a team of underwriters offering $1,000 and 
then moving it up to $5,000 to provide scientific evidence supporting this myth (Wallace, 2014). To 
date, there has not been a payout.” 

 
As Grospietsch & Lins (2021) elaborate: 
 

“According to Grospietsch and Mayer (2021b), the kernel of truth behind this neuromyth is that 
people differ in the mode in which they prefer to receive information (visually or verbally; e.g., 
Höffler et al., 2017). 
 
The first erroneous conclusion that can be drawn from this kernel of truth is that there are 
auditory, visual, haptic and intellectual learning styles, as Vester (1975) suggested in the German 
context. 
 
The next erroneous conclusion drawn is that people learn better when they obtain information in 
accordance with their preferred learning style. 
 
Finally, the third erroneous yet widely disseminated conclusion is that teachers must diagnose 
their students’ learning styles and take them into account in instruction. … [T]here is no empirical 
evidence confirming the effectiveness of considering students’ learning styles in instruction 
(Willingham et al., 2015).” 

 
As Kirschner & Hendrick sum it up (2024, pp.108): 
 

“These so-called learning styles have been exposed as nonsense in research time after time. There 
are no ‘image thinkers’ or ‘language thinkers’. Everyone thinks with both systems and everyone 
benefits from using both. The more often you use the two systems together, the stronger the trace 
in your memory and the better you will remember and thus learn.” 

 

| Working Memory Capacity (WMC) Differences are Relevant 

However, one aspect of the brain that has been widely documented not only to vary between 
people, but also to affect people’s general cognitive performance, is working memory capacity 
(WMC). As Conway et al. (2007) describe: 
 

“A fundamental characteristic of WM [working memory] is that it has a limited capacity, which 
constrains cognitive performance, such that individuals with greater capacity typically perform 
better than individuals with lesser capacity on a range of cognitive tasks. 
 
For example, older children have greater capacity than younger children, healthy adults have 
greater capacity than patients with frontal-lobe damage or disease, younger adults have greater 
capacity than elderly adults, and in all such cases, those individuals with greater WM capacity 
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out-perform individuals with lesser capacity in several important cognitive domains, including 
complex learning, reading and listening comprehension, and reasoning. 
 
In short, we know that variation in WM capacity exists and that this variation is important to 
everyday cognitive performance.” 

 
These differences in working memory capacity have been characterized not only at a 
psychological level, but also at the physical level of brain activity measures. Vogel & Machizawa 
(2004) have found that brain activity reaches a plateau when people attempt to perform tasks 
that meet or exceed their WMC, and people with high WMC reach this plateau much later than 
people with low WMC: 
 

“Here, we provide electrophysiological evidence for lateralized activity in humans that reflects the 
encoding and maintenance of items in visual memory. The amplitude of this activity is strongly 
modulated by the number of objects being held in the memory at the time, but approaches a limit 
asymptotically for arrays that meet or exceed storage capacity. 
 
Indeed, the precise limit is determined by each individual’s memory capacity, such that the 
activity from low-capacity individuals reaches this plateau much sooner than that from 
high-capacity individuals. Consequently, this measure provides a strong neurophysiological 
predictor of an individual’s capacity, allowing the demonstration of a direct relationship between 
neural activity and memory capacity. 
… 
That is, simply by measuring the amplitude increase across memory array sizes, we could 
accurately predict an individual’s memory capacity.” 

 
Engström, Landtblom, & Karlsson (2013) have explained why this happens: the higher one’s 
WMC, the less neural activity their brain requires to perform the task – in other words, the task 
is less taxing on their brain. 
 

“Low- and high-capacity participants showed an increase in activity as a function of increasing 
demands but differed in that high-capacity participants started from a lower level.” 

 

> WMC Impacts Perceived Effort 

It comes as no surprise, then, that people with higher WMC will generally perceive a given task 
to be easier than people with lower WMC. Indeed, this has been demonstrated experimentally in 
a study that measured how difficult people found it to identify spoken words in the presence of 
background noise (Rudner et al., 2012): 
 

“...[P]articipants were asked to rate effort at SNRs [signal-to-noise ratios, i.e. difficulty levels] 
individually adapted to their speech recognition performance. Thus, individual differences in 
speech recognition ability were taken into account in the ratings of perceived effort; even so WM 
capacity explained variance in perceived effort between conditions. 

 

https://dept.wofford.edu/neuroscience/neuroseminar/pdfsFall2007/Vogel_nature04.pdf
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… 
[T]he difference in perceived listening effort in modulated and steady state noise at relatively 
favorable SNRs is a function of WM capacity. … [P]ersons with greater WM capacity find 
listening in noise less effortful than persons with lower WM capacity across all three levels and 
noise types. 
… 
[R]atings of listening effort may be an indicator of the relative degree of engagement of explicit 
processing resources in WM. Thus, a relation between WM and rated effort may indicate that 
persons with greater WM capacity are using fewer explicit processing resources” 

 

> WMC Impacts Abstraction Ability 

Similarly, it has also been shown that high WMC facilitates abstraction, that is, seeing “the 
forest for the trees” by learning underlying rules as opposed to memorizing example-specific 
details (McDaniel et al., 2014). This is unsurprising, given that understanding large-scale 
patterns requires balancing many concepts simultaneously in WM. 
 

“...[A]fter training (on a function-learning task), participants either displayed an extrapolation 
profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or 
abstraction of the function rule (rule learners; Studies 1a and 1b). 
… 
Studies 1c and 2 examined the persistence of these learning tendencies on several categorization 
tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori 
by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in 
generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the 
exemplar learners performed well on a novel categorization task (transfer) after training on an 
abstract coherent category. 
… 
[W]orking memory capacity (as measured by Ospan following Wiley et al., 2011) was a significant 
and unique predictor of the tendency to rely on rule versus exemplar processes in the function 
learning task, such that higher working memory capacity was related to reliance on rule learning. 
 
For a number of reasons, greater working memory capacity could facilitate abstracting the 
function rule during learning, including the ability to maintain and compare several stimuli 
concurrently (Craig & Lewandowsky, 2012), to partition the training stimuli into two linear 
segments and switch back and forth between them during learning (Erickson, 2008; Sewell & 
Lewandowsky, 2012), and to reject or ignore initial biases (e.g., a positive linear) in order to 
discern the given function (cf., Wiley et al., 2011). 
 
Thus, learners enjoying greater working memory capacity might be more inclined to engage 
processes that would support rule learning (relating several training trials, partitioning training 
trials, ignoring initial biases) than would learners with more limited working memory capacity.” 

 
Abstracting underlying rules improves one’s ability to extrapolate knowledge to new contexts, a 
skill that is widely assessed in academic settings. Indeed, individual differences in abstraction 
ability have been shown to impact educational outcomes (McDaniel et al., 2018): 
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“Students may do well answering exam questions that are similar to examples presented in class. 
Yet, some of these students perform poorly on exam questions that require applying instructed 
concepts to a new problem whereas others fare better on such questions. 
 
Our hypothesis is that these performance differences reflect, in part, individual differences in 
learners’ tendencies to focus on acquiring the particular exemplars and responses associated with 
the training exemplars (exemplar learners) versus attempting to abstract underlying regularities 
reflected in particular exemplars (abstraction learners). … [W]e differentiated students on this 
dimension, and then tracked their final exam performances in introductory chemistry courses. 
 
Abstraction learners demonstrated advantages over exemplar learners for transfer questions but 
not for retention questions. The results converge on the idea that individual differences displayed 
in how learners acquire and represent concepts persist from laboratory concept learning to 
learning complex concepts in science courses.” 

 

> WMC Impacts Learning Speed 

As one might infer from the impact of WMC on perceived effort and abstraction ability, WMC 
has also been shown to impact speed of learning, that is, the rate at which one’s ability to 
perform a task improves over the course of exposure, instruction, and practice on the task 
(though the impact of WMC on task performance is diminished after the task is learned to a 
sufficient level of performance). 
 
Multiple studies have linked individual differences in speed of learning and WMC in the context 
of categorization tasks (see McDaniel et al., 2014 for a summary): 
 

“...[A]cross several types of categorization tasks, Craig and Lewandowsky (2012) and 
Lewandowsky (2011) reported significant correlations between speed of learning and working 
memory capacity. In the present study, we found a similar general association between speed of 
learning in the function task and working memory capacity as indexed by Ospan alone. 
… 
Learning the function rule presumably requires maintaining and comparing stimuli across trials 
(“comparative hypothesizing”, Klayman, 1988) and possibly partitioning the stimuli into subsets 
for the different slopes and switching back and forth across these partitioned segments during 
training (Lewandowsky et al., 2002; Sewall & Lewandowsky, 2012), and these processes require 
working memory capacity (both from a theoretical perspective, Craig & Lewandowsky, 2012; and 
based on empirical findings, Sewall & Lewandowsky, 2012). Consequently, for participants 
attempting to abstract the function rule, higher working memory capacity (as indexed by Ospan 
scores), would facilitate learning.” 
 
“The implication is that for the rule learners, those with higher working memory capacity were 
able to more effectively support the processing needed to determine the functional relation among 
the training points, thereby supporting faster learning.” 

 
Another study reported that reducing WMC slowed learning during a puzzle (Reber & Kotovsky, 
1997): 
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“Participants solving the Balls and Boxes puzzle for the first time were slowed in proportion to the 
level of working memory (WM) reduction resulting from a concurrent secondary task. On a second 
and still challenging solution of the same puzzle, performance was greatly improved, and the same 
WM load did not impair problem-solving efficiency. Thus, the effect of WM capacity reduction 
was selective for the first solution of the puzzle, indicating that learning to solve the puzzle, a vital 
part of the first solution, is slowed by the secondary WM-loading task.” 

 
The impact of WMC on learning speed is not limited to puzzles in academic laboratories – it 
extends to real-life contexts of academics and professional expertise. For instance, in a study of 
piano players, WMC was a significant predictor of performance even for experts who had logged 
thousands of hours of practice – that is, high-WMC pianists attained the same level of 
performance with fewer hours of practice, or a greater level of performance with the same hours 
of practice, compared to low-WMC pianists (Meinz & Hambrick, 2010). 
 

“In evaluating participants having a wide range of piano-playing skill (novice to expert), we found 
that deliberate practice accounted for nearly half of the total variance in piano sight-reading 
performance. However, there was an incremental positive effect of WMC, and there was no 
evidence that deliberate practice reduced this effect. Evidence indicates that WMC is highly 
general, stable, and heritable, and thus our results call into question the view that expert 
performance is solely a reflection of deliberate practice.” 

 
To be clear, the variation in ability was explained primarily by the amount of effective practice, 
but WMC was indeed a significant secondary factor. As Kulasegaram, Grierson, & Norman 
(2013) summarize: 
 

“Although all studies support extensive DP [deliberate practice] as a factor in explaining expertise, 
much research suggests individual cognitive differences, such as WM capacity, predict expert 
performance after controlling for DP. The extent to which this occurs may be influenced by the 
nature of the task under study and the cognitive processes used by experts. The importance of WM 
capacity is greater for tasks that are non-routine or functionally complex.” 

 
At the other end of the spectrum, Swanson & Siegel (2011) found that students with learning 
disabilities generally have lower WMC: 
 

“We argue that in the domain of reading and/or math, individuals with LD have smaller general 
working-memory capacity than their normal achieving counterparts and this capacity deficit is 
not entirely specific to their academic disability (i.e., reading or math). … We find that in 
situations that place high demands on processing, individuals with LD have deficits related to 
controlled attentional processes (e.g., maintaining task relevant information in the face of 
distraction or interference) when compared to their chronological aged-matched counterparts. 
… 
One conclusion from the experimental literature is that individual differences in WM (of which 
executive processing is a component) are directly related to achievement (e.g., reading 
comprehension) in individuals with average or above average intelligence (e.g., Daneman & 
Carpenter, 1980). Thus, children or adults with normal IQs have difficulty (or efficiency varies) in 
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executive processing and that such difficulties are not restricted to those with depressed 
intelligence 
… 
Our conclusions from approximately two decades of research are that WM deficits are 
fundamental problems of children and adults with LD. Further, these WM problems are related to 
difficulties in reading and mathematics, and perhaps writing. Although WM is obviously not the 
only skill that contributes to academic difficulties [e.g., vocabulary and syntactical skills are also 
important (Siegal and Ryan, 1988)], WM does play a significance role in accounting for individual 
differences in academic performance.” 

 

| Lack of Evidence for WMC Training 

While it is possible to train and improve on tasks that are typically used to measure WMC, 
evidence is currently lacking that these task-specific performance improvements actually 
represent an increase in WMC that can be transferred to more general contexts. As described by 
Redick et al. (2015): 
 

“Despite the promising results of initial research studies, the current review of all of the available 
evidence of working memory training efficacy is less optimistic. Our conclusion is that working 
memory training produces limited benefits in terms of specific gains on short-term and working 
memory tasks that are very similar to the training programs, but no advantage for academic and 
achievement-based reading and arithmetic outcomes. 
… 
Previous work has shown that manipulations can increase a person’s score on a working memory 
measure (e.g., re-taking a test, motivation, strategy instruction), but this improvement in the 
individual’s working memory score may not reflect a true change in underlying working memory 
ability. For example, Ericsson et al. (1980) demonstrated a subject who, through mnemonic 
strategies, was able to increase his serial recall of digits to 79 in a row, though when tested on 
memory span measures that did not include digits, his scores were in the normal range (7 ± 2). 
… 
The bulk of the evidence from studies with rigorous methodology provide little evidence for the 
efficacy of working memory training in improving academic and achievement outcomes such as 
reading, spelling, and math. The observation of positive near transfer to working memory and lack 
of academic or achievement test far transfer corresponds with previous meta-analyses 
(Melby-Lervåg & Hulme, 2013; Rapport et al., 2013), and indicates that contrary to popular belief, 
the evidence for the educational benefit of working memory training is lacking.” 

 
However, as Anderson (1987) points out, training domain-specific skills can effectively turn 
long-term memory into an extension of working memory: 
 

“Chase and Ericsson (1982) showed that experience in a domain can increase capacity for that 
domain. Their analysis implied that what was happening is that storage of new information in 
long-term memory, became so reliable that long-term became an effective extension of short-term 
memory.” 

 
For emphasis, we quote Chase and Ericsson (1982) directly: 
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“The major theoretical point we wanted to make here is that one important component of skilled 
performance is the rapid access to a sizable set of knowledge structures that have been stored in 
directly retrievable locations in long-term memory. We have argued that these ingredients produce 
an effective increase in the working memory capacity for that knowledge base.” 

 
It comes as no surprise, then, that Redick et al. (2015) recommend that students focus on 
training subject-specific skills directly: 
 

“We recommend that in contrast to unstructured, unguided, general interventions such as 
cognitive training and videogame training, more research should be focused on training specific 
skills and abilities that are likely to exhibit near transfer to very similar academically relevant 
outcomes – for example, training specific language skills in children with text comprehension 
difficulties (Clarke, Snowling, Truelove, & Hulme, 2010), or computer-assisted instruction of 
reading and math skills (Rabiner, Murray, Skinner, & Malone, 2010).” 

 
These recommendations are echoed (Anderson et al., 1998) by K. Anders Ericsson, one of the 
most influential researchers in the field of human expertise and performance: 
 

“...[M]odern educators have trained many generalizable abilities such as creativity, general 
problem-solving methods, and critical thinking. However, decades of laboratory studies and 
theoretical analyses of the structure of human cognition have raised doubts on the possibility of 
training general skills and processes directly, independent of specific knowledge and tasks. 
 
For example, research on thinking and problem solving show that successful performance depends 
on special knowledge and acquired skills, and studies of learning and skill acquisition show that 
improvements in performance are primarily limited to activities in the specific domain.” 

 
The recommendations are also echoed by researchers Amanda VanDerHeyden and Robin S. 
Codding (2020), who have extensive experience researching academic intervention in 
mathematics: 
 

“The evidence summarized and analyzed in meta-analytic studies illustrates that (a) although 
cognitive measures correlate with mathematics achievement, these measures do not correlate with 
student responsiveness to intervention; (b) using cognitive assessment tools does not provide the 
information necessary to improve academic skill weaknesses; and (c) cognitive interventions do 
very little to improve academic performance outcomes (Burns, 2016).  
… 
[Jacob and Parkinson (2015)] concluded that there are very few rigorous intervention studies 
examining the causal link between executive function interventions and academic outcomes. … 
[T]hese existing studies showed improvements on measures of executive function but no 
improvements on academic achievement. Thus, the notion that executive function training can 
bring about gains in mathematics proficiency is not consistent with existing evidence. The 
evidence serves as a reminder that the most effective way to address a math skill deficit is to 
directly remediate math skills rather than trying to improve working memory or executive 
functioning as a means to address math skill deficits.” 
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| Different Students Need Different Amounts of Practice 

The takeaway from all of this is that an adaptive learning system should focus on 
subject-specific learning tasks and adapt to a student’s observed learning speed, not their 
preferred learning style. Each student needs to be given enough practice to achieve mastery on 
each learning task – and that amount of practice may vary depending on the particular student 
and the particular learning task. 
 
While this may seem like a disappointing truth for students who generally need more practice 
than others, we re-emphasize a study quoted earlier in this chapter, which showed that the 
impact of WMC on task performance was diminished after the task was learned to a sufficient 
level of performance (Reber & Kotovsky, 1997). 
 

“Participants solving the Balls and Boxes puzzle for the first time were slowed in proportion to the 
level of working memory (WM) reduction resulting from a concurrent secondary task. On a 
second and still challenging solution of the same puzzle, performance was greatly improved, 
and the same WM load did not impair problem-solving efficiency. Thus, the effect of WM 
capacity reduction was selective for the first solution of the puzzle, indicating that learning to 
solve the puzzle, a vital part of the first solution, is slowed by the secondary WM-loading task.” 

 
More generally, as Unsworth & Engle (2005) explain: 
 

“...[I]ndividual differences in WM capacity occur in tasks requiring some form of control, with 
little difference appearing on tasks that required relatively automatic processing.” 

 
In this view, extra practice should not be viewed as limiting the progress of students who are 
slower to learn, but rather as empowering them to develop greater automaticity and lessen the 
impact of the cognitive difference responsible for their slower learning, thereby allowing 
continued learning on more advanced material. 
 
We emphasize that this is fully compatible with, and in fact a necessary part of maintaining a 
growth mindset. Nobody’s current level of knowledge is “fixed” or set in stone, and in order to 
support every student and maximize their learning, it’s necessary to provide some students with 
more practice than others. The whole goal of adapting the amount of practice to individual 
differences in student learning speeds is to support maximum student growth. In fact, in the 
absence of such adaptivity student growth would certainly be stunted: 
 

● If a student is catching on slowly, and you don’t give them enough practice and instead 
move them on to the next thing before they are able to do the current thing, then you’ll 
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soon push them so far out of their depth that they’ll just be struggling all the time and 
not actually learning anything, thereby stunting their growth. 

 
● Likewise, if a student picks up on something really quickly and you make them practice 

it for way longer than they need to instead of allowing them to move onward to more 
advanced material, that’s also stunting their growth. 

 
To maximize each individual student’s growth on each individual skill that they’re learning, 
Math Academy gives each student enough practice to achieve mastery and allows them to move 
on to more advanced skills immediately after mastering the prerequisites. 
 

Your Mathematical Potential Has a Limit, but it’s Likely Higher 
Than You Think 

Myth: Everybody can learn every level of math. 
 
Reality: Most people can learn basic math like arithmetic and some algebra – but beyond that, 
higher levels of math become increasingly abstract and technical, and fewer people have the 
cognitive resources to learn it quickly enough to make a career out of it, much less get to that 
point relatively early in their lives. 
 

| Levels of Math 

One problem with this myth is that most people do not understand just how deep the levels of 
mathematics can go, and how cognitively taxing it is to learn the deepest levels. Arithmetic is a 
completely different ballpark from graduate-level math (and beyond). Most people consider 
calculus to be “really advanced math,” but calculus is not even halfway to the level at which 
expert mathematicians operate. 
 
For reference, we offer a loose formulation of the levels of mathematics below: 
 

1. Arithmetic – seldom considered “hard math” 
 

2. Algebra – often considered “hard math” by people who disliked math in school 
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3. Calculus – considered “hard math” by the general public 
 

4. Real Analysis, Abstract Algebra, Partial Differential Equations, etc. – considered “hard math” 
by most college students majoring in math 
 

5. Algebraic Topology, Differential Geometry, etc. – considered “hard math” by most graduate 
students doing PhDs in math, as well as many research professors in math 
 

6. The math underlying solutions to the most famous problems in modern mathematics, e.g. Ricci 
Flow with Surgery which underlies the proof of Poincaré Conjecture – considered “hard math” 
by the world’s top mathematicians 

 
To put these levels in perspective, it can be helpful to draw an analogy to athletics: 
 

● Learning arithmetic is like basic ambulatory movement: almost everyone can do it. 
 

● Learning high school calculus is like being able to run ten miles without stopping: it 
takes time and effort to work up to it, but by training effectively and consistently, many 
people can accomplish it. 
 

● Learning research-level mathematics is like qualifying for the 100-meter dash at the 
Olympics: it requires a certain biological predisposition coupled with the commitment 
of thousands of hours to the most grueling forms of training. 

 
The reason why this is harder to accept in the context of mathematics than in the context of 
athletics is that we cannot observe the makeup and functioning of our brains as clearly as we 
can our bodies. But, as elaborated earlier in this chapter, individual differences in brains do exist 
(e.g. working memory capacity) and are relevant to key mathematical skills (e.g. abstraction 
ability). 
 

| The Abstraction Ceiling 

To help lend some concreteness to something as abstract as “abstraction ability,” it may help to 
hear the famed Douglas Hofstadter (2012) recount his firsthand experience of running up against 
an “abstraction ceiling” in his own brain while pursuing a PhD in mathematics: 
 

“I am a ‘mathematical person’, that's for sure, having grown up profoundly in love with math and 
having thought about things mathematical for essentially all of my life (all the way up to today), 
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but in my early twenties there came a point where I suddenly realized that I simply was incapable 
of thinking clearly at a sufficiently abstract level to be able to make major contributions to 
contemporary mathematics. 
… 
I had never suspected for an instant that there was such a thing as an ‘abstraction ceiling’ in my 
head. I always took it for granted that my ability to absorb abstract ideas in math would continue 
to increase as I acquired more knowledge and more experience with math, just as it had in high 
school and in college. 
… 
I found out a couple of years later, when I was in math graduate school, that I simply was not able 
to absorb ideas that were crucial for becoming a high-quality professional mathematician. Or 
rather, if I was able to absorb them, it was only at a snail's pace, and even then, my understanding 
was always blurry and vague, and I constantly had to go back and review and refresh my feeble 
understandings. Things at that rarefied level of abstraction … simply didn't stick in my head in the 
same way that the more concrete topics in undergraduate math had … It was like being very high 
on a mountain where the atmosphere grows so thin that one suddenly is having trouble breathing 
and even walking any longer. 
… 
To put it in terms of another down-home analogy, I was like a kid who is a big baseball star in 
high school and who is consequently convinced beyond a shadow of a doubt that they are destined 
to go on and become a huge major-league star, but who, a few years down the pike, winds up 
instead being merely a reasonably good player on some minor league team in some random 
podunk town, and never even gets to play one single game in the majors. … Sure, they have oodles 
of baseball talent compared to most other people – there's no doubt that they are highly gifted in 
baseball, maybe 1 in 1000 or even 1 in 10000 – but their gifts are still way, way below those of 
even an average major leaguer, not to mention major-league superstars! 
… 
On the other hand, I think that most people are probably capable of understanding such things as 
addition and multiplication of fractions, how to solve linear and quadratic equations, some 
Euclidean geometry, and maybe a tiny bit about functions and some inklings of what calculus is 
about.” 

 
As Hofstadter describes, the abstraction ceiling is not a “hard” threshold, a level at which one is 
suddenly incapable of learning math, but rather a “soft” threshold, a level at which the amount 
of time and effort required to learn math begins to skyrocket until learning more advanced math 
is effectively no longer a productive use of one’s time. That level is different for everyone. For 
Hofstadter, it was graduate-level math; for another person, it might be earlier or later (but 
almost certainly earlier). 
 

| Learning Energy vs Level of Math 

The central insight is that the further you go in math, the more energy it requires to learn the 
next level up. Whether they realize it or not, everybody who learns math is on an exponential 
curve of energy (time and effort) versus the level of math. (A key feature of exponential curves is 
that they can look fairly flat at the beginning, but appear to skyrocket later on, despite there 
being a constant “multiplier” to get from one point to the next.) 
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As we described earlier in this chapter, people with lower working memory capacities generally 
perceive cognitive skills to require more effort and more practice to master. It is as if there is a 
“multiplier” on the amount of energy required. 
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Another key feature of exponential curves is that vertical scaling is equivalent to horizontal 

translation. For instance, if we take the curve 2
x
 and multiply it by 8 (representing a person who 

requires 8 times more energy to learn math), then we have the curve 8 · 2
x
 which is also 

equivalent to 2
3+x

, a horizontal shift 3 levels to the left. 

 

 
 
At the beginning (at the left), the two graphs are not that different, but as we look further to the 
right (progressively more levels of math), they quickly separate, and one graph skyrockets much 
earlier than the other. Everybody is on this exponential curve of energy (time and effort required 
to learn) versus level of abstraction, but everyone’s curve is shifted horizontally depending on 
their cognitive ability and degree of motivation/interest. For some people, math doesn’t get hard 
until graduate-level Algebraic Topology; for others, it becomes hard as early as high school 
algebra. 
 
These graphs demonstrate the importance of learning efficiency: by increasing learning 
efficiency, Math Academy is able to divide the energy required to learn, flattening the graphs 
above, which is the same as shifting them to the right. When students enjoy high-efficiency 
learning conditions, they not only make faster progress, but also reach higher levels of math 
than they would otherwise. 
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Students get off the math train and stop taking math classes once it begins to feel too 
inefficient. Once the progress-to-work ratio gets too low, they lose interest and focus on other 
endeavors where their progress-to-work ratio is higher. Efficiency keeps the progress-to-work 
ratio as high as possible, keeping students on the math learning train for as far as possible. 
 

| All Can Learn Some, Many Can Learn More, but Few Can Learn All 

> Nature or Nurture? Both Matter 

This characterization is compatible with the usual findings of studies into the effects of nature 
and nurture on skill acquisition: both matter. Talent – the top speed at which one can acquire 
skills in a particular domain – matters, and so does hard work. As Kirschner & Hendrick 
describe (2024, pp.142): 
 

“If you are trying to convince students that innate ability accounts for 0% of success and effort 
accounts for 100% of success then you are misleading them. Instead of saying to students ‘talent 
doesn’t matter, only effort matters’, what we should be saying to students is ‘yes, talent and natural 
ability play a big part in success but effort matters on the margins, and the marginal gains can go 
on to yield significant gains’.” 

 
Lack of talent does not necessarily mean “you can’t do this,” but it does mean that someone 
lacking talent will need to work much harder, possibly to an infeasible extent, as compared to 
someone with talent. But because the human lifespan is so limited and human talents can be so 
diverse, “you need to work much harder than others to accomplish this” effectively means the 
same thing as “you probably won’t do this because you’ll find more efficient, productive, and 
fulfilling uses of your time doing other things.” 
 
As prominent psychologist Dean Keith Simonton summarizes (2007): 
 

“...[T]he concept of talent does not require the existence of ‘innate constraints to the attainment of 
elite achievement’. On the contrary, genetic endowment may merely influence the rate at which 
domain-specific expertise is acquired without imposing any upper or lower bounds on attainment. 
Thus, empirical research indicates that outstanding creative individuals require less time to 
master the requisite knowledge and skill than do less creative individuals (Simonton, 2000). 
 
In addition, talent may affect the magnitude of performance for individuals with the same 
acquired level of expertise. Talented persons may ‘get more bang for the buck’ out of a given 
quantity of declarative and procedural knowledge. But, again, this enhancement effect does not 
amount to the imposition of any ‘innate constraints’.” 

 

 

https://www.taylorfrancis.com/books/mono/10.4324/9781003395713/learning-happens-paul-kirschner-carl-hendrick
https://eric.ed.gov/?id=EJ768516
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Elsewhere, Simonton elaborates (2013, pp.17-26) further on the importance of both nature and 
nurture to the development of expert performance. It has been well established that expert 
performance is contingent upon favorable sociocultural conditions, family and education 
circumstances, and massive amounts of deliberate practice: 
 

“Environmental factors play a major role in the development of greatness. Furthermore, these 
factors are extremely diverse. They include the larger sociocultural conditions … as well as more 
proximate circumstances, such as family background and education … In addition, it has been 
well established in a wide range of achievement domains that greatness is contingent on what has 
been called ‘deliberate practice’ (e.g., Ericsson, Krampe, & Tesch-Römer, 1993; Krampe & 
Ericsson, 1996). 
… 
If any of these [essential environmental factors] attain levels of zero, and thus become totally 
unsupportive of greatness, then greatness will fail to materialize. A violinist who never practices 
will never become a virtuoso violinist, and probably not even a decent amateur player. The same 
holds for sociocultural factors.” 

 
However, many critical traits underlying expert performance have been shown to have a 
significant genetic component: 
 

“Reasonably precise heritability coefficients have been estimated for many critical intellectual, 
dispositional, and physical variables (Bouchard, 2004; Bouchard, Lykken, McGue, Segal, & 
Tellegen, 1990). … [O]ften genetics accounts for at least one-third of the variation, and sometimes 
more than half. 
… 
This is not to say that there do not exist abilities or traits that lack significant heritabilities … It’s 
just that the latter represent the exception rather than the rule. Certainly most major cognitive 
abilities are inherited to a very substantial degree, and heritabilities are moderately high for all 
dispositional variables associated with the attainment of greatness.” 

 
While the development of expert performance depends on favorable environmental 
conditions and massive amounts of deliberate practice, the speed of development can be 
accelerated (or decelerated) by genetic factors: 
 

“...[I]t is far more fruitful to define innate talent in terms of expertise acquisition (Simonton, 
2008b). This definition starts by viewing talent as a set of cognitive abilities, dispositional traits, 
and (where necessary) physical attributes … [T]his variable set in whole or in part must either (a) 
accelerate the rate at which domain-specific expertise is acquired (i.e., “better faster” effect) or (b) 
enhance domain-specific performance for a given amount of acquired expertise (i.e., “more bang 
for the buck” effect). … Nature is what facilitates and accentuates nurture. 
… 
This definition allows us to explain four facts that would otherwise be inexplicable. First, 
individuals vary immensely in how long it takes to acquire the expertise requisite for greatness 
(Simonton, 2000). … Second, those who take less time to acquire expertise are actually better off 
than those who take more time (Simonton, 2000). … Third, greatness is positively associated with 
broad interests, hobbies, and even versatility (e.g., Root-Bernstein, Bernstein, & Garnier, 1995; 
Root-Bernstein et al., 2008; Simonton, 1976; Sulloway, 1996). … [I]t would seem impossible for 

 

https://books.google.com/books?id=tF4VVre_I4MC


The Math Academy Way – Working Draft  |  119 

anyone to become a great polymath if every domain always required a full decade to acquire 
sufficient expertise. Fourth and last, empirical research in both behavioral genetics and 
differential psychology has conclusively identified sets of abilities and traits that feature both 
substantial heritability coefficients and sizeable predictive validities (Bouchard & Lykken, 1999; 
Simonton, 2008b).” 

 

> Speed of Skill Acquisition Matters Because Time is Limited 

Humans are subject to many real-world constraints like limited lifespans and the need to learn a 
marketable skill quickly enough to get a job that affords basic life amenities. Additionally, 
things are always competing for our attention: whenever something feels hard or uninteresting, 
there are many other opportunities to do things that we might find easier and at least as 
interesting. Consequently, we tend to be pulled in other directions once we enter a range where 
developing further expertise in a domain becomes overwhelmingly arduous. We switch to other 
things that we (often, correctly) feel are a better use of our limited time. 
 
As prominent psychologist Robert Sternberg recounts (2014): 
 

“Most people who want to become experts – whether as violinists, skiers, physicists, or whatever – 
do not make it. They drop out along the way. They try and discover that, for whatever reason, it is 
not the way for them to go. I know, because as soon as I made the transition from high school to 
college, I found that I could not realistically compete as a cellist in the much stiffer competition I 
found in college compared with high school. Eventually I, like many others, decided that my time 
would be better spent elsewhere.” 

 
There are compounding factors, too: when something becomes hard and we stop doing as well, 
we often like it less and lose interest/motivation, which makes it even more difficult. When we 
are young children in school, our teachers and/or parents might force us to continue investing 
effort into learning specific subjects like math even when we would prefer not to, but in high 
school and beyond, parents and teachers are less involved in monitoring how much and how 
effectively we practice. As we face greater responsibilities from life in general, we are met with 
so many incentives to get good grades that we might shy away from taking classes that require 
an outsized amount of effort. All of these factors converge to pull us towards an “off ramp” when 
mathematics gets hard for us. 
 
So, for all practical purposes, it is completely untrue that everyone can learn every level of math 
and become a research mathematician – just like it is completely untrue that anyone can become 
an Olympic sprinter, a professional basketball player, a world-famous comedian, a 
Grammy-winning singer, etc. But at the same time, almost everybody can learn basic arithmetic 
– just like almost everybody can learn to run, shoot a free throw, tell a joke, or hum a tune. And 

 

https://www.taylorfrancis.com/chapters/edit/10.4324/9781315805948-15/costs-expertise-robert-sternberg
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with proper training, most people can learn some algebra – just like most people can run a 5k, 
shoot a three-pointer, amuse an audience, or sing a soothing tune. 
 

| Why the “All Can Learn All” Myth Persists 

There are at least two reasons why the “all can learn all” myth persists. First, the reality that “all 
can learn some, many can learn more, but few can learn all” can feel unfair and uncomfortable – 
especially in the context of mathematics, since the students who are best at math tend to be 
viewed as the smartest. 
 
Second, people often overweight the importance of learning advanced math (and other technical 
subjects) to general success in life. In reality, lots of jobs, even those that are well-respected and 
lucrative, don’t require advanced math. For instance, how many doctors, lawyers, members of 
Congress, and even university presidents can and do use calculus in their work? Few, if any. For 
professions like those, advanced math is not essential. (While it may be true that a 
larger-than-expected minority of people in such careers may have learned advanced math at 
some point, knowledge of advanced math itself is typically not one of the relevant factors 
contributing to one’s ability to secure and maintain such a career.) 
 
What’s important is that everyone gain basic math skills, and people with quantitative talent 
who are interested in math and want to go into professions that use advanced math – not just 
aspiring mathematicians but also aspiring physicists, bioinformaticians, rocket scientists, 
machine learning engineers, etc. – don’t take the “off ramp” too early and miss out on the 
opportunity to build a career around something they enjoy and are good at. We will address this 
idea more thoroughly in the next myth. 
 
As a final part of debunking the current myth, it’s important to realize that even professional 
educators and coaches who train students are susceptible to promote the myth that anyone can 
do anything with a bit of hard work. 
 
Trainers, like parents, often don’t want to tell their children that they’re not gifted/talented 
enough in an area to build a career out of it – which is understandable because not only does it 
feel mean, but it may not even be true: new and unexpected gifts/talents can emerge as a child 
develops. 
 
However, for trainers in particular, there are also other incentives at play that are important to 
be aware of. For a trainer, there is no upside to telling a student’s parents that their child is not 
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gifted/talented enough in an area to build a career out of it. It just makes parents and students 
really upset (even though professional trainers are probably correct more often than not) and, in 
the context of private training, often leads to loss of business. So, trainers are incentivized to 
avoid this treacherous territory and instead take one of the following false positions: 
 

1. Gifts/talents are meaningless and anyone can do anything with a bit of hard work. 
 

2. Gifts/talents are important, but there is no way to know whether a gift/talent might 
emerge as a young student develops, so there is no use basing any sort of decision around 
them. 

 
In debunking the current myth, we demonstrated that the first position cannot be held 
rationally. However, believing in it can feel so empowering, and in turn so convincing, that it can 
be an effective position for a trainer to take to keep students and parents happy. 
 
Likewise, in the second position, while it is true that even professional trainers don’t know with 
absolute certainty how their students (especially young students) will develop over time, they do 
generally have some or even a lot of information about whether a student has a gift/talent – and if 
not, then how likely it is that the gift/talent might emerge later in the child’s development. 
Leveraging that information can be a critical part of helping a child enter an area where they 
have both the gifts/talents and the level of interest to eventually build a career that they enjoy. 
 

| Struggle Does Not Imply Inability 

Myth: If you do poorly in a math class, it means you are incapable of learning that level 
of math. 
 
Reality: If you do poorly in a math class, it doesn’t necessarily mean that you are incapable of 
learning that level of math. There are a number of reasons that could be the root cause of your 
struggle. While it’s true that everyone’s mathematical potential has a limit, in practice the 
ceilings we hit rarely represent our true “abstraction ceiling” as described by Hofstadter. All 
sorts of factors can artificially lower our ceilings, such as missing foundations, ineffective 
practice habits, inability or unwillingness to engage in additional practice, or lack of motivation. 
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> Struggle Can Be Caused by Missing Foundations 

When people age, they accumulate biological damage that eventually reaches a tipping point 
and leads to a cascade of catastrophic health issues. The same thing happens to students 
learning mathematics. 
 
Students accumulate weaknesses and knowledge gaps as they progress through math – even a 
grade of B+ or A- means that there are things in the course that the student never completely 
grasped, much less mastered. Additionally, gaps can be created if a student takes a course that is 
not comprehensive and does not cover some topics that are assumed to be prior knowledge in 
higher-level courses. Once a student has accumulated a critical number of gaps (and by the way, 
a gap begets more gaps), then the student is doomed to struggle unless proper remediation is 
enacted to fill in those gaps. 
 
Math Academy automatically takes steps to detect and remediate each individual student’s gaps 
in knowledge. However, remediation is extremely difficult to accomplish outside the context of 
an adaptive, automated learning system. It rarely happens in the classroom – teachers just don’t 
have the bandwidth to spend enough time with each student to figure out exactly which pieces 
of foundational knowledge are missing. And while remediation can often be performed by a 
skilled tutor, it generally requires many tutoring sessions over a long period of time, continuing 
indefinitely into the future to prevent new gaps from forming, which makes it prohibitively 
expensive for most families. 
 
Students usually stop taking math classes once they amass a critical number of knowledge gaps. 
The usual sequence of events starts with students trying to imitate procedures cookbook-style, 
without really understanding what’s going on, because they can’t intuitively grasp any of the 
new material that they’re being taught. Soon after that, they find themselves unable to solve any 
problems that involve critical thinking or many steps.  
 
It's similar to how professional athletes usually retire not because they're too old, but because 
they've accumulated too many injuries. As Indiana Jones once put it: "it's not the years, it's the 
mileage." Or as math writer/cartoonist Ben Orlin humorously described, it’s the “law of the 
broken futon”: a single missing part can, over time, warp an entire futon and render it unusable. 
 
Students will almost assuredly accumulate these deficits in traditional classrooms. It's only the 
most gifted and motivated students who are able and willing to identify and “self-repair” their 
gaps on their own. 
 

 

https://mathwithbaddrawings.com/2015/04/08/the-math-ceiling-wheres-your-cognitive-breaking-point/
https://mathwithbaddrawings.com/2015/04/08/the-math-ceiling-wheres-your-cognitive-breaking-point/
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● In traditional classrooms, students often get stuck on foundational topics but are 
required to complete homework on more advanced topics, leading them to "scrape by" 
without really understanding the subject matter. 
 

● Students also do not review material learned in previous years, and often do not even 
review material from the course that they're in unless they are preparing for a test. This 
leads them to quickly forget what they've learned, requiring re-learning scratch if and 
when those topics show up again in the future. 
 

● Often, traditional courses are not even comprehensive! It’s not uncommon for 
instructors to run out of time before the end of the year and skip sections of the 
textbook. 

 
Math Academy, however, remedies these issues so that students never end up with knowledge 
holes. 
 

● By practicing mastery learning, we ensure that students are not required to complete 
more advanced topics until they have demonstrated proficiency on the prerequisites. 
This way, students are always ready to properly absorb the new concepts being learned. 
 

● We also engage in spaced repetition, a systematic way of reviewing previously learned 
material at appropriate intervals to retain knowledge. This way, students don’t forget 
what they’ve learned. 
 

● Our courses are fully comprehensive. When developing our courses, we look at all the 
major textbooks to ensure that we cover all of their combined content. Any topic that 
you could reasonably expect to find in some version of a course, you’ll find in our system. 

 
Even if students enter Math Academy with knowledge holes, we automatically take steps to 
detect and repair them. Our diagnostic exams not only assess course content, but also 
lower-grade foundations, so that we can identify and fill in every individual student’s gaps in 
foundational knowledge. 
 

> Struggle Can Be Caused by Ineffective Practice 

As we explained when summarizing the science of learning, effective learning feels like a 
workout with a personal trainer. It should center around deliberate practice, a type of active 
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learning in which individualized training activities are specially chosen to improve specific 
aspects of performance through repetition and successive refinement. 
 
We will cover active learning and deliberate practice in more depth in later chapters, but below 
are some key points: 
 

● Effective learning is active, not passive. It is not effective to attempt to learn by passively 
watching videos, attending lectures, reading books, or re-reading notes. 
 

● Deliberate practice requires repeatedly practicing skills that are beyond one’s repertoire. 
However, this tends to be more effortful and less enjoyable, which can mislead 
non-experts to practice within their level of comfort. 
 

● Classroom activities that are enjoyable, collaborative, and non-repetitive (such as group 
discussions and freeform/unstructured project-based or discovery learning) can 
sometimes be useful for increasing student motivation and softening the discomfort 
associated with deliberate practice – but they are only supplements, not substitutes, for 
deliberate practice. 
 

● Deliberate practice must be a part of a consistent routine. The power of deliberate 
practice comes from compounding of incremental improvements over a longer period of 
time. It is not a “quick fix” like cramming before an exam. 

 
On Math Academy, students spend the entirety of their time engaged in deliberate practice by 
solving problems (and receiving feedback) on new topics and topics most in need of review. We 
intersperse active problem-solving with instruction so that students receive minimum effective 
doses of information right before they use it to actively solve problems and receive feedback. 
 

> Struggle Can Be Caused by Insufficient Practice 

Struggle can be caused by needing more practice than other students (or, equivalently, the pace 
of the class might be too fast). This is not necessarily a catastrophic issue in itself because it can 
usually be remedied by engaging in further practice. However, it can cause problems if coupled 
with other factors such as the following: 
 

● The instructional material is not highly scaffolded. 
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● Few practice problems are available. 
 

● Exam problems are substantially different from homework problems. 
 

● The additional practice required exceeds the amount of effort that you are willing to put 
forth to learn the material. 

 
Math Academy remedies all but the last of these issues: 
 

● Our content is about 10x more finely scaffolded than what you’d find elsewhere. 
 

● If a student struggles during a task, we give more questions – that is, more chances to 
learn and demonstrate their learning. 
 

● We have quick, frequent quizzes where questions are similar to (but not the same as) 
those learned during lessons. 
 

● We even tailor the speed of the spaced repetition process to every separate student on 
every separate topic to ensure that students are getting just enough review to retain 
information over the long term. 

 

> Struggle Can Be Caused by Lack of Motivation 

Properly motivated students are usually driven by one or more of the following factors: 
 

● They are intrinsically interested in the material. Some students truly love math and see 
beauty in the way various mathematical ideas fit together and give rise to new 
perspectives. 
 

● The material is highly relevant to their future goals. For instance, an aspiring rocket scientist 
might not love math but might be motivated to learn it because of how useful it is for 
getting rockets into space. Likewise, an aspiring doctor might not love math but might 
be required to evidence a baseline level of mathematical knowledge when applying to 
medical school. Even students who do not have specific future goals might feel strongly 
about keeping potential career doors open which would otherwise be shut by not 
learning enough math. 
 

 



126  |  The Math Academy Way – Working Draft 

● They enjoy competing in mathematical exams and science fairs. Some students have neutral 
feelings about math, but find that they are good at it, and that they enjoy learning more 
advanced mathematics to provide a competitive edge in exams and science fairs. 
 

● Their parents have motivated them with a meaningful extrinsic reward. Sometimes, a student 
may not fall into any categories above, but their parents (often rightfully so) want them to 
fully take advantage of any opportunities to learn math while they are still in school. For 
some students, this may mean learning the basic math they need to get by in life after 
school; for other students, this may mean learning more advanced math to open a wide 
variety of career doors. If a student is highly interested in other activities like reading 
novels, playing video games, or even something as simple as going out for dessert, 
offering them extrinsic rewards in return for meeting checkpoints in their math learning 
can often provide sufficient motivation to keep them from “checking out” during 
learning. 
 

If a student is not driven by any of the motivational factors above, they may “check out” or 
otherwise struggle due to a lack of interest in learning the material. 
 

| Analogy to Lifespans 

The key takeaway from this section is that your mathematical potential has a limit, but it’s likely 
higher than you think. If this idea still feels unclear, then it may help to draw an analogy to 
human lifespans. 
 
Your lifestyle will affect the length of your life, but even if you live perfectly healthily, there is no 
guarantee that you will become a supercentenarian (110+ years old). A tiny fraction of people 
will live that long, but probably not you, even if you do everything right. However, it is still true 
that you can vastly extend your lifespan if you live healthily, as compared to if you live 
unhealthily. 
 
The same is true in athletics. Even if you practice effectively for longer than anyone else, there is 
no guarantee that you will become a hall-of-fame athlete. However, it is still true that you will 
become vastly more skilled in your chosen sport than if you practiced ineffectively or didn’t put 
in as much time. Quite likely, you will become more skilled than you or anyone else thought was 
possible. 
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Mathematics is no different. Even if you devote your life to effective study, there is no guarantee 
that you will become a world-class mathematician. But by putting a serious effort into effective 
study, you will learn far more math and open far more career doors than you would otherwise. 
 

| Student Bite Size vs Curriculum Portion Size 

Thinking deeply about the role of instruction in supporting learners, it's possible to arrive at the 
following misconception. 
 

> The Misconception: If Instruction is Done Perfectly, Won’t All Students Learn at the Same 
Rate? 

Higher math is heavily g-loaded, which creates a cognitive barrier for many students. The goal 
of instructional scaffolding, guidance, and review is to help boost students over that barrier. 
 
But if the purpose of scaffolding, guidance, and review is to help students overcome cognitive 
blockers, then wouldn’t a theoretical learning environment with infinite scaffolding, guidance, 
and review completely factor out cognitive differences, causing students to learn at the same 
rate? 
 
Sure, the speed at which students learn (and remember what they’ve learned) varies from student 
to student. It has been shown that some students learn faster and remember longer, while other 
students learn slower and forget more quickly (e.g., Kyllonen & Tirre, 1988; Zerr et al., 2018; 
McDermott & Zerr, 2019). 
 
But perhaps these studies are simply reflective of unfavorable learning conditions, and people 
would learn at the same rate in an optimally favorable learning environment? 
 

> The Resolution: Under Favorable Learning Conditions, Student Bite Size Equals Curriculum 
Portion Size 

Continuing to think deeply about this thought experiment, one will eventually realize that 
infinite scaffolding, guidance, and review is not synonymous with optimally favorable learning 
conditions. 
 

 

https://apps.dtic.mil/sti/pdfs/ADA212765.pdf
https://jeffberg.github.io/cv/papers/Zerr_2018_PsychologicalScience.pdf
https://journals.sagepub.com/doi/full/10.1177/096372141986900
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Sure, students will eat meals of information at similar bite rates when each spoonful fed to them 
is infinitesimally small. However, “eating at the same rate” would be a ceiling effect. 
 
Faster learners would be capable of learning faster, but the curriculum would be too granular 
relative to their generalization ability and/or provide too much review relative to their forgetting 
rate, thereby creating a ceiling effect that prevents fast learners from learning at their top speed. 
 
A maximally-favorable learning environment would require that the curriculum’s granularity is 
equal to the student’s bite size and the rate of review is equal to the student’s rate of forgetting.  
 
The amended metaphor: Students eat meals of information at similar bite rates when each spoonful fed 
to them is sized appropriately relative to the size of their mouth. 
 
This type of learning environment would maximize each student’s individual potential, free of 
ceiling effects. Critically, however, students would not progress through it at the same rate: 
equal bite rates does not imply equal rates of food volume intake. 
 

> Consistency with Observations 

This framing of favorable learning conditions (“student bite size equals curriculum portion 
size”) is consistent with the phenomenon that math becomes hard for different students at 
different levels. The following factors affect students differentially as they move up the levels of 
math: 
 

● Combinatorial explosion in the problem space – lowers the "bite size" more for students 
with lower generalization ability, or, equivalently, reduces the perceived granularity of 
the curriculum. (This may be a contributing factor in cases when, e.g., students do fine in 
math but struggle in physics.) 
 

● Large body of knowledge to maintain – increases the amount of review more for students 
with higher forgetting rates. Also reduces effective "bite size" since an increasing 
portion of each bite will consist of reviewing fuzzy prerequisite material. 

 
It is also consistent with the concept of soft and hard ceilings on the highest level of math that 
one can reach: 
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● Say we have a student with low generalization ability and high forgetting rate. Then a 
favorable curriculum takes more time to work through (as compared to a favorable 
curriculum for an average student) due to increased granularity and review, and that 
multiplier increases as they go up the levels of math. 
 

● At some point "it requires lots of practice to learn" becomes synonymous with "can't 
learn" – first in a soft sense of "the benefits of engaging in this much practice do not 
outweigh the opportunity costs of neglecting to develop my skills in other domains that I 
find easier," and then in a hard sense of "the amount of practice required exceeds the 
sum of waking hours over the remainder of my life." 
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Memory: An Introduction. In Conway, A., Jarrold, C., Kane, M., Miyake, A., & Towse, J. 
(Eds.), Variation in working memory (pp.3-17). Oxford University Press. 
 
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in 
visual working memory capacity. Nature, 428(6984), 748-751. 
 
Engström, M., Landtblom, A. M., & Karlsson, T. (2013). Brain and effort: brain activation and 
effort-related working memory in healthy participants and patients with working memory 
deficits. Frontiers in human neuroscience, 7, 140. 
 
Importance: One aspect of the brain that has been widely documented not only to vary between people, but 
also to affect people’s general cognitive performance, is working memory capacity (WMC). These differences in 
working memory capacity have been characterized not only at a psychological level, but also at the physical 
level of brain activity measures. 
 
 

● Rudner, M., Lunner, T., Behrens, T., Thorén, E. S., & Rönnberg, J. (2012). Working memory 
capacity may influence perceived effort during aided speech recognition in noise. Journal of 
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the American Academy of Audiology, 23(08), 577-589. 
 
Importance: People with higher WMC will generally perceive a given task to be easier than people with lower 
WMC. 
 
 

● McDaniel, M. A., Cahill, M. J., Robbins, M., & Wiener, C. (2014). Individual differences in 
learning and transfer: stable tendencies for learning exemplars versus abstracting rules. 
Journal of Experimental Psychology: General, 143(2), 668. 
 
McDaniel, M. A., Cahill, M. J., Frey, R. F., Rauch, M., Doele, J., Ruvolo, D., & Daschbach, M. 
M. (2018). Individual differences in learning exemplars versus abstracting rules: Associations 
with exam performance in college science. Journal of Applied Research in Memory and 
Cognition, 7(2), 241-251. 
 
Importance: It has also been shown that high WMC facilitates abstraction, that is, seeing “the forest for the 
trees” by learning underlying rules as opposed to memorizing example-specific details. Individual differences in 
abstraction ability have been shown to impact educational outcomes. 
 
 

● McDaniel, M. A., Cahill, M. J., Robbins, M., & Wiener, C. (2014). Individual differences in 
learning and transfer: stable tendencies for learning exemplars versus abstracting rules. 
Journal of Experimental Psychology: General, 143(2), 668. 
 
Reber, P. J., & Kotovsky, K. (1997). Implicit learning in problem solving: The role of working 
memory capacity. Journal of Experimental Psychology: General, 126(2), 178. 
 
Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate practice is necessary but not sufficient to 
explain individual differences in piano sight-reading skill: The role of working memory 
capacity. Psychological science, 21(7), 914-919. 
 
Kulasegaram, K. M., Grierson, L. E., & Norman, G. R. (2013). The roles of deliberate practice 
and innate ability in developing expertise: evidence and implications. Medical education, 
47(10), 979-989. 
 
Swanson, H. L., & Siegel, L. (2011). Learning disabilities as a working memory deficit. 
Experimental Psychology, 49(1), 5-28. 
 
Importance: WMC has also been shown to impact speed of learning, that is, the rate at which one’s ability to 
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perform a task improves over the course of exposure, instruction, and practice on the task. This effect extends 
beyond laboratory settings into real-life contexts of academics and professional expertise. 
 
 

● Redick, T. S., Shipstead, Z., Wiemers, E. A., Melby-Lervåg, M., & Hulme, C. (2015). What’s 
working in working memory training? An educational perspective. Educational Psychology 
Review, 27(4), 617-633. 
 
Reber, P. J., & Kotovsky, K. (1997). Implicit learning in problem solving: The role of working 
memory capacity. Journal of Experimental Psychology: General, 126(2), 178. 
 
Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and 
learning: Evidence from the serial reaction time task. Memory & cognition, 33(2), 213-220. 
 
Importance: While it is possible to train and improve on tasks that are typically used to measure WMC, 
evidence is currently lacking that these task-specific performance improvements actually represent an increase 
in WMC that can be transferred to more general contexts. However, the impact of WMC on task performance 
is diminished after the task is learned to a sufficient level of performance, and is minimal for tasks that have 
been learned to the level of automatic processing. 
 
 

● Hofstadter, D., & Carter, K. (2012). Some Reflections on Mathematics from a Mathematical 
Non-mathematician. Mathematics in School, 41(5), 2-4. 
 
Importance: The further one goes in math, the more energy it requires to learn the next level up. This leads to 
an “abstraction ceiling” – not a “hard” threshold, a level at which one is suddenly incapable of learning math, 
but rather a “soft” threshold, a level at which the amount of time and effort required to learn math begins to 
skyrocket until learning more advanced math is effectively no longer a productive use of one’s time. 
 
 

● Simonton, D. K. (2007). Talent and expertise: The empirical evidence for genetic endowment. 
High Ability Studies, 18(1), 83-84. 
 
Simonton, D. K. (2013). If innate talent doesn’t exist, where do the data disappear?. The 
complexity of greatness: Beyond talent or practice, 17-26. 
 
Importance: It has been well established that expert performance is contingent upon favorable sociocultural 
conditions, family and education circumstances, and massive amounts of deliberate practice. However, many 
critical traits underlying expert performance have been shown to have a significant genetic component. While 
the development of expert performance depends on favorable environmental conditions and massive amounts 
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of deliberate practice, the speed of development can be accelerated (or decelerated) by genetic factors. Lack of 
talent does not necessarily mean “you can’t do this,” but it does mean that someone lacking talent will need to 
work much harder, possibly to an infeasible extent, as compared to someone with talent. 
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Chapter 8. Myths & Realities about 
Effective Practice 

 
Summary: The most effective learning techniques require substantial cognitive effort from 
students and typically do not emulate what experts do in the professional workplace. Direct 
instruction is necessary to maximize student learning, whereas unguided instruction and group 
projects are typically very inefficient. Effortful processes like testing, repetition, and computation 
are essential parts of effective learning, and competition is often helpful. 

 

Effective Practice Does Not Emulate the Professional Workplace 

Myth: Effective methods of practice emulate what experts do in the professional 
workplace. 
 
Reality: A well-known phenomenon in cognitive psychology is that instructional techniques 
that promote the most learning in experts, promote the least learning in beginners, and vice 
versa. This is called the expertise reversal effect (first introduced by Sweller et al., 2003). As 
Kirschner & Hendrick summarize (2024, pp.67): 
 

“As the novice is not a miniature expert, it’s important to realize that what may work very well for 
an expert (e.g. discovery learning, problem-based learning [in the sense of working in groups to 
solve an open-ended problem], inquiry learning) usually doesn’t work well or is even harmful and 
counterproductive for the novice (and vice versa).” 

 
Additionally, in the professional workplace, employees engage in activities that maximize group 
output, which is totally different – and in some ways, opposite – from maximizing individual 
learning. 
 

 

https://en.wikipedia.org/wiki/Expertise_reversal_effect
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| Direct Instruction is Needed 

> Definition and Importance 

It is true that many highly skilled professionals spend a lot of time solving open-ended 
problems, and in the process, discovering new knowledge as opposed to obtaining it through 
direct instruction. However, this does not mean that beginners should do the same. The 
expertise reversal effect suggests the opposite – that beginners (i.e. students) learn most 
effectively through direct instruction. 
 
Direct instruction is intuitively obvious. If a coach is trying to get a student to become a great 
chess player or pianist, they don’t tell the student “go play around and come back with 
something insightful.” Rather, the coach explicitly demonstrates a skill and then provides 
corrective feedback to the student as they practice the skill. As Kirschner & Hendrick describe 
(2024, pp.68): 
 

“While an expert can be given a problem to be solved after having been taught a certain technique 
or principle, a novice should be given a more structured approach to using that principle for 
solving the same problem, for example in the form of a worked example.” 

 
Indeed, this is backed up by decades of research. As prominent psychologists Richard Clark, 
Paul Kirschner, and John Sweller summarize (2012): 
 

“Decades of research clearly demonstrate that for novices (comprising virtually all students), 
direct, explicit instruction is more effective and more efficient than partial guidance. So, when 
teaching new content and skills to novices, teachers are more effective when they provide explicit 
guidance accompanied by practice and feedback, not when they require students to discover many 
aspects of what they must learn. 
… 
We also have a good deal more experimental evidence [since the 1960s] as to what constitutes 
effective instruction: controlled experiments almost uniformly indicate that when dealing with 
novel information, learners should be explicitly shown all relevant information, including what to 
do and how to do it. We wonder why many teacher educators who are committed to scholarship 
and research ignore the evidence and continue to encourage minimal guidance when they train 
new teachers. 
 
After a half century of advocacy associated with instruction using minimal guidance, it appears 
that there is no body of sound research that supports using the technique with anyone other than 
the most expert students. Evidence from controlled, experimental (a.k.a. “gold standard”) studies 
almost uniformly supports full and explicit instructional guidance rather than partial or minimal 
guidance for novice to intermediate learners. These findings and their associated theories suggest 
teachers should provide their students with clear, explicit instruction rather than merely assisting 
students in attempting to discover knowledge themselves.” 

 

 

https://en.wikipedia.org/wiki/Direct_instruction
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> Unguided Instruction has a History of Pseudoscience 

Clark, Kirschner, & Sweller (2012) explain that unguided instruction persists by cloaking itself in 
a different disguise each time it is debunked: 
 

“Richard Mayer (a cognitive scientist at the University of California, Santa Barbara) examined 
evidence from studies conducted from 1950 to the late 1980s comparing pure discovery learning 
(defined as unguided, problem-based instruction) with guided forms of instruction. He suggested 
that in each decade since the mid-1950s, after empirical studies provided solid evidence that the 
then-popular unguided approach did not work, a similar approach soon popped up under a 
different name with the cycle repeating itself. 
 
Each new set of advocates for unguided approaches seemed unaware of, or uninterested in, 
previous evidence that unguided approaches had not been validated. This pattern produced 
discovery learning, which gave way to experiential learning, which gave way to problem-based and 
inquiry learning, which has recently given way to constructivist instructional techniques.” 

 
As they elaborate elsewhere (Kirschner, Sweller, & Clark, 2006), these unguided approaches are 
often based on modeling the activities of professionals: 
 

“Examples of applications of these differently named but essentially pedagogically equivalent 
approaches include science instruction in which students are placed in inquiry learning contexts 
and asked to discover the fundamental and well-known principles of science by modeling the 
investigatory activities of professional researchers (Van Joolingen, de Jong, Lazonder, Savelsbergh, 
& Manlove, 2005).” 

 
They also explain that the current formulation, constructivist instruction, uses scientific 
camouflage but is not actually scientific itself: 
 

“Turning again to Mayer’s review of the literature, many educators confuse ‘constructivism,’ 
which is a theory of how one learns and sees the world, with a prescription for how to teach. 
 
In the field of cognitive science, constructivism is a widely accepted theory of learning; it claims 
that learners must construct mental representations of the world by engaging in active cognitive 
processing. Many educators (especially teacher education professors in colleges of education) have 
latched on to this notion of students having to ‘construct’ their own knowledge, and have assumed 
that the best way to promote such construction is to have students try to discover new knowledge 
or solve new problems without explicit guidance from the teacher.  
 
Unfortunately, this assumption is both widespread and incorrect. Mayer calls it the ‘constructivist 
teaching fallacy.’ … Learning requires the construction of knowledge. Withholding information 
from students does not facilitate the construction of knowledge.” 

 
In his critical review, Mayer (2004) had plenty more to say: 
 

“The research in this brief review shows that the formula constructivism = hands-on activity is a 
formula for educational disaster. 
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… 
Like some zombie that keeps returning from its grave, pure discovery continues to have its 
advocates. 
… 
Pure discovery did not work in the 1960s, it did not work in the 1970s, and it did not work in the 
1980s, so after these three strikes, there is little reason to believe that pure discovery will somehow 
work today. 
… 
[T]he issue addressed in this article is not whether constructivism is a good idea for education, but 
rather whether the educational implications attributed to constructivism are good ideas. In the 
case of discovery methods, the implications attributed to constructivism are not good ideas. 
… 
The debate about discovery has been replayed many times in education, but each time, the 
research evidence has favored a guided approach to learning.” 

 
These interpretations are echoed throughout the literature. As other prominent psychologists 
John Anderson, Lynne Reder, and Herbert Simon state (1998): 
 

“A consensus exists within cognitive psychology that people do not record experience passively but 
interpret new information with the help of prior knowledge and experience. … However, denying 
that information is recorded passively does not imply that students must discover their knowledge 
by themselves, without explicit instruction, as claimed by radical constructivists.” 
 
“Radical constructivism emphasizes discovery learning, learning in complex situations, and 
learning in social contexts, while strongly distrusting systematic evaluation of educational 
outcomes. … [C]ertain of its devotees exhibit an antiscience bias that, should it prevail, would 
devote any hope for progress in education. 
… 
Little positive evidence exists for discovery learning and it is often inferior. Discovery learning, 
even successful in enabling the acquisition of the desired construct, may require a great deal of 
valuable time that could have been spent practicing the construct (which is an active process, too) 
if it had been learned from instruction. Because most learning only takes place after the construct 
has been discovered, when the search is lengthy or unsuccessful, motivation commonly lags. As D. 
P. Ausubel wrote in 1968, summarizing the findings from the research on discovery learning: 
 
‘Actual examination of the research literature allegedly supportive of learning by discovery reveals 
that valid evidence of this nature is virtually nonexistent. It appears that the various enthusiasts of 
the discovery method have been supporting each other research-wise by taking in each other’s 
laundry, so to speak, that is, by citing each other’s opinions and assertions as evidence and by 
generalizing wildly from equivocal and even negative findings.’” 

 

> Unguided Instruction is Logically and Scientifically Inconsistent 

Anderson, Reder, & Simon (1998) also explain that opponents of direct instruction are, 
ultimately, opponents of extensive practice – a position that is clearly problematic: 
 

“Some argue that direct instruction leads to ‘routinization’ of knowledge and drives out 
understanding: 
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‘The more explicit I am about the behavior I wish my students to display, the more likely it is that 
they will display the behavior without recourse to the understanding which the behavior is meant 
to indicate; that is, the more likely they will take the form for the substance.’ 
 
An extension of this argument is that excessive practice will also drive out understanding. This 
criticism of practice (called ‘drill and kill,’ as if this phrase constituted empirical evaluation) is 
prominent in constructivist writings. Nothing flies more in the face of the last 20 years of research 
than the assertion that practice is bad. 
 
All evidence, from the laboratory and from extensive case studies of professionals, indicates that 
real competence only comes with extensive practice. By denying the critical role of practice, one is 
denying children the very thing they need to achieve competence. … the grain of truth in the 
drill-and-kill criticisms [is that]: Students need to be engaged when they are studying.” 

 
Likewise, there are critical issues with the idea of learning primarily from complex situations: 
 

“First, a learner who is having difficulty with many of the components can easily be overwhelmed 
by the processing demands of the complex task. Second, to the extent that many components are 
well mastered, the student will waste a great deal of time repeating those mastered components to 
get an opportunity to practice the few components that need additional practice. 
 
A large body of research in psychology shows that part training is often more effective when the 
part component is independent, or nearly so, of the larger task. … Practicing one’s skills 
periodically in full context is important to motivation and to learning to practice, but not a reason 
to make this the principal mechanism of learning.” 

 
Along these lines, Clark, Kirschner, & Sweller (2012) further explain that, in addition to being 
supported by a mountain of experimental evidence, the superiority of direct instruction follows 
intuitively from modern understandings of working and long-term memory: 
 

“These two facts – that working memory is very limited when dealing with novel information, but 
that it is not limited when dealing with organized information stored in long-term memory – 
explain why partially or minimally guided instruction typically is ineffective for novices, but can 
be effective for experts. When given a problem to solve, novices’ only resource is their very 
constrained working memory. But experts have both their working memory and all the relevant 
knowledge and skill stored in long-term memory.” 

 
As Sweller, Clark, and Kirschner (2010) elaborate elsewhere: 
 

“Recent ‘reform’ curricula both ignore the absence of supporting data and completely 
misunderstand the role of problem solving in cognition. If, the argument goes, we are not really 
teaching people mathematics but rather are teaching them some form of general problem solving, 
then mathematical content can be reduced in importance. According to this argument, we can 
teach students how to solve problems in general, and that will make them good mathematicians 
able to discover novel solutions irrespective of the content. 
 
We believe this argument ignores all the empirical evidence about mathematics learning. 
Although some mathematicians, in the absence of adequate instruction, may have learned to solve 
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mathematics problems by discovering solutions without explicit guidance, this approach was never 
the most effective or efficient way to learn mathematics. 
… 
[L]ong-term memory, a critical component of human cognitive architecture, is not used to store 
random, isolated facts but rather to store huge complexes of closely integrated information that 
results in problem-solving skill. That skill is knowledge domain-specific, not domain-general. An 
experienced problem solver in any domain has constructed and stored huge numbers of schemas in 
long-term memory that allow problems in that domain to be categorized according to their 
solution moves. 
 
In short, the research suggests that we can teach aspiring mathematicians to be effective problem 
solvers only by providing them with a large store of domain-specific schemas. Mathematical 
problem-solving skill is acquired through a large number of specific mathematical problem-solving 
strategies relevant to particular problems. There are no separate, general problem-solving 
strategies that can be learned. 
… 
Whereas a lack of empirical evidence supporting the teaching of general problem-solving 
strategies in mathematics is telling, there is ample empirical evidence of the validity of the 
worked-example effect. A large number of randomized controlled experiments demonstrate this 
effect (e.g., Schwonke et al., 2009; Sweller & Cooper, 1985). For novice mathematics learners, the 
evidence is overwhelming that studying worked examples rather than solving the equivalent 
problems facilitates learning. 
 
Studying worked examples is a form of direct, explicit instruction that is vital in all curriculum 
areas, especially areas that many students find difficult and that are critical to modern societies. 
Mathematics is such a discipline. Minimal instructional guidance in mathematics leads to 
minimal learning (Kirschner, Sweller, & Clark, 2006).” 

 

> Unguided Instruction Leads to Major Issues in Practice 

Clark, Kirschner, & Sweller (2012) also describe what actually happens in classrooms that do not 
use direct instruction: 
 

“In real classrooms, several problems occur when different kinds of minimally guided instruction 
are used. 
 
First, often only the brightest and most well-prepared students make the discovery. 
 
Second, many students, as noted above, simply become frustrated. Some may disengage, others 
may copy whatever the brightest students are doing – either way, they are not actually discovering 
anything. 
 
Third, some students believe they have discovered the correct information or solution, but they are 
mistaken and so they learn a misconception that can interfere with later learning and problem 
solving. Even after being shown the right answer, a student is likely to recall his or her discovery – 
not the correction. 
 
Fourth, even in the unlikely event that a problem or project is devised that all students succeed in 
completing, minimally guided instruction is much less efficient than explicit guidance. What can 
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be taught directly in a 25-minute demonstration and discussion, followed by 15 minutes of 
independent practice with corrective feedback by a teacher, may take several class periods to learn 
via minimally guided projects and/or problem solving.” 

 
These issues are also backed up by numerous studies: 
 

“Hardiman, Pollatsek, and Weil (1986) and Brown and Campione (1994) noted that when 
students learn science in classrooms with pure-discovery methods and minimal feedback, they 
often become lost and frustrated, and their confusion can lead to misconceptions. Others (e.g., 
Carlson, Lundy, & Schneider, 1992; Schauble, 1990) found that because false starts are common in 
such learning situations, unguided discovery is most often inefficient.” 

 
To emphasize, these issues are so problematic that they can actually result in negative 
educational progress: 
 

“Not only is unguided instruction normally less effective; there is also evidence that it may have 
negative results when students acquire misconceptions or incomplete or disorganized knowledge.” 

 
But despite these issues, the students who learn least in unguided settings still tend to prefer it 
because it feels less effortful: 
 

“...[W]hen learners are asked to select between a more-guided or less-guided version of the same 
course, less-skilled learners who choose the less-guided approach tend to like it even though they 
learn less from it. It appears that guided instruction helps less-skilled learners by providing 
task-specific learning strategies. However, these strategies require learners to engage in explicit, 
attention-driven effort and so tend not to be liked, even though they are helpful to learning.” 

 
Of course, experienced, effective teachers are well acquainted with these issues and (rightfully 
so) brush off any recommendations to use unguided learning: 
 

“...[M]any experienced educators are reluctant to implement – because they require learners to 
engage in cognitive activities that are highly unlikely to result in effective learning. As a 
consequence, the most effective teachers may either ignore the recommendations or, at best, pay 
lip service to them (e.g., Aulls, 2002).” 

 
This sentiment is sharply echoed by Mayer (2004): 
 

“...[T]he contribution of psychology is to help move educational reform efforts from the fuzzy and 
unproductive world of educational ideology – which sometimes hides under the banner of various 
versions of constructivism – to the sharp and productive world of theory-based research on how 
people learn.” 
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To top it all off, as Kirschner, Sweller, & Clark (2006) summarize, even on the rare occasion that a 
student does manage to learn in an unguided setting, their learning tends to be shallower than it 
would have been in a strongly guided setting: 
 

“Moreno (2004) concluded that there is a growing body of research showing that students learn 
more deeply from strongly guided learning than from discovery. Similar conclusions were reported 
by Chall (2000), McKeough, Lupart, and Marini (1995), Schauble (1990), and Singley and 
Anderson (1989). 
 
Klahr and Nigam (2004), in a very important study, not only tested whether science learners 
learned more via a discovery versus direct instruction route but also, once learning had occurred, 
whether the quality of learning differed. Specifically, they tested whether those who had learned 
through discovery were better able to transfer their learning to new contexts. The findings were 
unambiguous. Direct instruction involving considerable guidance, including examples, resulted in 
vastly more learning than discovery. Those relatively few students who learned via discovery 
showed no signs of superior quality of learning.” 

 
As Kirschner & Hendrick summarize (2024, pp.76): 
 

“...[I]f you want your students to learn to solve problems, they first need both the declarative and 
procedural knowledge within the subject area of the problem in question. This is also true if you 
want to teach them to communicate, discuss, write, or whatever twenty-first century skill people 
are talking about. You can’t communicate about something, write about something, discuss or 
argue about something, etc., without first knowing about that something and then also knowing 
the rules (i.e. the procedures) for doing it.” 

 

| Many Hands Make Light Work… and Light Learning 

Professionals often work in groups because it gives them an economic advantage. Real-world 
projects are often extremely complex and require a massive amount of highly skilled labor across 
a wide variety of disciplines. The amount of work necessary to bring the project to fruition 
might exceed what one person can put forth over their entire lifetime, and the number of skill 
domains covered by the work might be more than any one person can hope to master in a single 
lifetime. This problem is solved by constructing a team where each member is highly skilled in 
one or more of the relevant domains, and there are enough members to complete the workload 
in a feasible amount of time. 
 
The goal of division of labor in the professional workplace is to maximize the output of a team. 
On the surface, it might seem like a tempting strategy to apply in the classroom: won’t 
maximizing the output of a classroom effectively maximize the learning of individual students? 
But the answer is a resounding no. Division of labor is division of learning, which means that it 
actually minimizes the learning of individual students. 

 

https://www.taylorfrancis.com/books/mono/10.4324/9781003395713/learning-happens-paul-kirschner-carl-hendrick
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To maximize the learning of individual students, it is necessary to actively engage every 
individual student on every single piece of material to be learned. Division of labor is the 
complete opposite of that, since each student actively learns only the material that corresponds 
to their individual responsibility in the division of labor. The rest of the project, they observe 
only passively, if at all. At best, each student only learns a tiny fraction of the material. At worst, 
one student ends up doing all the work while the rest of the group learns nothing. 
 
As Anderson, Reder, & Simon (1998) summarize: 
 

“Some of the learning contexts recommended in radical constructivist writings involve tasks that 
can be solved by a single problem solver, but the movement more and more is to convert these to 
group learning situations. … While a person must learn to deal with the social aspects of jobs, all 
skills required for these jobs do not need to be trained in a social context. … Training independent 
parts of a task separately is preferable, because fewer cognitive resources will be required for 
performance, thereby reserving adequate capacity for learning. 
… 
A review by the National Research Council (NRC) Committee on Techniques for the 
Enhancement of Human Performance noted that … relatively few studies ‘have successfully 
demonstrated advantages for cooperative versus individual learning,’ and that a number of 
detrimental effects arising from cooperative learning have been identified – the ‘free rider,’ the 
‘sucker’ [reducing effort to avoid being taken advantage of by free riders], the ‘status differential’ 
[low-ability team members lose social status and reduce effort] and ‘ganging up’ [directing group 
effort towards circumventing the intended efforts of the task] effects [Salomon & Globerson, 1989]. 
 
The NRC review of cooperative learning notes a substantial number of reports of no-differences, 
but, unfortunately, a huge number of practitioner-oriented articles about cooperative learning 
gloss over difficulties with the approach and treat it as an academic panacea. It is applied too 
liberally without the requisite structuring or scripting to make it effective. … A reported practice 
among some students is to divide the labor across classes so that one member of a group does all 
of the work for a project in one class, while another carries the burden for a different class. Clearly 
these are not the intended outcomes of cooperative learning but will occur if thoughtful 
implementation and scripting of the learning situation are not evident.” 

 
Granted, fun, collaborative group activities can sometimes be useful for increasing student 
motivation and softening the discomfort associated with intense, individualized deliberate 
practice. However, they do not directly move the needle on student performance – rather, they 
“grease the wheels” and reduce psychological friction during the process of deliberate practice. 
Performance improvements come directly from deliberate practice. 
 

 

https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://users.auth.gr/users/7/8/007287/public_html/Research/GameTheory/05PapersAdvanced/FreeRider/040.pdf
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Effective Practice Requires Effort 

| There is No Such Thing as Effortless Learning 

Myth: There exist effective methods of practice that require low or no effort. 
 
Reality: Talent development takes work – not just a little work, but a lot of work. There is 
absolutely no confusion about this in the talent development community. Can you imagine 
asking an athletic coach to help you become a star player using training methods that don’t tire 
you out and make you sweat? 
 
A common theme in the science of learning is that effective learning feels like a workout with a 
personal trainer. It should center around deliberate practice, a type of active learning in which 
individualized training activities are specially chosen to improve specific aspects of 
performance through repetition and successive refinement. These practice activities are done 
entirely for the purpose of pushing one’s limits and improving performance; consequently, they 
tend to be more effortful and less enjoyable. 
 
Unfortunately, many types of training methods are ineffective, but require little effort, and can 
therefore seem attractive to even the most well-intentioned, hardworking students because they 
create an illusion of competence (e.g. Karpicke, Butler, & Roediger, 2009; also called an illusion 
of comprehension in earlier works reviewed in e.g. Bjork & Bjork, 2023). Examples include 
looking at notes, rereading course materials, and highlighting. In a review of scientific studies 
on various methods of practice, low-effort methods like these were found to have the lowest 
utility in terms of promoting learning, retention, and application of knowledge (Dunlosky et al., 
2013): 
 

Utility Techniques 

High 
Practice testing 
Distributed Practice 

Moderate 
Interleaved Practice 
Elaborative interrogation 
Self-explanation 

Low 
Summarization 
Highlighting 

 

https://www.researchgate.net/profile/Andrew-Butler-7/publication/24268097_Metacognitive_strategies_in_student_learning_Do_students_practise_retrieval_when_they_study_on_their_own/links/5772da3908aeeec389541573/Metacognitive-strategies-in-student-learning-Do-students-practise-retrieval-when-they-study-on-their-own.pdf
https://bibliotecadigital.mineduc.cl/bitstream/handle/20.500.12365/17388/dunloskyimprovinglearning.pdf
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The keyword mnemonic 
Imagery use for text learning 
Rereading 

 
On the other hand, the two highest-utility methods – practice testing and distributed practice – 
are particularly effortful. The benefits of practice testing come from effortful retrieval of 
information, and the benefits of distributed practice come from spreading out practice sessions 
to allow for some amount of forgetting to set in between them (which thereby increases the level 
of effort required during subsequent practice sessions). As Brown, Roediger, & McDaniel (2014, 
pp.48) summarize: 
 

“Spacing out your practice feels less productive for the very reason that some forgetting has set in 
and you’ve got to work harder to recall the concepts. It doesn’t feel like you’re on top of it. What 
you don’t sense in the moment is that this added effort is making the learning stronger.” 

 
And as Kang (2016) describes, these two high-effort methods are even more effective (and, of 
course, even more effortful) when combined: 
 

“Testing or spaced practice, each on its own, confers considerable advantages for learning. But, 
even better, the two strategies can be combined to amplify the benefits: Reviewing previously 
studied material can be accomplished through testing (often followed by corrective feedback) 
instead of rereading.” 

 
To be clear, this is not to say that passively reading or re-reading material should be completely 
avoided. It is useful to familiarize oneself with instructional material before engaging in 
effortful practice, and it is also useful to revisit that material if one runs into issues while 
attempting to carry out the effortful practice. However, it is not until effortful practice that true 
learning actually occurs. 
 
Familiarizing oneself with instructional material is similar to warming up before a workout: the 
warmup does not actually lead to improvements in strength or endurance, but it does help 
maximize performance and avoid injury during the workout. No matter what skill is being 
trained, improving performance is always an effortful process. 
 
As Qadir & Imran (2018) summarize, learning is all about creating desirable difficulties: 
 

“While we intuitively dislike difficulties and thus try to avoid them, many difficulties (but not all) 
have a positive effect on learning. The well-known cognitive psychologist Bob Bjork coined the 
term ‘desirable difficulties’ for such difficulties that have a positive effect on learning. 
… 

 

https://www.hup.harvard.edu/books/9780674729018
https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://eprints.gla.ac.uk/147253/7/147253.pdf
https://en.wikipedia.org/wiki/Desirable_difficulty
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Learning – i.e., actual learning that requires the ability to remember and transfer concepts in the 
long term – requires effort … Research has shown that while retrieval is harder with spaced 
learning and interleaving, resulting in the feeling that the learning is less accomplished, the 
resulting learning is actually deeper and will lead to easier retrieval in the future.” 

 

| To Oppose Effortful Practice is to Oppose Talent Development 

Myth: Testing, repetition, computation, and competition detract from learning. 
 
Reality: In the world of talent development, nobody is confused about the importance of these 
methods. Can you imagine telling an athletic coach that things like competitive tryouts, 
repetitious drills, exhausting physical conditioning, and assigning playing time based on 
performance during scrimmage and competitive games against other teams, detract from 
developing athletic talent? 
 

> Testing and Repetition are Necessary 

As we covered while debunking the previous myth, practice testing and distributed practice (also 
known as spaced repetition) are widely understood by researchers to be two of the most effective 
practice techniques. We have also discussed the importance of deliberate practice, 
individualized training activities specially chosen to improve specific aspects of a student’s 
performance through repetition and successive refinement, which has been shown to be one of 
the most prominent underlying factors responsible for individual differences in performance, 
even among highly talented elite performers. 
 
It is not possible to rationally argue that one can maximize learning without engaging in testing 
and repetition. If someone attempts to argue that position, what they are really saying is that 
they disagree with the premise of maximizing learning. And that is fine – plenty of people would 
prefer for their education to maximize other things like fun and entertainment while, as a 
secondary concern, meeting some low bar for shallowly learning some surface-level basic skills. 
But that is a completely different and opposite thing from talent development. 
 
What’s more, in a subject as hierarchical as math, where each advanced skill requires many 
simpler skills to be applied in complex ways, avoiding testing and repetition can lead to major 
struggle. To learn a complex skill, a student must first be fluent with the simpler component 
skills – and to comfortably perform the complex skill, a student must be fully automatic with the 
simpler component skills. If a student does not develop fluency and eventual automaticity on 
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each skill, they will be doomed to struggle on the more advanced skills of which those simpler 
skills are components. Testing and repetition are the two learning strategies that most directly 
build fluency and eventual automaticity. (To be clear, repetition does not mean giving students 
excessive practice past the point of mastery, but rather, giving students enough practice to 
achieve mastery before moving them on to more advanced skills.) 
 

> Computation is Necessary 

There are several reasons why practicing computation is a necessary part of learning math. 
 

1. In the absence of computation, it’s easy to lose touch with the concrete meaning of 
various symbols, procedures, and ideas. Computation keeps learners aware of what these 
things mean in terms of concrete numbers. In fact, the whole point of an abstract idea is 
to streamline and unify existing knowledge of concrete examples. Computational 
examples are to mathematics as experiences are to life. 
 

2. Is someone a talented basketball player if they can talk about the strategy of the game 
but cannot actually make any shots? No. The same applies to someone who can talk 
about mathematical ideas but is unable to perform computations. 
 

3. It is impossible to gain a full, holistic understanding of a subject without knowing the 
component skills. If someone can’t shoot a basketball, how can they possibly understand 
how different shots compare in terms of difficulty, and what plays might open up good 
shots? The same is true in mathematics. 
 

4. Computation often helps build conceptual understanding. Math is full of ideas that 
cannot be properly understood without experience carrying out computations. (One of 
the clearest examples of this is the concept of the discriminant of a quadratic equation: if 
a student has experience computing solutions to quadratic equations using the quadratic 

formula, then they will find it much easier to observe that the b2–4ac term, known as the 
discriminant, controls the number of solutions.) 

 
Math resources that don’t give proper emphasis to computation end up having to water down 
their curriculum and cherry-pick problems, giving students the easiest possible problem-solving 
cases that don’t require too much in the way of foundational skills. That can be exciting for 
students because they get enough conceptual understanding to feel like they have learned the 
material in proper depth even though they actually haven’t. 
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This is fine if a student is just curious about math and wants to learn a bit without putting in too 
much time and effort – but if a student is serious about learning math well enough to make a 
career out of it, then watered-down courses won’t give them what they need. That’s where Math 
Academy comes in: we teach math as if we were training a professional athlete or musician, or 
anyone looking to acquire a skill to the highest degree possible, and we’ve designed the 
curriculum to go toe-to-toe vs any similar course you would find in the top universities and the 
most popular textbooks in the world. 
 
 
Computation and Silly Mistakes 
 
Opponents of computation will sometimes claim that it unnecessarily slows down the learning 
process when students are given further practice in response to silly mistakes. However, in the 
context of a skill hierarchy like mathematics, it’s not good enough to be “almost” able to execute 
a skill properly. If a gymnast is “almost” able to land a backflip, then that’s great progress, but at 
the same time, they’re not ready to try any combination moves of which a backflip is a 
component. Even if it’s a silly mistake keeping the gymnast from landing the backflip, they still 
have to rectify it before layering on more advanced skills. 
 
More generally, when students are not made to clean up their silly mistakes on low-level skills, 
they eventually hit a wall where no matter how hard they try, they are unable to reliably perform 
advanced skills due to the compounding probability of silly mistakes in the component skills. 
 
Additionally, many students frequently claim that they made a silly mistake when in fact their 
mistake was indicative of a deeper conceptual misunderstanding. Sometimes this claim is in 
good faith (i.e., they honestly believe they made a silly mistake), other times it’s in bad faith (i.e., 
they’re trying to exploit the grading system to get credit they don’t deserve), but regardless, it’s 
something that needs to prevented. 
 

> Competition Can be Helpful and is Unavoidable in the Big Picture 

While competition is not inherent to the learning process, appropriately structured competition 
does not necessarily detract from it either, and in many cases, can incentivize learners to 
increase the quantity and quality of practice to maximize their level of achievement. For 
instance, many Math Academy students are highly motivated by weekly leaderboards to 
maintain a consistent practice schedule. 
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Of course, this is not to say that every student must compete in order to learn productively. 
Some students prefer not to participate in Math Academy’s weekly leaderboards, and that is 
totally fine. Similarly, this is not to say every form of competition promotes learning. The key 
phrase is appropriately structured competition. It is easy to imagine disaster scenarios arising 
from inappropriately structured competition (e.g. the student with the highest score gets an A 
and all others fail the class). 
 
That said, if a student is serious about developing their talent to a high enough level to build a 
career around it, then competition is a reality that they must eventually face. In talent 
development, anyone who seriously attempts to reach any level of success in a sport, instrument, 
etc, knows that they have to work really hard and compete against other people (who are also 
working really hard) for limited positions. Mathematics is no exception. There is a limited 
number of professorships available for mathematics and related disciplines, and outside 
academia, there is a limited number of positions available for jobs that involve solving hard 
problems using advanced mathematics. 
 
It's worth emphasizing that while competition gets a bad rap, its purpose is positive: generally 
speaking, the purpose of competition is to assign responsibilities to the people most capable of 
performing them and motivate those people to continue working hard and improving. The bad 
rap tends to be vocalized by people who are not aligned with this process – for instance, people 
who confuse their enjoyment of a job with their capability or value to society in performing it, 
or people who wait until the last minute to begin developing a talent and then experience a rude 
awakening when they realize that their level of capability is far behind that of other people. 
 

> Why the Myth Persists in Education (But Not in Talent Development) 

Why does this myth persist in the practice of education, whereas there is no confusion in the 
field of talent development? One key factor is that in talent development, the optimization 
problem is clear: an individual’s performance is to be maximized, so the methods used during 
practice are those that most efficiently convert effort into performance improvements. On the 
other hand, in education, there are many other factors (especially bureaucratic ones) that 
constrain and cloud the optimization problem. The end result is that teachers are incentivized 
to use easy, fun, low-accountability, hard-to-measure practice techniques that keep students, 
parents, and administrators off their back. Unfortunately, these practice techniques tend to be 
ineffective. 
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For instance, consider the idea of testing. In talent development, all parties involved are 
proponents of testing. If a child is training to play a sport at a high level, such as becoming an 
Olympic sprinter, then the child, their parents, and their coach will all want to see regular 
measurements of the child’s 100-meter dash time. If that time is going down, then practice is 
working and everybody is happy. If the time is not going down, then it signals that something 
needs to be adjusted in the practice routine and nobody is happy until the problem is solved. 
The act of measuring performance is critical because it tells everyone whether the child is 
making progress towards achieving their goal. 
 
In education, however, many people are against testing. Typically, parents want their children to 
get high grades and learn a bit without feeling too stressed, their children want to minimize the 
amount of work they have to do to satisfy (or, perhaps, not anger) their parents, and 
administrators want parents to be happy and test scores to be sufficiently high. Teachers are 
squeezed by pressure on both sides – getting as many kids as possible over some threshold test 
score, while assigning as high grades and as little work as possible. 
 
In this position, it is easy to dislike testing – if testing were to go away, then it would be easy to 
satisfy all parties involved by centering the class around discussions and fun activities. Students 
wouldn’t have to work too hard, they would learn a little bit, they would receive good grades on 
the basis of participation, parents would be happy that their children are getting high grades 
and learning a bit without feeling too stressed, and administrators would be happy that parents 
are happy. It is only natural for those in this position to oppose testing and instead argue for the 
existence and importance of subjective forms of learning that cannot be objectively measured, 
even though such forms of learning are unscientific by definition. 
 

> Why Talent Development is Important in Math 

Practitioners of talent development tend to be found in hierarchical skill domains like sports 
and music, where each advanced skill requires many simpler skills to be applied in complex 
ways. This is because it's hard to climb up the skill hierarchy without intentionally trying to do 
so. 
 
To learn an advanced skill, you must be able to comfortably execute its prerequisite skills, and 
the prerequisite skills underlying those, and so on. Getting to the point of comfortable execution 
on any skill takes lots of practice over time – and even after you get there, you have to continue 
practicing to maintain your ability. 
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None of this happens naturally. If you don't carefully manage the process, then you struggle. 
Nobody gets to be really good at a sport or instrument without taking their talent development 
seriously and intentionally trying to maximize their learning. 
 
Conveniently, most students aren't expected to achieve a high level of success in sports or 
music, so they can get away with de-prioritizing talent development. If every student in gym 
class were expected to be able to do a backflip by the end of the year, things would have to 
change – but the expectations are so low that meeting them does not require talent 
development. 
 
When it comes to math, however, things become problematic. Like sports and music, math is an 
extremely hierarchical skill domain, so achieving a high level of success requires a dedication to 
talent development. However, unlike sports and music, most students are expected to achieve a 
relatively high level of success in math: many years of courses increasing in difficulty, 
culminating in at least algebra, typically pre-calculus, often calculus, and sometimes even higher 
than that. 
 
As a result, in math, de-prioritizing talent development leads to major issues. When students do 
the mathematical equivalent of playing kickball during class, and then are expected to do the 
mathematical equivalent of a backflip at the end of the year, it's easy to see how struggle and 
general negative feelings can arise. 
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Chapter 9. Myths & Realities about 
Mathematical Acceleration 

 
Summary: Students often become mathematically accelerated by working on Math Academy, and 
there are many misconceptions surrounding educational acceleration. Acceleration does not lead 
to adverse psychological consequences in capable students; rather, whether a student is ready for 
advanced mathematics depends solely on whether they have mastered the prerequisites. 
Acceleration does not imply shallowness of learning; rather, students undergoing acceleration 
generally learn – in a shorter time – as much as they would otherwise in a non-accelerated 
environment over a proportionally longer period of time. Accelerated students do not run out of 
courses to take and are often able to place out of college math courses even beyond what is tested 
on placement exams. Lastly, for students who have the potential to capitalize on it, acceleration is 
the greatest educational life hack: the resulting skills and opportunities can rocket students into 
some of the most interesting, meaningful, and lucrative careers, and the early start can lead to 
greater career success. 

 

Acceleration is Often Misunderstood 

On a system like Math Academy, where students can learn math multiple times as efficiently as 
in a traditional classroom, students who continue working at a normal “school workload” pace 
of an hour or more per weekday throughout the year will learn multiple years of math in one 
year – in a fully comprehensive curriculum, without skipping any content. 
 
While this may seem unexpected and even shocking to those unfamiliar with academic 
acceleration (the practice of allowing students to learn academic material at a younger age 
and/or faster rate than is typical), this is a normal and expected consequence of increased 
learning efficiency: if a student’s learning becomes 4x more efficient, and they continue putting 
forth the same amount of time into learning, then they will learn 4x as much material. 
 
The benefits of mathematical acceleration are as numerous as the misconceptions surrounding 
it. As lamented by researcher James Borland (1989, pp.185): 
 

“Acceleration is one of the most curious phenomena in the field of education. I can think of no 
other issue in which there is such a gulf between what research has revealed and what most 
practitioners believe. The research on acceleration is so uniformly positive, the benefits of 

 

https://en.wikipedia.org/wiki/Academic_acceleration
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appropriate acceleration so unequivocal, that it is difficult to see how an educator could oppose 
it.” 

 
The purpose of this chapter is to clear up misconceptions and, at the same time, communicate 
the benefits of mathematical acceleration. 
 

Developmental Appropriateness 

| Advanced Study is Appropriate Once Prerequisites Have Been Mastered 

Myth: Learning math early is not appropriate for students’ social/emotional and 
cognitive/academic development. 
 
Reality: Educational acceleration does not lead to adverse psychological consequences in 
capable students. For instance, according to a study titled Academic Acceleration in Gifted Youth 
and Fruitless Concerns Regarding Psychological Well-Being: A 35-Year Longitudinal Study that 
followed thousands of accelerated students throughout their lives over the course of 35 years 
(Bernstein, Lubinski, & Benbow, 2021): 
 

“The amount of educational acceleration did not covary with psychological well-being. Further, 
the psychological well-being of participants in both studies was above the average of national 
probability samples. Concerns about long-term social/emotional effects of acceleration for 
high-potential students appear to be unwarranted, as has been demonstrated for short-term 
effects. 
… 
These findings are consistent with research on the effects of academic acceleration on 
psychological well-being. That is, there is little evidence that academic acceleration has negative 
consequences on the psychological well-being of intellectually talented youth (Assouline et al., 
2015; Benbow & Stanley, 1996; Colangelo et al., 2004; Gross, 2006; Robinson, 2004). 
… 
These findings do not support the frequently expressed concerns about the possible long-term 
social and emotional costs of acceleration by counselors, parents, and administrators. … Those 
who were accelerated had few regrets for doing so. Indeed, if anything, they tended to wish that 
they had accelerated more.” 

 
Whether a student is ready for advanced mathematics depends solely on whether they have 
mastered the prerequisites. If a student has mastered prerequisites, then it is appropriate for 
them to continue learning advanced math early, and not appropriate to stunt their development 
by holding them back. As the study authors note: 
 

“Many fear negative possibilities of moving a gifted child to a more advanced class. Yet it also is 
important to consider the negative possibilities of holding children back in classes aiming to teach 
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subject matter that they have already mastered (Benbow & Stanley, 1996; Gross, 2006; Stanley, 
2000). Choosing not to accelerate is as much of a decision as choosing to do so …  
 
This is particularly important given the extensive empirical literature showing positive effects of 
acceleration on academic achievement (Kulik & Kulik, 1984, 1992; Lubinski, 2016; Rogers, 2004; 
Steenbergen-Hu et al., 2016) and creativity (Park et al., 2013; Wai et al., 2010). … Presenting 
students with an educational curriculum at the depth and pace with which they assimilate new 
knowledge is beneficial. Other studies have shown that academic acceleration tends to enhance 
professional and creative achievements before age 50 (Park et al., 2013; Wai et al., 2010).” 

 
Numerous other studies on the long-term effects of educational acceleration have drawn similar 
conclusions. As Wai (2015) summarizes: 
 

“...[F]or many decades there has been a large body of empirical work supporting educational 
acceleration for talented youths (Colangelo & Davis, 2003; Lubinski & Benbow, 2000; 
VanTassel-Baska, 1998). Although neglecting this evidence seems increasingly harder to do (Ceci, 
2000; Stanley, 2000), putting research into practice has been challenging due to social and 
political forces surrounding educational policy and implementation (Benbow & Stanley, 1996; 
Gallagher, 2004; Stanley, 2000). 
… 
The educational implications of these studies are quite clear. They collectively show that the 
various forms of educational acceleration have a positive impact. The key is appropriate 
developmental placement (Lubinski & Benbow, 2000) both academically and socially. … 
Educational acceleration is essentially appropriate pacing and placement that ensures advanced 
students are engaged in learning for life. Every student deserves to learn something new each day 
(Stanley, 2000). The evidence clearly supports allowing students who desire to be accelerated to do 
so, and does not support holding them back. 
… 
[T]he long-term studies reviewed here show that adults who had been accelerated in school 
achieved greater educational and occupational success and were satisfied with their choices and 
the impact of those choices in other areas of their lives.” 

 

| Why the Myth of Developmental Inappropriateness Persists 

This myth of acceleration being developmentally inappropriate may be perpetuated in part by 
convenience. In schools, each grade typically progresses through the math curriculum in 
lockstep, which means that accelerated students would need to be placed in above-grade 
courses. This can lead to major logistical challenges. 
 
For instance, if above-grade course is not offered by the school (which would certainly be the 
case for accelerated 5th graders in elementary schools, 8th graders in middle schools, and 12th 
graders in high schools), then either 
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● the students would need to take the class at another school (which introduces 
transportation, scheduling, and administrative issues) or 
 

● the school would need to hire a teacher who is capable of teaching the higher-grade 
material (and it’s hard enough for schools to hire teachers who are capable of teaching 
grade-level mathematics). 
 

And even if the above-grade course is offered by the school, there may be schedule conflicts 
with grade-level courses that mathematically accelerated students still need to take. (Course 
schedules are typically optimized to minimize conflicts within grade levels, but not across grade 
levels.) 
 
Besides logistical issues, there are other factors that can disincentivize acceleration and lead the 
myth to be perpetuated out of convenience. As Steenbergen-Hu, Makel, & Olszewski-Kubilius 
(2016) describe: 
 

“[E]ducation administrators may have perverse incentives to avoid acceleration. For example, 
although acceleration can often actually save schools money because students spend fewer years 
in school, it can also ‘cost’ schools money. Because school funding is often allocated based on 
headcounts and accelerated students spend fewer years in school, schools receive fewer dollars 
overall, or in the case of dual enrollment, may have to spend some of those dollars outside the 
district.  
 
Similarly, in states that offer open enrollment, students could leave a district for one where their 
needs are better met. Moreover, in the age of accountability via test score performance, keeping 
students who could be accelerated with their same-age peers can boost average test scores, 
regardless of whether the students are learning.” 

 
Even in schools that do offer acceleration, typically only a small portion of students per grade 
are accelerated. Given how many logistical challenges and other disincentivizing factors there 
are, how few students are typically accelerated, and how easy it is to imagine a young student 
struggling socially when they are placed in a class with older students away from age-level 
friends, it is not surprising that the myth persists. 
 
On Math Academy, however, all of these issues and concerns vanish. Students can accelerate 
their mathematical learning – even to the point of learning highly advanced university-level 
math – entirely through our system from the comfort of their home or grade-level classroom. 
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Depth of Learning 

| Accelerated Students Learn More Material, Just as Deeply 

Myth: Mathematically accelerated students become accelerated by rushing through 
watered-down courses, leading to shallower learning. 
 
Reality: It is well documented in the literature of academic acceleration studies that students 
undergoing acceleration generally learn – in a shorter time – as much as they would otherwise in 
a non-accelerated environment over a proportionally longer period of time. 
 
For instance, Kulik & Kulik’s well-known review (1984) of 26 academic acceleration studies 
found that talented students who were accelerated by one year (i.e. they learned two years’ worth 
of material in one year) performed as well as students one year older who were equivalently 
talented but not accelerated: 
 

“First, talented youngsters who were accelerated into higher grades performed as well as the 
talented, older pupils already in those grades. Second, in the subjects in which they were 
accelerated, talented accelerates showed almost a year's advancement over talented same-age 
nonaccelerates.” 

 
As Kulik & Kulik (1984) noted, “most [other] reviewers of the controlled studies have reached favorable 
conclusions about the effects of acceleration.” Furthermore, many of these conclusions were 
expressed with a level vehemence that is rare to find in academic literature, except out of 
frustration when a result so clearly supported by science is ignored by the education system for 
no reason other than the inertia of tradition: 
 

● “In her 1958 review, Goldberg pointed out that it was hard to find a single research study showing 
acceleration to be harmful and that many studies proved acceleration to be a satisfactory method 
of challenging able students.” 
 

● “A 1964 review by Gowan and Demos concluded simply that ‘accelerated students do better than 
non-accelerated students matched for ability’ (p. 194).” 
 

● “Gold (1965) echoed their [Gowan and Demos’s] sentiments and added, ‘No paradox is more 
striking than the inconsistency between research findings on acceleration and the failure of our 
society to reduce the time spent by superior students in formal education’ (p. 238).” 
 

● "Perhaps what is needed," Gallagher suggested in 1969, "is some social psychologist to explore why 
this procedure [of academic acceleration] is generally ignored in the face of such overwhelmingly 
favorable results" (p. 541).  
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● “Dillon in 1973 also lamented the lack of interest in acceleration and offered a social psychological 
explanation: ‘Apparently the cultural values favoring a standard period of dependency and formal 
education are stronger than the social or individual need for achievement and independence. This 
is an instance of the more general case one remarks throughout education: When research findings 
clash with cultural values, the values are more likely to prevail, (p. 717).’” 
 

● “In a review of research on acceleration in mathematics, Begle (1976) concluded that accelerated 
students scored higher than comparable controls in almost all comparisons and almost never scored 
lower. The accelerated students also did better than average, nonaccelerated, older students, and 
when they did not do as well as talented older students, they did not lag far behind.” 

 
This review (Kulik & Kulik, 1984), considered together with about a dozen more recent others, 
gave rise to the following conclusion in the second-order review titled What one hundred years of 
research says about the effects of ability grouping and acceleration on K–12 students' academic 
achievement (Steenbergen-Hu, Makel, & Olszewski-Kubilius, 2016): 
 

“...[T]he conversation needs to evolve beyond whether such interventions [of academic 
acceleration] can ever work. There is not an absence of evidence, nor is there evidence of absence 
of benefit. The preponderance of existing evidence accumulated over the past century suggests 
that academic acceleration … can greatly improve K–12 students’ academic achievement.” 

 

| How We Ensure Comprehensive, Deep Learning 

Even beyond the academic literature, Math Academy uses specific techniques to ensure that 
even the most accelerated students are learning comprehensively and deeply: 
 

● Math Academy’s courses are more comprehensive than typical courses in traditional 
classrooms, and 
 

● completing a Math Academy course requires a student to demonstrate a degree of 
knowledge greater than that necessary to pass the course in a traditional classroom. 

 
To ensure that our courses are fully comprehensive, we perform curriculum comparisons to 
ensure that our courses provide a superset of content covered by major textbooks. That is to say: 
given a major textbook, our corresponding course not only covers the content found within the 
textbook, but also covers additional content found in other major textbooks. Our courses are the 
“real thing,” and they cover all the content that one could reasonably expect to find in any major 
textbook or standard class syllabus. 
 
Yes, this means that we have invested a lot of time, effort, and money developing an absolute 
mountain of content. Our courses are the product of nearly a decade of work by a team of more 
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than 10 PhD mathematicians. As of October 2023, we have over 2500 fully-scaffolded lessons 
each consisting of an introduction, 3-4 fully-worked examples called Knowledge Points or KPs, 
and 10+ questions (with full solutions) within each KP. In total, we have a bank of over 150,000 
questions. These counts continue to increase. 
 
On the other hand, typical courses in traditional classrooms are seldom comprehensive. 
Textbooks usually aim to cover a vast array of everything that an instructor might want to teach 
(because if they miss any material that an instructor wants to cover, they’ll lose the instructor to 
a different textbook). But instructors generally pick and choose from that material. While the 
basics of most math courses are generally agreed upon, what’s covered beyond the basics can 
vary from one instructor to another depending on various factors such as the following: 
 

● the class schedule – due to many schedule interruptions throughout the year (e.g. 
standardized testing, field trips, school assemblies), teachers have less class time than 
one would imagine, so they have to prioritize and streamline what they’re going to teach 
in order to avoid running out of time before the end of the year. 
 

● the instructor’s interests – different classes often cover different offshoots from the core 
material and may go deeper in some areas than others, depending on what the instructor 
finds most interesting or is most comfortable teaching. 

 
Additionally, unlike traditional classrooms where students can pass their courses despite not 
having mastered all of the material covered, Math Academy is a mastery-based learning system 
in which students do not move forward until they demonstrate mastery of topics. As a result, a 
student who completes a course on Math Academy must have demonstrated mastery on 100% of 
the topics in the course – whereas a student who gets an A, B, C, or D in a course in a traditional 
classroom may have only mastered 90%, 80%, 70%, or 60% of the material. 
 

Continuity of Courses 

| Accelerated Students Don’t Run out of Math Courses 

Myth: If a student takes math classes early, they will run out of math classes to take. 
 
Reality: While many people think calculus is the “end of the road” for math, it is but an 
entry-level requirement for university-level math courses. There are even more university-level 
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math courses above calculus than there are high school courses below calculus, and many of 
these university-level math courses are available on Math Academy. 
 
After a single-variable calculus course (like AP Calculus BC), most serious students who study 
quantitative majors like math, physics, engineering, and economics have to take core 
“engineering math” courses including Linear Algebra, Multivariable Calculus, Differential 
Equations, and Probability & Statistics (the advanced calculus-based version, not the simpler 
algebra-based version like AP Statistics). Beyond those core “engineering math” courses, 
different majors include plenty of specialized courses that branch off in various ways. 
 
There are so many university-level math courses that a student could not fit them all into a 
standard 4-year undergraduate course load even if they overloaded their schedule every year – 
however, the more of these courses a student is able to take, the more academic opportunities 
and career doors are open to them in the future. 
 

| Advanced Students Can Place Out of College Courses Beyond Placement Tests 

Myth: There’s no use in learning math past calculus in high school because you’ll have to 
take it again in college (since advanced placement courses and college math placement 
tests only go up through calculus). 
 
Reality: When the most advanced students place out of classes, it is not through transfer credit 
or placement exams. Generally, they are placing out of courses that are beyond what’s tested on 
the placement exam. 
 
They do this by not only learning the material beforehand, but also taking the initiative to 
schedule a meeting with an undergraduate advisor or coordinator for the math department. 
Some schools have a policy of arranging undergraduate for-credit exams, while others may have 
a less formal process, such as arranging a meeting with a professor who will determine the 
student’s placement by discussing mathematics with them, getting a sense of their background 
and knowledge, and maybe having them solve some problems at the board. 
 
If you want to learn math ahead of time and place into more advanced courses, there are a 
couple pitfalls to watch out for: 
 

1. If you learn material ahead of time, but not comprehensively, then you might not be able 
to evidence enough knowledge to place out of it. Or, if you manage to place out of a 
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course without having learned the material comprehensively, you might end up way out 
of your depth in the more advanced course that you end up taking. 
 

2. If you learn material ahead of time, but do not continually review that material, then you 
will likely become rusty and unable to evidence enough knowledge to place out of it. 

 
In order to avoid these pitfalls, you need to learn material comprehensively and continually 
review it after learning it. Math Academy does both of these things. 
 

Relevance to Students’ Futures 

| Learning Math Early Reduces Risk and Opens Doors to Opportunities 

Myth: Learning math early can be impressive, but it’s just a party trick. It doesn’t have 
much real impact on a student’s future, especially if they’re going into something other 
than engineering. 
 
Reality: You know how, when you take a language class, there’s often a couple kids who speak 
the language at home and think the class is super easy? You can do that with math. Learning 
math ahead of time basically guarantees an A and guards against all sorts of risks such as the 
teacher not knowing the content very well or otherwise not being able to explain it well. This is 
especially helpful at university, when lectures are often unsuitable for a first introduction to a 
topic. 
 
Of course, the natural objection is “won’t you be bored in class?” – but if you do super well in 
advanced classes, especially at university, then that opens all kinds of doors to recommendations 
for internships, research projects with professors, etc. Even if you aren’t a genius, you appear to 
be one in everyone else’s eyes, and consequently you get a ticket to those opportunities reserved 
for top students. Students who receive and capitalize on these opportunities can launch 
themselves into some of the most interesting, meaningful, and lucrative careers that are 
notoriously difficult to break into. 
 
Learning math early also gives students the opportunity to delve into a wide variety of 
specialized fields that are usually reserved for graduates with strong mathematical foundations. 
This fast-tracks students towards discovering their passions, developing valuable skills in those 
domains, and making professional contributions early in their careers, which ultimately leads to 
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higher levels of career accomplishment. As described by the authors of a 40-year longitudinal 
study of thousands of mathematically precocious students (Park, Lubinski, & Benbow, 2013): 
 

“The relationship between age at career onset and adult productivity, particularly in science, 
technology, engineering, and mathematics (STEM) fields, has been the focus of several researchers 
throughout the last century (Dennis, 1956; Lehman, 1946, 1953; Simonton, 1988, 1997; 
Zuckerman, 1977), and a consistent finding is that earlier career onset is related to greater 
productivity and accomplishments over the course of a career. All other things being equal, an 
earlier career start from acceleration will allow an individual to devote more time in early 
adulthood to creative production, and this will result in an increased level of accomplishment over 
the course of one’s career. 
… 
[In this study] Mathematically precocious students who grade skipped were more likely to pursue 
advanced degrees and secure STEM accomplishments, reached these outcomes earlier, and 
accrued more citations and highly cited publications in STEM fields than their matched and 
retained intellectual peers.” 

 
And while it’s true that students don’t need to know much beyond algebra to get a job in fields 
like computer science, medicine, etc. – the people in such fields who do also know advanced 
math are extra valuable and in demand because they can work on projects that combine domain 
expertise and math. 
 

| Higher-Grade Math is Typically More Productive than Grade-Level  
| Competition Problems 

Myth: If a student learns their grade-level math and wants to do more math, it is more 
productive to have them work on extremely challenging competition math problems at 
their current grade level than to continue learning more advanced math that they would 
normally learn in higher grade levels. 
 
Reality: When a middle or high school teacher has a bright math student, and the teacher 
directs them towards competition math, it’s usually not because that’s the best option for the 
student. Rather, it’s the best option for the teacher. It gives the student something to do while 
creating minimal additional work for the teacher. 
 
Competition math problems generally don’t require students to learn new fields of math. Rather, 
the difficulty comes from students needing to find clever tricks and insights to arrive at 
solutions using the mathematical tools that they have already learned. A student can wrestle 
with a competition problem for long periods of time, and all the teacher needs to do is give a 
hint once in a while and check the student’s work once they claim to have solved the problem. 
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But if you look at the kinds of math that most quantitative professionals (like rocket scientists 
and AI developers) use on a daily basis, those competition math tricks show up rarely, if ever. 
What does show up everywhere is university-level math subjects like linear algebra, 
multivariable calculus, differential equations, and (calculus-based) probability and statistics. 
Given that most students who enjoy math end up applying math in some other field (as opposed 
to becoming pure mathematicians), it would be more productive for them to get a broad view of 
math as early as possible so that they can sooner apply it to projects in their field(s) of interest. 
 
Of course, the countering view is that “students should go ‘deep’ with the math that they’ve 
already learned – they’ll learn the other math subjects when they’re ready.” But, in practice, the 
second part of that claim is not true. There are so many other math subjects that even most 
math majors only learn a tiny slice of all the math that’s out there. 
 
Students generally can’t learn other math subjects “on the job” after graduation, either – if 
you’re trying to solve cutting-edge problems that nobody has solved before, then there is no 
“known path” that can tell you what additional math you need. And to even realize that a field of 
math can help you solve your problem, you generally need to have learned a substantial amount 
of that field in the first place. 
 
In practice, the only way for students to “learn the other math subjects when they’re ready” is to 
learn as much math as possible during school. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Bernstein, B. O., Lubinski, D., & Benbow, C. P. (2021). Academic acceleration in gifted youth 

and fruitless concerns regarding psychological well-being: A 35-year longitudinal study. 
Journal of Educational Psychology, 113(4), 830. 
 
Importance: Concerns about long-term social/emotional effects of acceleration for high-potential students 
appear to be unwarranted, as has been demonstrated for short-term effects. Those who were accelerated had 
few regrets for doing so. Indeed, if anything, they tended to wish that they had accelerated more. 
 
 

● Wai, J. (2015). Long-term effects of educational acceleration. A nation empowered: Evidence 
trumps the excuses holding back America’s brightest students, 2, 73-83. 
 
Importance: For many decades there has been a large body of empirical work supporting educational 
acceleration for talented youths. Educational acceleration is essentially appropriate pacing and placement that 
ensures advanced students are engaged in learning for life. Adults who had been accelerated in school achieved 
greater educational and occupational success and were satisfied with their choices and the impact of those 
choices in other areas of their lives. The evidence clearly supports allowing students who desire to be 
accelerated to do so, and does not support holding them back. 
 
 

● Kulik, J. A., & Kulik, C. L. C. (1984). Effects of accelerated instruction on students. Review of 
educational research, 54(3), 409-425. 
 
Importance: Students undergoing acceleration generally learn – in a shorter time – as much as they would 
otherwise in a non-accelerated environment over a proportionally longer period of time. Specifically, talented 
students who were accelerated by one year (i.e. they learned two years’ worth of material in one year) performed 
as well as students one year older who were equivalently talented but not accelerated. 
 
 

● Park, G., Lubinski, D., & Benbow, C. P. (2013). When less is more: Effects of grade skipping 
on adult STEM productivity among mathematically precocious adolescents. Journal of 
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Educational Psychology, 105(1), 176. 
 
Importance: All other things being equal, an earlier career start from acceleration will allow an individual to 
devote more time in early adulthood to creative production, and this will result in an increased level of 
accomplishment over the course of one’s career. Mathematically precocious students who grade skipped were 
more likely to pursue advanced degrees and secure STEM accomplishments, reached these outcomes earlier, 
and accrued more citations and highly cited publications in STEM fields than their matched and retained 
intellectual peers. 
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III. COGNITIVE LEARNING STRATEGIES 
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Chapter 10. Active Learning 
 

Summary: It is a decisive finding in the literature that students learn better when they are actively 
engaged in learning exercises as opposed to passively consuming educational content. True active 
learning requires every individual student to be actively engaged on every piece of the material to 
be learned. 

 

Definition and Importance 

It is a common misconception that the fastest way to learn math is by watching videos, 
attending lectures, reading books, or re-reading notes. This is false. As hundreds of studies have 
shown, passively consuming educational content leads to significantly worse educational 
outcomes than active learning, where students are actively performing learning exercises 
(Freeman et al., 2014). 
 
In a passive learning scenario like watching a video, students may believe they are effectively 
learning if they can understand the video and follow along. However, following along and 
understanding the video's contents isn't learning, even if students claim that it is. As discussed 
in chapter 3, learning is a positive change in long-term memory. In order for students to have 
learned something, they need to be able to consistently reproduce that information and use it to 
solve problems. None of these things happen when students watch a video, even if they 
understand it perfectly. The same reasoning applies to attending lectures, reading books, 
re-reading notes, and all other passive learning techniques. 
 
The superiority of active learning is so robust across subjects and experimental methodologies 
that a highly-cited meta-analysis states, verbatim (Freeman et al., 2014): 
 

“...[C]alls to increase the number of students receiving STEM degrees could be answered, at least 
in part, by abandoning traditional lecturing in favor of active learning. 
… 
Given our results, it is reasonable to raise concerns about the continued use of traditional 
lecturing as a control in future experiments.” 

 
According to Nobel laureate Carl Wieman, lecturing is the educational equivalent of 
bloodletting (Westervelt, 2016): 

 

https://www.pnas.org/doi/10.1073/pnas.1319030111
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“You let some blood out and go away and they get well. Was it bloodletting that did it, or 
something else? … You give people lectures, and [some students] go away and learn the stuff. But it 
wasn't that they learned it from lecture – they learned it from homework, from assignments. When 
we measure how little people learn from an actual lecture, it's just really small. 
… 
The quality of teaching is not something that university administrators are rewarded for, and 
correspondingly know or care about … It's like you've got a hospital and you're not bothering to 
check if your doctors are using antibiotics or bloodletting.” 

 
Like lecturing, re-reading does not count as active learning either. As Brown, Roediger, & 
McDaniel (2014, pp.10) describe: 
 

“The finding that rereading textbooks is often labor in vain ought to send a chill up the spines of 
educators and learners, because it’s the number one study strategy of most people – including 
more than 80 percent of college students in some surveys – and is central in what we tell ourselves 
to do during the hours we dedicate to learning. 
 
Rereading has three strikes against it. It is time consuming. It doesn’t result in durable memory. 
And it often involves a kind of unwitting self-deception, as growing familiarity with the text comes 
to feel like mastery of the content. The hours immersed in rereading can seem like due diligence, 
but the amount of study time is no measure of mastery.” 

 
It’s important to realize that true active learning means every individual student is engaged in 
activity, not just the class as a whole. For instance, although a class-wide discussion might seem 
like active learning on the surface, it does not immediately follow that each student is active. 
Often, it is only a proportionally small number of enthusiastic, vocal students who participate in 
all parts of the discussion and can be considered truly active. Even if the instructor cold-calls on 
students who have not been participating, most students will only pay attention enough that 
they won’t look foolish or be embarrassed if called upon. 
 
Moreover, true active learning requires every individual student to be actively engaged on every 
piece of material to be learned. Divide-and-conquer group projects do not count as fully active 
learning because each student is only actively learning the material that corresponds to their 
individual responsibility in the division of labor. The rest of the project, they observe only 
passively, if at all. 
 
Math Academy’s approach to math education is entirely centered around true active learning – 
on every single topic in their course, students are solving problems within minutes of starting 
the lesson (following a minimum effective dose of initial explanation). They spend the vast 
majority of their time engaged in active problem-solving. 
 

 

https://www.hup.harvard.edu/books/9780674729018
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Case Studies 

| Case Study 1: Why Active Learning is Obvious 

To get a clear, concrete picture of what active learning entails and why it is so beneficial, it’s 
helpful to go through a case study in what is perhaps the most familiar setting for active 
learning: learning a new sport. 
 
Suppose that you want to learn how to play tennis. You go to your local tennis club, where there 
is a coach who used to play tennis professionally. They offer personal lessons for a pricey 
$100/hour, but you really want to learn from the best, as efficiently as possible, so you fork over 
the money for a lesson the following week. 
 
The next week, you show up for your lesson. The coach greets you and begins the hour-long 
session. It proceeds as follows: 
 

[5 minutes] Coach talks about the beauty of tennis and why it’s a great sport to learn. 
 
[5 minutes] Coach demonstrates a tennis stance and explains the specific components of the 
stance: bent knees, forward lean, racket in front of you, etc. 
 
[5 minutes] Coach demonstrates the ideal place to stand when receiving a volley: near the 
baseline, in the middle of the court, so that you’re back far enough that your opponent can’t hit 
the ball behind you, but you’re close enough to the net to launch forward towards any shorter 
volleys. 
 
[10 minutes] Coach demonstrates a forehand swing, explains how the force should come from the 
legs and the twisting of the body (rather than the arm) and emphasizes the importance of “follow 
through” on the swing. 
 
[20 minutes] Coach demonstrates a backhand swing, breaks down the components, and shares 
stories about historic moments in tennis when a player had no time to position themself for a 
forehand and therefore had to rely on their backhand to win the game. Coach demonstrates a 
one-arm backhand, an advanced move that looks particularly cool. 
 
[15 minutes] Coach demonstrates serving and shows off some lightning-fast, precisely targeted 
serves that seem impossible to return. Again, these are advanced moves that look really cool. 

 
When the session ends, the coach asks if you want to schedule another session the following 
week.  
 
What do you do? Are you a happy customer? Do you want to schedule another session? Heck no! 
The coach just waxed philosophical and showed you moves the whole time. You didn’t actually 
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learn anything. You might as well have just watched tennis on TV. You signed up for a tennis 
lesson to become a better tennis player – not to watch the coach hit the ball. You just wasted 
$100 on a complete waste of time and you want your money back. 
 
Of course, this situation is unlikely to occur in real life athletic training because coaches know 
that continued employment depends on their ability to make students learn. They are held 
accountable for improving the performance of their students. They need to get real, 
demonstrable results, and get them fast – and if they can’t, then they’re going to lose a client and 
develop a reputation as a grifter who tricks people into paying a lot of money for a service that 
just doesn’t work. 
 
In real life athletic training, a coach is going to have their students actively performing moves 
within the first couple minutes of the session. Sure, the coach might take a minute to 
demonstrate and break down a new move as the student watches, but for the next 10+ minutes 
after that, the student is going to be actively practicing that new move. The coach will observe 
the student and point out areas where they need to correct their form to be more effective – and 
as the student gets better at the new move, they will experience a real, demonstrable 
improvement in their athletic performance. Maybe they’ll be able to hit the ball faster or more 
precisely. Maybe they’ll be able to return a tricky volley that originally kept going past them at 
the beginning of the session. Whatever the improvement, it will be tangible and reproducible. 
 
It’s worth emphasizing: in a personal coaching session, when does the learning occur? It’s not 
when you pay the coach the money. It’s not when you watch the coach demonstrate a move. It’s 
when you actually start doing things that you weren’t able to do before. It’s when you attempt a 
move, the coach corrects your form, and you attempt the move again with better results. The 
learning is the incremental gain in your ability to perform a skill. If you’re not getting those 
gains, you’re not learning. 
 
The same reasoning applies if you’re getting a lesson on piano or guitar. You’re not just 
absorbing information – you’re developing skills. Mathematics, too, is skill-based. Learning how 
to solve a new type of equation is totally different from, say, learning some new history about the 
life of Napoleon. At the core, the keys to effective training in mathematics are the same as the 
keys to effective training in athletics or music. 
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| Case Study 2: Most Students Don’t Even Pay Attention During Lectures 

As he details in an interview, Peter Reinhardt, co-founder and CEO of the customer data 
platform Segment, learned the hard way that most students aren’t even paying attention during 
lecture (Y Combinator, 2018). 
 
According to Reinhardt, Segment’s original product was actually a classroom lecture tool: 
 

“The idea was to give students this button to push to say, “I’m confused.” The professor would get 
this graph over time of how confused the students were. We thought it was a really cool idea. We 
were college students at the time and we had a bunch of professors who were excited about it at 
MIT and elsewhere. … [W]e talked to like 20 other professors and they were all excited about it.” 

 
However, despite all the excitement from professors, when testing the tool in an actual 
classroom at Boston University, it was a total disaster – not because the tool didn’t work, but 
because the students weren’t even paying attention to what the professor was saying. 
 
Instead, most students were either partially or fully engrossed with scrolling through Facebook. 
The lecture was, effectively, just a charade: the students weren’t even passively learning; they 
were just sitting there doing other stuff. 
 

“It was just a total disaster. All the students opened their laptops and they all went straight to 
Facebook. 
 
The way we discovered this is we were standing in the black of the classroom and just counting 
laptop screens. We’d be looking over the shoulders of the students and going one, two, three and 
we discovered at the beginning of class, about 60% of the students were on Facebook and by the 
end about 80% were on Facebook. Oh my God. 
… 
Standing in the back of a BU classroom. It was an anthropology class. And I remember arriving at 
the 60% and the 80% and we went up and apologized to the professor and walked out.” 

 
The situation seemed so hopeless that – despite having gone through a months-long startup 
incubator program, building out a highly sophisticated product consisting of hundreds of 
thousands of lines of code, and raising over half a million dollars in investments literally a week 
before – they completely abandoned the product and called up their investors to return the 
investment money. 
 

“We went through the whole YC [Y Combinator startup incubator] with this idea. Built it out. 
Hundreds of thousands of lines of code. Super-complicated classroom lecture tool product. It had 
presentation view and people could ask questions. It was very complicated. We actually even 
raised money at Demo Day with this idea. About [$]600K. 
… 

 

https://www.ycombinator.com/blog/peter-reinhardt-on-finding-product-market-fit-at-segment/
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We had just gotten wires for these checks, for this money, literally a week before. We called back 
all the investors and we were like, ‘Well, it turns out this is a terrible idea. So what do you want us 
to do with the money?’ Almost all of them said, well, we invested for the team so go find 
something else.” 

 
As fate would have it, most of the investors were willing to retain the investment if the team 
pivoted to solving a more promising problem – so the team pivoted to building a web analytics 
tool that would help other developers avoid this kind of catastrophe by getting a better 
understanding of how users were behaving on their apps. 
 

“We realized, we should have been able to figure out some of this analysis by not just standing in 
the back of the classroom. Like, we should have been able to see some of this digitally. You 
couldn’t see it in the analytics metrics at all. We decided, hey, let’s build an analytics tool.” 

 

| Case Study 3: How Active Learning Saved MIT’s Physics Classes 

In the early 2000s, MIT solved issues with its physics courses by switching from passive to 
active learning. The problem, according to John Belcher, the MIT professor who spearheaded 
the effort, was that a staggering number of undergraduates were failing their freshman 
(first-year) physics course, a general education requirement (Dori & Belcher, 2005): 
 

“Teaching freshman courses in a large lecture hall with over 300 students … is based on the 
assumption that the instructor can ‘pour out’ knowledge from his or her vast reservoir into the 
empty glasses of the students’ minds. 
… 
If this were true, students at MIT would not fail these large required classes. The high failure rates 
in these courses at MIT, approaching 15%, and the low attendance in lectures at the end of the 
term, less than 50%, suggest that there is a basic flaw in this model of instruction.” 

 
Keep in mind that MIT is one of the most selective universities in the world, known especially 
for admitting students with extremely high mathematical capabilities and passion for 
quantitative subjects like physics. With a yearly cohort of about 1000 students, a 15% failure rate 
means that, roughly, a staggering 150 MIT students were failing those courses each year. If this 
many highly-qualified MIT admits are failing a first-year general education requirement, then 
clearly the problem lies in the delivery of the course, not the ability of the students. 
 
The problem, as Belcher and colleagues characterized it, was that the physics courses were 
centered around passive learning. The solution, then, would be to switch the courses over to 
active learning instead (Dori & Belcher, 2005). 
 

 

https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
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“The thinking required while attending a lecture is low-level comprehension of factual knowledge 
that goes from the ear to the writing hand (Towns & Grant, 1997). Johnson et al. (1998) pointed 
out that students’ attention to what the instructor was saying decreased as the lecture proceeded. 
… As Bybee and Ben-Zvi (1998) indicated, science educators have focused primarily on content 
and secondarily on instruction, leaving assessment and implementations to others or completely 
ignoring them. 
 
Until the early 1990’s, most physics instructors were largely unaware of the outcomes of research 
in physics education (Laws, Rosborough & Poodry, 1999). During the past 15 years, a number of 
physics curricula have been developed that utilize educational research outcomes. … The common 
thread in all these curricula is that they emphasize elements of active learning and conceptual 
understanding that build on making predictions, and observing and discussing the outcomes with 
peers. Hake (1998) showed that the learning gains in undergraduate physics are almost double 
when active learning is involved.” 

 
The movement of these MIT physics courses from passive lectures to active learning classrooms 
came to be known as the Technology Enhanced Active-Learning (TEAL) project, where TEAL 
classes operated as follows: 
 

“A typical [TEAL] class is comprised of mini lectures scattered throughout the class, separated by 
periods in which students are engaged in hands-on desktop experiments, visualizations, problem 
solving, and peer discussion.” 

 
Indeed, Belcher and colleagues reported astounding results, with active learning reducing the 
failure rate by nearly two-thirds: 
 

“The failure rates in the two experimental groups were less than 5% in the small- and large-scale 
experimental groups, respectively, compared with 13% in the traditional control group (Spring 
2002).” 

 
In a cohort of 1000 students, this would mean that, of the 130 students who would fail the 
passive learning class, only 50 would still fail the active learning class, and the other 70 would be 
rescued from failure and end up passing the class. 
 

| Case Study 4: If You’re Active Half the Time, That’s Still Not Enough 

In a study (Deakin & Cobley, 2003, pp.115-136) of figure skaters who had been practicing for a 
similar number of years, the proportion of active practice (relative to passive practice) was a 
defining attribute separating the elite and non-elite skaters. The elite skaters spent a greater 
proportion of their practice time actively practicing some of the trickiest, most taxing moves 
(jumps & spins), and even when resting from those taxing activities, they were more likely to 
continue actively practicing less taxing movements like footwork and arm positions. 
 

 

https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
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The authors note specific percentage breakdowns, which we have organized into a table to 
illustrate how each group of skaters would use 100 minutes of practice time. 
 

“...[T]he elite group spent an average of 14% of their total on-ice practice time on rest; the 
competitive group, 31%; and the test skaters, 46%. … The elite and competitive skaters spent 68% 
and 59% of their sessions practicing jumps whereas the test group was engaged in those activities 
for only 48% of their on-ice time. 
… 
Not only did the elite group practice jumps and spins for a higher proportion of on-ice session, but 
they also rested less and used the remaining 18% of their on-ice time to practice other elements of 
their programs, such as footwork and arm positions.” 

 

Group Active Minutes 
(= Taxing + Non-Taxing) 

Passive Minutes 
Active Minutes 

per Passive Minute 

Elite 86   (= 68 + 18) 14 6.1 

Competitive Non-Elite 69   (= 59 + 10) 31 2.2 

Non-Competitive 54   (= 48 + 06) 46 1.2 

 
In the table, we see that the elite skaters allocated their practice time far more efficiently: 
during practice, the elite skaters were over 6 times more active than passive, while 
non-competitive skaters were nearly as passive as they were active. 
 
The key takeaway is that, while some amount of active learning is certainly better than no active 
learning, the best outcomes are achieved by fully maximizing the amount of productive active 
learning. (Of course, some passive instruction will generally be needed to demonstrate to a 
learner what it is that they need to practice, but that passive instruction should be kept to a 
minimum effective dose before launching into more extensive active learning.) 
 
If we ballpark-estimate the proportion of time that a Math Academy student spends on active 
learning, we get a similar proportion as the elite skaters. On average, a typical Math Academy 
lesson might consist of 3 worked examples, each followed by about 3 practice questions (give or 
take depending on how well the student does), and the lesson followed by several explicit 
reviews (about 4 questions each, again give or take depending on performance) spaced into the 
future. So, for every 3 worked examples that a student reads, they will be actively doing about 3 × 
3 + 3 × 4 = 21 practice problems, putting the net ratio at about 7 active practice problems per 
passive worked example. 
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Neuroscience of Active Learning 

The effects of active learning can be seen quite literally in the brain: in brain imaging studies, 
active learning consistently leads to more neural activation than passive learning. 
 
For instance, in a study of students actively writing letters versus passively viewing them, the 
active writing produced higher brain activity in the sensori-motor network and beyond (Kersey 
& James, 2013): 
 

“Self-generated production of cursive letters during learning led to the recruitment of a 
sensori-motor network known to also be active during letter perception and reading, however, 
passive observation of a letter being formed did not. This finding adds to the growing literature 
suggesting that self-generated writing is important for setting up reading networks in the 
developing brain. 
… 
Further, when we directly compared active to passive learning of cursive letters, greater 
recruitment of the bilateral insula and claustrum was shown during the perception of actively 
learned letters than passively learned letters … [This would suggest that] children were better able 
to phonologically process letters that they learned by writing than those that they learned by 
observing an experimenter write … [and that] writing practice has led to more similar neural 
representation between printed letters and those letters learned by writing.” 

 
Not only does active performance produce more physical brain activity than passive viewing, as 
described above, but researchers have also found that prior active performance can lead to 
higher brain activity even during passive viewing later on, in a sense “carrying over” to make the 
passive viewing more active within the brain. 
 
Specifically, Calvo-Merino et al. (2006) demonstrated that when someone views another person 
performing an action, the viewer experiences higher activation in motor areas if they have 
frequently performed that action themself: 
 

“We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from 
their own motor repertoire, compared to opposite-gender moves that they frequently saw but did 
not perform.” 

 
The same researchers elaborated more in an earlier paper (Calvo-Merino et al., 2005): 
 

“Comparing the brain activity when dancers watched their own dance style versus the other style 
therefore reveals the influence of motor expertise on action observation. 
 
We found greater bilateral activations in premotor cortex and intraparietal sulcus, right superior 
parietal lobe and left posterior superior temporal sulcus when expert dancers viewed movements 
that they had been trained to perform compared to movements they had not. 
 

 

https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://academic.oup.com/cercor/article/15/8/1243/304707
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Our results show that this ‘mirror system’ integrates observed actions of others with an 
individual's personal motor repertoire, and suggest that the human brain understands actions by 
motor simulation.” 

 

Persistence of Misconceptions 

Why do misconceptions about active and passive learning persist, despite clear intuition and 
decisive evidence supporting active learning? Several reasons are obvious: 
 

1. Passive learning is more convenient for students and teachers alike. Teachers don’t have 
to spend time and effort implementing learning activities, and students don’t have to 
spend time and effort engaging those activities. Most teachers are happy to lecture about 
the beautiful intricacies of their field of study and believe that their students are 
learning, and most students are happy to lean back, relax, pay half attention (if that), and 
believe that they are learning. (In general, it is always tempting to believe that which is 
most convenient.) 
 

2. It’s easy to mistakenly believe that you have learned a concept well enough to reason and 
solve problems when you are not actually made to attempt those things. (For the same 
reason, many people mistakenly believe that they can outrun a bear.) 
 

3. Some teachers resist active learning methods like cold-calling out of fear that it will 
make students uncomfortable – even though research has shown that cold-calling not 
only heightens engagement but also increases voluntary participation and comfort over 
time (Dallimore, Hertenstein, & Platt, 2013). 

 
A fourth, less-obvious reason was discovered by a study (Deslauriers et al., 2019) on Harvard 
physics classes, which not only measured educational outcomes in active versus passive learning 
settings, but also measured students’ perceptions of their learning. As quoted in the study: 
 

“Compared with students in traditional lectures, students in active classes perceived that they 
learned less, while in reality they learned more. 
 
Students rated the quality of instruction in passive lectures more highly, and they expressed a 
preference to have ‘all of their physics classes taught this way,’ even though their scores on 
independent tests of learning were lower than those in actively taught classrooms. 
… 
When students experienced confusion and increased cognitive effort associated with active 
learning, they perceived this disfluency as a signal of poor learning, while in fact the opposite is 
true.” 

 

https://www.researchgate.net/profile/Elise-Dallimore/publication/258153531_Impact_of_Cold-Calling_on_Student_Voluntary_Participation/links/02e7e536a25071b4f9000000/Impact-of-Cold-Calling-on-Student-Voluntary-Participation.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
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In other words, active learning produced more learning by increasing cognitive activation, but 
students mistakenly interpreted that extra cognitive effort as an indication that they were not 
learning as well, when in fact the opposite is true. Active learning creates a desirable difficulty 
that makes class feel more challenging but improves learning. Passive learning, on the other 
hand, promotes an illusion of competence in which students (and their teachers) overestimate 
their knowledge because they are not made to exercise it. 
 
That said, it’s dubious whether students and teachers – at their core – truly believe these 
misconceptions, given that their behavior quickly changes to an active learning model of 
working through practice questions with direct and immediate feedback when they are held 
accountable for demonstrating learning, such as when preparing for a standardized test like an 
AP exam. 
 
In a similar way, one might question whether students – at their core – actually dislike active 
learning. Tharayil et al. (2018) note that students’ perceptions of active learning have not been 
consistent across studies and are often positive: 
 

“Although much of the published literature suggests that students often respond positively to 
active learning strategies (Arce 1994; Armbruster et al. 2009; Carlson and Winquist 2011; 
Hoffman 2001; Leckie 2001; Oakley et al. 2007; O’Brocta and Swigart 2013; Reddy 2000; 
Richardson and Birge 1995), there are counterbalancing studies which show mixed student 
responses (Bacon et al. 1999; Brent and Felder 2009; Goodwin et al. 1991; Hall et al. 2002; Kvam 
2000; Rangachari 1991; Wilke 2003) or negative student responses (Lake 2001; Yadav et al. 
2011).” 

 
People often do not look forward to workouts, yet they don’t mind it once they actually begin 
exercising, and then they feel proud of their efforts afterwards. If active learning is similar to 
physical activity, then students may prefer passive to active learning simply because it’s easier (a 
typical human behavior), but they may feel much more engaged during active learning (whereas 
passive learning is pretty boring for students), and they may feel better about themselves after 
doing actual work and knowing that they made real progress. 

 

 

https://en.wikipedia.org/wiki/Desirable_difficulty
https://link.springer.com/article/10.1186/s40594-018-0102-y
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance in science, 
engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 
8410-8415. 
 
Importance: Hundreds of studies have shown that passively consuming educational content leads to 
significantly worse educational outcomes than active learning, where students are actively performing learning 
exercises. 
 
 

● Dori, Y. J., & Belcher, J. (2005). How does technology-enabled active learning affect 
undergraduate students' understanding of electromagnetism concepts?. The journal of the 
learning sciences, 14(2), 243-279. 
 
Importance: In the early 2000s, MIT solved issues with its physics courses by switching from passive to active 
learning, which reduced the failure rate by nearly two-thirds. 
 
 

● Kersey, A. J., & James, K. H. (2013). Brain activation patterns resulting from learning letter 
forms through active self-production and passive observation in young children. Frontiers in 
psychology, 4, 567. 
 
Importance: Active performance produces more physical brain activity than passive viewing. 
 
 

● Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or 
doing? Influence of visual and motor familiarity in action observation. Current biology, 16(19), 
1905-1910. 
 
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action 
observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex, 

 

https://www.pnas.org/doi/10.1073/pnas.1319030111
https://www.pnas.org/doi/10.1073/pnas.1319030111
https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://academic.oup.com/cercor/article/15/8/1243/304707
https://academic.oup.com/cercor/article/15/8/1243/304707
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15(8), 1243-1249. 
 
Importance: Prior active performance can lead to higher brain activity even during passive viewing later on, in 
a sense “carrying over” to make the passive viewing more active within the brain. 
 
 

● Deakin, J. M., & Cobley, S. (2003). A search for deliberate practice. Expert performance in 
sports, 115-36. 
 
Importance: In a study of figure skaters who had been practicing for a similar number of years, the proportion 
of active practice (relative to passive practice) was a defining attribute separating the elite and non-elite 
skaters.  
 
 

● Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K., & Kestin, G. (2019). Measuring 
actual learning versus feeling of learning in response to being actively engaged in the 
classroom. Proceedings of the National Academy of Sciences, 116(39), 19251-19257. 
 
Importance: Active learning produces more learning by increasing cognitive activation, but students often 
mistakenly interpret extra cognitive effort (such as productive struggle and occasional confusion) as an 
indication that they are not learning as well, when in fact the opposite is true. 

 

 

https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
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[In Progress] Chapter 11. Direct Instruction 
 

Summary: (in progress) 
 

Active Learning Should Not Imply Unguided Learning or Group 
Work 

A common misconception about active learning is that it must be unguided – the instructor no 
longer directly communicates the information to be learned, but rather, sets up a group learning 
experience where students are expected to discover the information themselves with minimal 
guidance. However, this is not the only form, or even the optimal form, of active learning. While 
unguided learning and group work typically suffer from serious pedagogical shortcomings 
detailed in Chapter 8,  active learning is perfectly compatible with direct instruction, where all 
information to be learned is explicitly communicated and all active practice is performed with 
corrective feedback and guidance. Ideally, over the course of a learning session, students will 
complete numerous cycles rapidly alternating between minimum effective doses of guided 
instruction and active practice. 
 
Misconceptions about active learning are furthered by misinterpretations of research results: 
while there do exist studies where active learning with minimal guidance has outperformed 
passive learning with direct instruction, such experiments are often misinterpreted by the lay 
audience as providing support for minimal guidance. It’s easy to understand why such 
misinterpretations are tempting: minimal guidance is sometimes a part of the more successful 
experimental condition. However, this does not imply that minimal guidance is desirable. 
 
As discussed in Chapter 10, active learning is superior to passive learning: students who spend a 
class period actively solving problems, hands-on, learn more than students who sit and passively 
listen to a lecture without actively practicing the material. Active learning is so superior to 
passive learning that any experimental condition involving active learning will likely outperform 
any experimental condition involving passive learning, no matter what other second-order 
strategies are tacked on! One could take tired students, engage them in active learning, and 
probably get a better learning outcome than well-rested students experiencing passive learning. 
But does that mean being tired is good for learning? No! 
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Even if a study finds that active learning with minimal guidance outperforms passive learning 
with direct instruction, one cannot conclude that minimal guidance is superior to direct 
instruction. In general, if two variables are changed at once to yield a superior outcome, no 
conclusion can be reached about either of the individual variables. All that can be concluded is 
that one combination is superior to the other combination. In the case of minimal guidance 
versus direct instruction, it turns out that when both are paired with active learning, direct 
instruction outperforms minimal guidance. Here is the big picture, in terms of learning 
outcomes: 
 

Active and Direct > Active and Unguided > Passive and Direct 
 
(“Passive and Unguided” is not included above because it’s unclear whether such a combination 
is even possible to implement.) 
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Chapter 12. Deliberate Practice 
 

Summary: Deliberate practice is the most effective form of active learning. It consists of 
individualized training activities specially chosen to improve specific aspects of a student’s 
performance through repetition and successive refinement. It is mindful repetition at the edge of 
one’s ability, the opposite of mindless repetition within one’s repertoire. The amount of deliberate 
practice has been shown to be one of the most prominent underlying factors responsible for 
individual differences in performance across numerous fields, even among highly talented elite 
performers. Deliberate practice demands effort and intensity, and may be discomforting, but its 
long-term commitment compounds incremental improvements, leading to expertise. 

 

Definition and Importance 

| Deliberate vs Non-Deliberate Practice 

While active learning leads to significantly better educational outcomes than passive learning, 
not all active learning strategies are created equal. The most effective type of active learning is 
deliberate practice, which consists of individualized training activities specially chosen to 
improve specific aspects of a student’s performance through repetition and successive 
refinement. 
 
Deliberate practice is mindful repetition at the edge of one’s ability, the opposite of mindless 
repetition within one’s repertoire, and it has been shown to be one of the most prominent 
underlying factors responsible for individual differences in performance, even among highly 
talented elite performers (Ericsson, Krampe, & Tesch-Romer, 1993). K. Anders Ericsson, first 
author of that study and one of the most influential researchers in the field of human expertise 
and performance, elaborates further on what it means to engage in deliberate practice (Ericsson, 
2006): 
 

“The core assumption of deliberate practice (Ericsson, 1996, 2002, 2004; Ericsson et al., 1993) is 
that expert performance is acquired gradually and that effective improvement of performance 
requires the opportunity to find suitable training tasks that the performer can master sequentially 
– typically the design of training tasks and monitoring of the attained performance is done by a 
teacher or a coach. 
 

 

https://en.wikipedia.org/wiki/Practice_(learning_method)#Deliberate_practice
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
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Deliberate practice presents performers with tasks that are initially outside their current realm of 
reliable performance, yet can be mastered within hours of practice by concentrating on critical 
aspects and by gradually refining performance through repetitions after feedback.  
 
Hence, the requirement for concentration sets deliberate practice apart from both mindless, 
routine performance and playful engagement, as the latter two types of activities would, if 
anything, merely strengthen the current mediating cognitive mechanisms rather than modify them 
to allow increases in the level of performance.” 

 
Ericsson offers (2003, pp.72-73) a concrete and familiar example illustrating the distinction 
between deliberate and non-deliberate practice in the context of music: 
 

“As children, many people may have spent a lot of time practicing the piano with modest 
improvements, or known other people who did. When parents forced them to practice, many piano 
students would simply play the same piece repeatedly without full concentration on specific 
aspects of their performance. Under those circumstances the existing performance level becomes 
only more stable and ‘practice’ makes it permanent. The relation between current level of 
performance and the number of hours of ‘practice’ is weak for this type of beginner (Lehmann, 
1997).  
 
Successful practice requires identifying specific goals for how to change the performance. … Most 
deliberate practice by music students is solitary as they attempt to master specific assignments, 
often new pieces of music selected by their teachers to be of an appropriate difficulty level. 
Musicians will encounter difficult passages while mastering a new piece of music. To achieve 
mastery, the musician first identifies the source of the problem, often by playing the passage in a 
slow tempo. … With focused repetitions the pianist will generally reach mastery. 
 
Sometimes the pianist will still experience difficulties and work on specific exercises that 
eventually lead to desired changes. In music, there is a large body of training techniques that have 
been designed to help musicians develop control over performance and attain the desired speed 
and dexterity. The use of techniques designed to overcome weaknesses and increase control 
exemplifies the essence of deliberate practice.” 

 
Below is another example, also offered by Ericsson and colleagues, illustrating deliberate 
practice the context of athletics (Plant et al., 2005): 
 

“...[M]any people know recreational golf and tennis players whose performance has not improved 
in spite of 20–30 years of active participation. The mere act of regularly engaging in an activity 
for years and even decades does not appear to lead to improvements in performance, once an 
acceptable level of performance has been attained (Ericsson, 2002).  
 
For example, if someone misses a backhand volley during a tennis game, there may be a long time 
before the same person gets another chance at that same type of shot. When the chance finally 
comes, they are not prepared and are likely to miss a similar shot again. In contrast, a tennis 
coach can give tennis players repeated opportunities to hit backhand volleys that are progressively 
more challenging and eventually integrated into representative match play. 
 
However, unlike recreational play, such deliberate practice requires high levels of concentration 
with few outside distractions and is not typically spontaneous but carefully scheduled (Ericsson, 
1996, 2002). A tennis player who takes advantage of this instruction and then engages in 

 

https://nibmehub.com/opac-service/pdf/read/The%20Psychology%20of%20Problem%20Solving.pdf#page=86
https://www.academia.edu/download/54133889/Why_study_time_does_not_predict_grade_po20170813-2588-hxvq2s.pdf
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particular practice activities recommended by the teacher for a couple of hours in deeply focused 
manner (deliberate practice), may improve specific aspects of his or her game more than he or she 
otherwise might experience after many years of recreational play.” 

 

| Deliberate Practice is Effective, Non-Deliberate Practice is Not 

It’s important to realize that the effects of deliberate practice hold across a wide variety of 
domains, not just music and athletics. As summarized by Reeves (2014): 
 

“Since the original presentation of deliberate practice, the theory has been tested and applied to a 
number of domains. Ericsson originally speculated that deliberate practice would be of particular 
value in domains such as: chess, sports, mathematics, and sciences (Ericsson 1993). He has 
personally investigated a number of these domains and their relationship to deliberate practice. 
Domains in which he found significant evidence of deliberate practice being a predictor of elite 
level of expertise include: problem-solving, dart throwing, rhythmic gymnastics, golf, education, 
nursing, medical expertise, interpreting, and golf (Ericsson 1993, Ericsson 2000a, Ericsson 2000b, 
Ericsson 2007a, Ericsson 2007b, Ericsson 2007c, Ericsson 2008a, Ericsson 2008b). 
 
Additionally, other academicians have taken this theory and successfully applied it to other 
domains as well. Most recently, deliberate practice was found to be an effective tool for enhancing 
microsurgical skills in surgeons (El Tecle 2013) as well as hysteroscopy skills in obstetrics and 
gynecology residents (Rackow 2012). Outside of medicine, deliberate practice has been shown to 
be significant in accelerating a wide variety of other skills, including: knowledge development 
(Pachman 2013), critical thinking skills (Cahill 2012), team sports (Helson 1998), chess (Charness 
2005), and advanced writing skills (Kellogg 2009) among others.” 

 
The effectiveness of deliberate practice, and the ineffectiveness of non-deliberate practice, is so 
strong that metrics of professional experience that combine the two (such as “years of 
experience”) have been found to only weakly predict actual performance – whereas, on its own, 
the amount of purely deliberate practice is a much stronger predictor. As summarized by 
Ericsson (2008): 
 

“Traditionally, professional expertise has been judged by length of experience, reputation, and 
perceived mastery of knowledge and skill. Unfortunately, recent research demonstrates only a 
weak relationship between these indicators of expertise and actual, observed performance. In fact, 
observed performance does not necessarily correlate with greater professional experience. 
 
Expert performance can, however, be traced to active engagement in deliberate practice (DP), 
where training (often designed and arranged by their teachers and coaches) is focused on 
improving particular tasks. DP also involves the provision of immediate feedback, time for 
problem-solving and evaluation, and opportunities for repeated performance to refine behavior.” 

 
Along these lines, Lehtinen et al. (2017) emphasize that in the context of academics in particular, 
quantity of study time is not by itself a strong predictor of academic improvement – rather, the 
quality of study time is the critical determinant. 

 

https://repositories.lib.utexas.edu/server/api/core/bitstreams/c8cc4a4f-e641-462b-9a72-654e60f71485/content
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1553-2712.2008.00227.x
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
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“It is important to note that it is ‘deliberate’ practice that matters, not just any practice. For 
example, Plant, Ericsson, Hill, and Asberg (2005) found that improvement in performance in 
higher education did not significantly correlate with the amount of time spent studying. It did, 
however, relate to concentrated learning aimed at specific performance goals.” 

 
Furthermore, Debatin et al. (2023) note that high-quality deliberate practice requires complete 
individualization, an aspect that is sometimes overlooked even by academics in the field: 
 

“...[Some] authors have neglected the most important characteristic of deliberate practice: 
individualization of practice. Many of the analyzed effect sizes derived from measures that did 
not assess individualized practice and, therefore, should not have been included in meta-analyses 
of deliberate practice. 
… 
In our study of 178 chess players, we found that at a high level of individualization and quality of 
practice, the effect size of structured practice was more than three times higher than that found at 
the average level.” 

 
Intuitively, the specific aspects of performance that one student is most in need of refining will 
generally be different for another student, meaning that the most effective exercises on which to 
spend practice time will differ from student to student. 
 

Effort is Required 

| Deliberate Practice Feels Like Exercising with a Personal Trainer 

On Math Academy, students spend the entirety of their time engaged in deliberate practice by 
solving problems (and receiving feedback) on new topics and topics most in need of review. We 
intersperse active problem-solving with instruction so that students receive minimum effective 
doses of information right before they use it to actively solve problems and receive feedback. 
 
In this way, learning on Math Academy feels like exercising with a personal trainer: 
 

1. The trainer quickly demonstrates an exercise, which you observe. 
 

2. You attempt the exercise, and the trainer corrects anything that is wrong with your form.  
 

3. You continue practicing the exercise, receiving feedback from the trainer, until you are 
able to complete it comfortably with proper form. 
 

 

https://link.springer.com/article/10.1007/s12144-021-02326-x
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4. The trainer introduces you to a more challenging exercise, and you go back to step 1. 
 

 
 

Like exercise with a personal trainer, learning with Math Academy requires effort. Building 
neural connections takes work, just like building muscle. We will challenge you, but we will not 
ask you to do anything that you’re unprepared for. 
 

| Cycle of Strain and Adaptation 

As Ericsson, Krampe, & Tesch-Romer (1993) describe, deliberate practice requires intense, 
near-maximal-effort training. The goal is to push the limit of one’s performance capacity 
forward during each practice session. 
 

“Deliberate practice aimed at improving strength and endurance in sports clearly shows the 
importance of near maximal effort during practice and the resulting fatigue. Physical activity and 
exercise produce no benefit unless they are sufficiently intense … elite athletes train at much higher 
intensities to improve their performance.” 

 
This creates a continual cycle of strain and adaptation. As Ericsson (2006) elaborates: 
 

“Measurable increases in physical fitness do not simply result from wishful thinking. Instead 
people have to engage in intense aerobic exercise that pushes them well beyond the level of 
comfortable physical activity if they are to improve their aerobic fitness (Ericsson, 2003a; Ericsson 
et al., 1993; Robergs & Roberts, 1997). 
… 

 

https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
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When the human body is put under exceptional strain, a range of dormant genes in the DNA are 
expressed and extraordinary physiological processes are activated. Over time the cells of the body, 
including the brain (see Hill & Schneider, Chapter 37) will reorganize in response to the induced 
metabolic demands of the activity by, for example, increases in the number of capillaries 
supplying blood to muscles and changes in metabolism of the muscle fibers themselves. 
 
These adaptations will eventually allow the individual to execute the given level of activity 
without greatly straining the physiological systems. To gain further beneficial increases in 
adaptation, the athletes need to increase or change their weekly training activities to induce new 
and perhaps different types of strain on the key physiological systems.”  

 
Even in contexts outside of sports, these adaptations can be detected as physical changes in the 
brain: 
 

“...[A]thletic training involves pushing the associated physiological systems outside the comfort 
zone to stimulate physiological growth and adaptation (Ericsson, 2001, 2002, 2003a, 2003c, 
2003d). Furthermore, recent reviews (Gaser & Schlaug, 2003; Hill & Schneider, Chapter 37; Kolb 
& Whishaw, 1998) show that the function and structure of the brain is far more adaptable than 
previously thought possible. 
 
Especially, early and extended training has shown to change the cortical mapping of musicians 
(Elbert, Pantev, Wienbruch, Rockstoh, & Taub, 1995), the development of white matter in the 
brain (Bengtsson et al., 2005), the development of “turn out” of ballet dancers, the development of 
perfect pitch, and flexibility of fingers (Ericsson & Lehmann, 1996). 
 
In sum, elite performers search continuously for optimal training activities, with the most 
effective duration and intensity, that will appropriately strain the targeted physiological system to 
induce further adaptation without causing overuse and injury.” 

 

Discomfort is Required 

Deliberate practice requires repeatedly practicing skills that are beyond one’s repertoire. 
However, this tends to be more effortful and less enjoyable, which can mislead non-experts to 
practice within their level of comfort. 
 
For instance, this was observed as a factor differentiating intermediate and expert Gaeilic 
football players (Coughlan et al., 2014): 
 

“Expert and intermediate level Gaelic football players executed two types of kicks during an 
acquisition phase and pre-, post-, and retention tests. During acquisition, participants 
self-selected how they practiced and rated the characteristics of deliberate practice for effort and 
enjoyment. 
 
The expert group predominantly practiced the skill they were weaker at and improved its 
performance across pre-, post- and retention tests. Participants in the expert group also rated their 
practice as more effortful and less enjoyable compared to those in the intermediate group. 

 

https://pubmed.ncbi.nlm.nih.gov/24001022/
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In contrast, participants in the intermediate group predominantly practiced the skill they were 
stronger at and improved their performance from pretest to posttest but not on the retention test.” 

 
Likewise, as described by Ericsson (2006) in the context of singing: 
 

“In a recent study of singers Grape, Sandgren, Hansson, Ericsson, and Theorell (2003) revealed 
reliable differences of skill in the level of physiological and psychological indicators of 
concentration and effort during a singing lesson. 
 
Whereas the amateur singers experienced the lesson as self-actualization and an enjoyable release 
of tension, the professional singers increased their concentration and focused on improving their 
performance during the lesson.” 

 
And as Lehtinen et al. (2017) elaborate: 
 

“The ‘art of deliberate practice’ obviously includes the ability and willingness to conduct highly 
concentrated activities which might be, to some degree, aversive in nature. For example, maximal 
capacity training in running is demanding and situationally unpleasant even for world-class 
runners, but it is undeniably a necessary part of running training.  
… 
However, less experienced individuals like novices tend to focus their practice on more pleasant 
levels of effort. For example, unexperienced musicians often practice pieces (or parts of pieces) 
which they have already mastered. They try to avoid errors and failures and they do not challenge 
their own learning. It is in response to this that trainers/mentors/guides etc. are most valuable. 
… 
In the realm of mathematics education, a distinction should also be made between routine 
practice with existing skills and the types of deliberate practice that push students to develop their 
emerging skills and knowledge structures. … In geometry learning, Pachman, Sweller, and Kalyuga 
(2013) … found that more knowledgeable students even tended to choose achievable rather than 
difficult problems if they had the opportunity to choose. Training with these geometrical tasks 
resulted in minimal performance improvements. Only when a deliberate practice model was 
applied and these more knowledgeable students were presented with designer-selected difficult 
problems to solve did their skills improve.” 

 
It’s a common misconception that maximum-efficiency learning should feel maximally 
scaffolded, perfectly smooth and easy the whole way through. While this is more true than not, 
it misses an important nuance: maximum-efficiency learning should feel just-enough scaffolded 
that the learning tasks are challenging yet still achievable. 
 
This is more obvious in the context of athletics: maximum-efficiency training involves pushing 
athletes to the brink of their capabilities. At the beginning of a training session, an athlete 
undergoing maximal-efficiency training will probably not be confident in their ability to 
successfully perform the training tasks, but they will end up doing so. 
 

 

https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
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When you’re developing skills at peak efficiency, you are maximizing the difficulty of your 
training tasks subject to the constraint that you end up successfully overcoming those 
difficulties in a timely manner. A noteworthy corollary is that you are also minimizing your 
confidence in your ability to complete the training tasks (again subject to the constraint that you 
end up successfully completing them in a timely manner). 
 
In that view, confidence is more of a “hindsight” thing than an “in-the-moment” thing. If you 
feel confident while engaging in maximum-efficiency learning, it’s not because the task in front 
of you seems easy relative to your abilities, but because you’ve been in situations before where 
tasks felt challenging relative to your abilities but you’ve always managed to come out 
successful. 
 
One can also gain confidence by looking at progress over time. While the amount of progress 
over any single training session may feel small, consistent deliberate practice will lead to large 
performance gains over longer periods of time. When a student looks at training activities from 
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months ago (e.g., math problems that felt hard at the time), and these activities now feel much 
easier than the student remembered, this can provide a large confidence boost. 
 

Long-Term Compounding 

| Expertise is the Product of Incremental Improvements Over Time 

Lehtinen et al. (2017) are careful to note that a single round of deliberate practice will not result 
in instant expertise – rather, it is the compounding of these incremental improvements over a 
longer period of time that lead someone to become an expert: 
 

“The formation of expert-like practice activities is not a single event, but a long process in itself. 
The acquisition of high level competence in complex domains such as mathematics is a laborious 
process that needs deliberate practice during a number of years.” 

 
Anderson, Reder, & Simon (1998) elaborate further: 
 

“...[U]nderstanding of a domain does not come in one fell swoop of insight but is built up bit by bit 
over time. 
 
For example, to say that a student has understood a concept such as fractions means that the 
student can use that knowledge flexibly in many situations. Thus, the student can figure out how 
much pizza each of three children will get if they have to share half a pizza; the student will 
recognize that, when thirty-five people must be transported by busses that each hold twenty 
people, two buses are required, not one-and-three-quarters; the student can explain why one 
inverts a fraction to divide by it; and so on. A child does not suddenly acquire the ability to do all 
of this. 
 
The belief in moments of transformation in education is undoubtedly linked to the old belief in 
developmental psychology that children transit abruptly between stages. … Instead, as R. S. Siegler 
documents with great care, development is always gradual and continuous. The same is true of 
education.” 

 
Consequently, as Ericsson, Krampe, & Tesch-Romer (1993) emphasize, long-term motivation and 
commitment are essential: 
 

“...[D]eliberate practice requires effort and is not inherently enjoyable. Individuals are motivated 
to practice because practice improves performance. … Thus, an understanding of the long-term 
consequences of deliberate practice is important.” 

 

 

https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
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| Motivational Supplements are Not Substitutes for Deliberate Practice 

To this end, classroom activities that are enjoyable, collaborative, and non-repetitive (such as 
group discussions and freeform/unstructured project-based or discovery learning) can 
sometimes be useful for increasing student motivation and softening the discomfort associated 
with deliberate practice. 
 
However, it’s important to realize that these activities are only supplements, not substitutes, for 
deliberate practice. Unlike deliberate practice, they do not directly move the needle on student 
performance – rather, they “grease the wheels” and reduce psychological friction during the 
process of deliberate practice. Performance improvements come directly from deliberate 
practice, but occasional motivational activities can inspire students to continue engaging in 
deliberate practice over the long term even when it feels difficult and uncomfortable. 
 
Again, this is perhaps most obvious in the contexts of music and athletics: 
 

● Musicians often enjoy fiddling around on their instruments and jamming with friends in 
a freestyle, creative way. These are fun activities that can enhance motivation and 
sometimes produce creative ideas that can be integrated into their defining style as 
artists. But elite musicians know that an even more central component of their practice 
routine is consistently pushing themselves beyond their repertoire, using intensely 
focused effort to gain new skills and improve specific areas of weakness through 
repetition and successive refinement. 
 

● Athletes often enjoy the camaraderie of team bonding activities, which might include 
“trick shot” competitions, group discussions about team goals and individual 
expectations, and exchanging stories and perspectives over team dinners. Again, these 
are fun activities that can help teammates fuel their passion for the game and feel 
connected to one another. However, elite athletes know that at the end of the day, their 
performance on the field comes from routinely pushing their physiological and mental 
limits every day during practice, where they focus intensely on gaining new skills and 
improving specific areas of weakness through repetition and successive refinement. 

 
As is said about famous basketball player Kobe Bryant (Cacciola, 2020): 
 

“At the team’s pre-Olympic training camp the following summer, Bryant was the first player to 
arrive. In fact, he beat most members of the coaching staff – and was getting in workouts at 5:30 
a.m. … The foundation for all of Bryant’s feats – the 81-point game, the scoring titles, the 
series-clinching jump shots, the three championships he had already won with the Lakers – was 

 

https://en.wikipedia.org/wiki/Project-based_learning
https://en.wikipedia.org/wiki/Discovery_learning
https://www.nytimes.com/2020/05/26/sports/basketball/kobe-bryant-olympic-dream-team.html
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his work ethic and desire. The spectacular was rooted in the mundane, in the monotony of hard 
labor.” 

 
The overall takeaway from this chapter is that by engaging in deliberate practice on Math 
Academy, you will gain the ability to reason coherently and solve problems in levels of math that 
you were previously unable to comprehend. But as any personal trainer will tell you: if you want 
to achieve your goals, you have to put in the work. Excellence is the product of effective training 
over a long period of time, and effective training requires intense effort focused in areas beyond 
your repertoire. 
 

Misinterpretations of Deliberate Practice 

Because “deliberate practice” has effectively become synonymous with “maximally effective 
practice,” people will sometimes refer to a form of practice as “deliberate practice” simply 
because they personally believe it to be maximally effective. Consequently, whenever a form of 
practice is claimed to be “deliberate practice,” the claim should not be taken at face value. After 
thorough investigation, it is not uncommon to find that someone is cutting corners on one of 
the two requirements of deliberate practice – “mindful” and “repetition” – and then resisting 
objective, quantifiable measurement of their performance that would expose the ineffectiveness 
of their practice. This is not always intentional – it may be an honest mistake – but regardless, it 
is something to watch out for. 
 
To emphasize: 
 

● Deliberate practice is not mindless repetition. If you’re doing the same thing over and 
over again, then you’re doing deliberate practice wrong. Deliberate practice is about 
making performance-improving adjustments on every single repetition. Any individual 
adjustment is small and yields a small improvement in performance, but when you 
compound these small changes over a massive number of cycles, you end up with 
massive changes and massive gains in performance. None of this happens if you’re 
mindlessly doing the same thing over and over again without making adjustments. 

 
● Likewise, even if you’re mindful during practice, you can’t skimp on repetition and still 

call it “deliberate practice.” Deliberate practice necessitates a high volume of 
action-feedback-adjustment cycles in every single training session. Otherwise, the 
compounding doesn’t happen. Any activity that throttles the number of these cycles 
cannot be described as deliberate practice. 
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Many heated debates in math education stem from these misinterpretations of deliberate 
practice. 
 

● Mindless repetition, doing the same thing over and over again without making 
performance-improving adjustments, is not deliberate practice. 

 
● Likewise, any activity that throttles the volume of action-feedback-adjustment cycles is 

not deliberate practice (e.g., excessively challenging problems or think-pair-share). 
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https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1553-2712.2008.00227.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1553-2712.2008.00227.x
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
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For instance, in geometry learning, Pachman, Sweller, and Kalyuga (2013) found that more knowledgeable 
students even tended to choose achievable rather than difficult problems if they had the opportunity to choose. 
Training with these geometrical tasks resulted in minimal performance improvements. Only when a deliberate 
practice model was applied and these more knowledgeable students were presented with designer-selected 
difficult problems to solve did their skills improve. 
 
Likewise, Plant, Ericsson, Hill, and Asberg (2005) found that improvement in performance in higher education 
did not significantly correlate with the amount of time spent studying. It did, however, relate to concentrated 
learning aimed at specific performance goals. 
 
The formation of expert-like practice activities is not a single event, but a long process in itself. The acquisition 
of high level competence in complex domains such as mathematics is a laborious process that needs deliberate 
practice during a number of years. 
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Additional Resources 

 
● Parrish, S. The Ultimate Deliberate Practice Guide: How to Be the Best. FS.blog. 

 
● Clear, J. The Beginner’s Guide to Deliberate Practice. JamesClear.com. 

 
● Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard 

business review, 85(7/8), 114. 
 

 

https://fs.blog/deliberate-practice-guide/
https://jamesclear.com/beginners-guide-deliberate-practice
https://hbr.org/2007/07/the-making-of-an-expert
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Chapter 13. Mastery Learning 
 

Summary: By organizing its curriculum into a knowledge graph that keeps track of prerequisite 
relationships between topics, Math Academy is able to implement mastery learning, a strategy in 
which students demonstrate proficiency on prerequisites before advancing. While even loose 
approximations of mastery learning have been shown to produce massive gains in student 
learning, mastery learning faces limited adoption due to clashing with traditional teaching 
methods and placing increased demands on educators. Math Academy implements true mastery 
learning at a fully granular level, which requires fully individualized instruction and is only 
attainable through one-on-one tutoring. 

 

Mastery Learning is Underused 

One of our main paradigms is mastery learning, also proposed by Bloom (1968), in which 
students must demonstrate proficiency on prerequisite topics before moving on to more 
advanced topics. True mastery learning at a fully granular level requires fully individualized 
instruction, which is only attainable through one-on-one tutoring. 
 
There are methods by which a single teacher can loosely approximate mastery learning, such as 
Bloom’s Learning For Mastery (LFM) strategy and Keller’s Personalized System of Instruction 
(PSI). As Kulik, Kulik, & Bangert-Drowns (1990) summarize: 
 

“In both LFM and PSI courses, material to be learned is divided into short units, and students 
take formative tests on each unit of material (Bloom, 1968; Keller, 1968). … Lessons in LFM 
courses are teacher presented, and students move through these courses at a uniform, 
teacher-controlled pace. Lessons in PSI courses are presented largely through written materials, 
and students move through these lessons at their own rates.” 

 
However, as Bloom (1984) discovered when characterizing the two-sigma problem, a single 
teacher practicing mastery learning with 30 students could only produce a one-sigma effect size 
as compared to the two-sigma effect size of individual tutoring. And while numerous studies 
reproduced the finding that even loose approximations of mastery learning (managed manually 
by a single teacher) produce substantial learning gains, most studies were unable to reproduce 
gains as strong as one sigma (the average effect size was about 0.5 standard deviations) (Kulik, 
Kulik, & Bangert-Drowns, 1990): 
 

 

https://en.wikipedia.org/wiki/Mastery_learning
https://files.eric.ed.gov/fulltext/ED053419.pdf
https://en.wikipedia.org/wiki/Mastery_learning#LFM_strategy
https://en.wikipedia.org/wiki/Keller_Plan
https://en.wikipedia.org/wiki/Keller_Plan
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
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“The data show that mastery learning programs have positive effects on student achievement. On 
the average, such programs raise final examination scores by about 0.5 standard deviations, or 
from the 50th to the 70th percentile, in colleges, high schools, and the upper grades of elementary 
schools. Although PSI and LFM strategies differ on several points and the two teaching methods 
have been studied in distinct ways, studies of PSI and LFM report similar results. PSI raised 
examination scores by an average of 0.48 standard deviations; LFM raised examination scores by 
an average of 0.59 standard deviations.” 

 
Unfortunately, despite producing well-documented learning gains in classrooms, even loose 
approximations of mastery learning were not widely adopted as they faced opposition for 
deviating from traditional convention and requiring more effort from teachers and 
administrators (Sherman, 1992). (It's true that a minority of teachers now attempt some degree of 
differentiated instruction, but this is not the same as true mastery learning, which holds all 
students to the same standard and is completely individualized.) 
 
As lamented by John Gilmour Sherman (1992), who was a co-creator, researcher, and practitioner 
of Keller’s Personalized System of Instruction (PSI): 
 

“Some PSI courses have been prohibited in spite of their success. I know of several colleagues who 
were given ‘cease and desist’ orders. Some are names prominent in the literature, their courses 
effective, according to objective data. 
 
I experienced this also. Avoiding a frontal attack, the chairman of the Psychology Department at 
Georgetown declared by fiat that something on the order of 50% of class time must be devoted to 
lecturing. By reducing the possibility of self-pacing to zero, this effectively eliminated PSI courses. 
 
He issued this order on the grounds that in the context of lecturing ‘it is the dash of intellects in 
the classroom that informs the student.’ No data were presented on this point! The spectacle of 
purporting to defend scholarship while deciding the merits of instructional methods by assertion is 
silly. 
 
The troubling aspect of all these cases was that data played no part in the decisions. It is 
disturbing when one has to wonder whether research on the education process makes any 
difference.” 

 
As Buskist, Cush, & DeGrandpre (1991) elaborate, mastery learning methods like PSI were shot 
down because they threatened the traditional educational establishment: 
 

“The first and most important task of any institution is self-preservation. Once in place, its 
primary goal must be to hold its ground or, if possible, advance. If this goal is not met, then its 
demise is eminent. PSI poses certain implications that threaten the preservation of the 
educational establishment and its guardians (department heads, deans, and academic 
vice-presidents). According to Keller, 
 
‘Suppose that a system such as PSI were to be given official approval for adoption throughout the 
educational scale from top to bottom... With every student given individual treatment, when 
would formal education start?... What would happen to the classroom hour, the college quarter, 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://en.wikipedia.org/wiki/Differentiated_instruction
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://link.springer.com/article/10.1007/BF00957005
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the semester, or the academic year?... Who would win the scholarships and prizes? Who would 
make Phi Beta Kappa? Who would be the class valedictorian?... What changes would be made in 
the payment of tuition when the period of course attendance varied? How would a course of study 
be defined?’ 
 
In other words, the major impediment to educational reform is the educational system itself. That 
is perhaps why all major efforts at educational reform in this century have been directed at 
renovating curricula and not at changing how teachers teach (see, e.g., Skinner, 1984; McGovern, 
1990). 
 
Revamping curricula requires no revamping of the educational establishment. The curriculum 
changes, but that is all. Courses are still taught by lecture within a term's time. Grade distributions 
still approximate the normal curve and students enroll in upper division courses without first 
mastering more fundamental material. Students still take about four years, give or take a term, to 
finish what higher education demands of them. 
 
The Keller Plan runs contrary to this strategy. It is a bold attempt to change how we teach, despite 
what we teach. In an entirely PSI-based college, students might finish in two years, maybe sooner, 
and learn a good deal more. Imagine what would happen if the entire educational system were 
PSI-based: huge numbers of people, most still in the throes of puberty, might be graduating from 
college-an unsettling thought for many educators. Indeed, PSI represents a threat to the 
educational system and its guardians. 
 
PSI simply does not fit well into our modern educational system. The longstanding tradition of 
teaching by lecture has accumulated inertia that has proven difficult to dislodge. In the interests 
of self-preservation, the educational establishment has backed reforms favoring what teachers 
teach instead of how teachers teach.” 

 

Implementing Mastery Learning 

The traditional convention is to march students through a linear sequence of topics according to 
a predetermined schedule (like that shown below). Any students who get lost are continually 
asked to learn new topics despite not having mastered the prerequisites. As a result, those 
students spend class time learning little to nothing and developing a general distaste for math. 
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Math Academy, however, implements true mastery learning at a fully granular level. We 
accomplish this by organizing topics into a knowledge graph that shows all the topics and 
prerequisite relationships between them. In the knowledge graph below, arrows point from 
simpler prerequisite topics to more advanced “post”-requisite topics. 
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By overlaying a student’s progress on the knowledge graph, we can identify the topics that they 
are ready to learn – that is, the topics for which they have demonstrated a sufficient level of 
proficiency on the prerequisites. We only serve students lessons on these topics. If a student gets 
stuck on a topic, they can try again another day, but in the meantime, they are allowed to learn 
other topics that don’t depend on the problematic one. 
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It is infeasible for a single teacher, who can only teach one topic at a time, to manually support 
true mastery learning across a class full of students who all have different learning profiles. As 
researchers have discovered, knowledge profiles vary immensely even across students in the 
same grade (Pedersen, et al., 2023): 
 

“our results suggest that nearly 38% and 49% of students in grade four and eight classrooms may 
either struggle to understand ‘grade-level’ content or have already mastered the content, 
respectively.” 

 
However, Math Academy’s fully-automated interactive lessons support de-synchronized 
learning where different students are simultaneously taught different topics. With a software 
system that emulates the decisions of an expert tutor, we are able to provide fully individualized 
instruction at scale and achieve true mastery learning at a fully granular level. 
 

Knowledge Frontier as Zone of Proximal Development 

Mastery learning is closely related to Vygotsky’s Zone of Proximal Development, which refers 
to the range of tasks that a student is able to perform while supported, but cannot do on their 
own. Students maximize their learning when they are completing tasks within this range. 
 
In the context of an adaptive learning system, a student’s zone of proximal development 
coincides with their knowledge frontier or edge of mastery, the set of new topics for which 
they have mastered the prerequisites. Selecting new learning tasks from a student’s knowledge 
frontier can lead to drastic improvements in learning. 
 
For instance, another learning platform has reported (Zou et al., 2019) that even when a teacher 
has access to student performance data chooses a new topic that they believe is appropriate for 
the class, a student is about 3-4x as likely to be successful in mastering that topic if it lies along 
their knowledge frontier (as opposed to residing beyond their frontier). This led the authors to 
conclude that 
 

“...[S]imply providing teachers with data is not always sufficient for good instructional decision 
making. … Optimizing learning outcomes requires correct teaching decisions that lead students on 
the right path, based on the student’s ZPD [Zone of Proximal Development].” 

 
A student’s knowledge frontier can be visualized as the edge of their knowledge profile, which, 
loosely speaking, represents how “developed” their mathematical brain is. Every time they learn 

 

https://osf.io/3r6a5/download
https://en.wikipedia.org/wiki/Zone_of_proximal_development
https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
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a new math topic, it’s as if they grow a new brain cell and connect it to existing brain cells. 
Initially, this new brain cell is weak and requires frequent nurturing, but over time it becomes 
strong and requires less frequent care. 
 
For instance, a knowledge profile for a second-semester calculus student is visualized below. 
Learned topics are shaded (with darker shading indicating that more successful practice has 
been completed), and arrows between topics represent prerequisite relationships. 
 

 
 
(Note that this visualization only shows a “subsystem” within the student’s full mathematical 
brain – there are several hundred topics in the calculus course, but there are thousands of topics 
in Math Academy’s entire mathematical curriculum, which spans elementary school through 
university-level math.) 
 
The knowledge frontier is the edge of the knowledge profile. It separates what the student 
knows from what they don’t know. 
 

● The student knows all the simpler topics below their knowledge frontier. That is, they 
know all the prerequisites, the prerequisites of the prerequisites, and so on. 
 

● However, they do not know any of the advanced topics at or above their knowledge 
frontier. 
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When a student first starts on the Math Academy system, we begin with a placement 
diagnostic, a dynamic assessment that quickly estimates their knowledge frontier. Following 
the diagnostic, whenever a student is served new lessons, those lessons always cover topics that 
are on the student’s estimated knowledge frontier, and the estimated knowledge frontier quickly 
becomes more accurate as the student completes those lessons. 

 

 

https://en.wikipedia.org/wiki/Dynamic_assessment
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as 

effective as one-to-one tutoring. Educational researcher, 13(6), 4-16. 
 
Importance: The average tutored student performed better than 98% of the students in a traditional class, an 
effect size of two sigmas (standard deviations). However, a single teacher practicing mastery learning with 30 
students could only produce a one-sigma effect size as compared to the two-sigma effect size of individual 
tutoring. 
 
 

● Kulik, C. L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning 
programs: A meta-analysis. Review of educational research, 60(2), 265-299. 
 
Importance: Numerous studies reproduced the finding that even loose approximations of mastery learning 
(managed manually by a single teacher) produce substantial learning gains, though generally not as high as one 
sigma (the average effect size was about 0.5 standard deviations). 
 
 

● Sherman, J. G. (1992). Reflections on PSI: Good news and bad. Journal of Applied Behavior 
Analysis, 25(1), 59. 
 
Buskist, W., Cush, D., & DeGrandpre, R. J. (1991). The life and times of PSI. Journal of 
Behavioral Education, 1, 215-234. 
 
Importance: Despite producing well-documented learning gains in classrooms, Keller’s Personalized System of 
Instruction (a method by which a single teacher can loosely approximate mastery learning) was not widely 
adopted as it faced opposition for deviating from traditional convention and requiring more effort from 
teachers and administrators. 
 
 

● Pedersen, B., Makel, M. C., Rambo-Hernandez, K. E., Peters, S. J., & Plucker, J. (2023). Most 
mathematics classrooms contain wide-ranging achievement levels. Gifted Child Quarterly, 

 

https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://link.springer.com/article/10.1007/BF00957005
https://osf.io/3r6a5/download
https://osf.io/3r6a5/download
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67(3), 220-234. 
 
Importance: Knowledge profiles vary immensely even across students in the same grade: nearly 38% and 49% 
of students in grade four and eight classrooms may either struggle to understand “grade-level” content or have 
already mastered the content, respectively. 
 
 

● Zou, X., Ma, W., Ma, Z., & Baker, R. S. (2019). Towards helping teachers select optimal 
content for students. In Artificial Intelligence in Education: 20th International Conference, AIED 
2019, Chicago, IL, USA, June 25-29, 2019, Proceedings, Part II 20 (pp. 413-417). Springer 
International Publishing. 
 
Importance: Another learning platform has reported that even when a teacher has access to student 
performance data and chooses a new topic that they believe is appropriate for the class, a student is about 3-4x 
as likely to be successful in mastering that topic if it lies along their knowledge frontier (as opposed to residing 
beyond the frontier). 

 
 

 

https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
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Chapter 14. Minimizing Cognitive Load 
 

Summary: When the cognitive load of a learning task exceeds a student’s working memory 
capacity, the student experiences cognitive overload and is not able to complete the task. Math 
Academy avoids cognitive overload by finely scaffolding content with numerous small steps: each 
lesson is broken up into several “knowledge points” of increasing difficulty, each containing a 
worked example and requiring the student to demonstrate mastery on practice problems before 
proceeding to the next knowledge point. Our content is about 10x more finely scaffolded than 
what you’d find elsewhere. This makes learning accessible to all students regardless of their 
working memory capacity. Scaffolding is gradually removed as students progress, ensuring 
sustained learning without dependence on supports. 

 

The Learning Staircase 

Learning is like climbing a staircase. Each step is a learning task – the higher the step, the more 
advanced the topic is. At the top of the staircase is higher-order thinking such as critical 
thinking and problem solving. However, different students have different stair-climbing 
abilities, and many students never make it to the top because they get stuck at individual stairs 
that are too tall for them to climb. 
 
Math Academy’s solution is to split individual stairs into even smaller stairs so that all students 
can climb them. The smaller we make the individual stairs, the more students can climb all the 
way to the top. 
 
For instance, a typical calculus textbook might consist of 100 steps (10 chapters × 10 sections in 
each chapter). But in our calculus course, we have about 1000 steps (~300 topics × 3-4 knowledge 
points or stages of increasing difficulty per topic). In other words, our content is about 10x more 
finely scaffolded than what you’d find elsewhere. 
 
In technical terms, we are minimizing cognitive load. Cognitive load refers to the amount of 
working memory that is required to complete a task. Working memory consists of 
limited-capacity, limited-duration short-term memory storage along with capabilities for 
organizing, manipulating, and generally “working” with the information stored in short-term 
memory. 

 

https://en.wikipedia.org/wiki/Higher-order_thinking
https://en.wikipedia.org/wiki/Instructional_scaffolding
https://en.wikipedia.org/wiki/Cognitive_load
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Short-term_memory
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In the staircase analogy, the height of each step represents cognitive load. Different students 
have different working memory capacities, and if the cognitive load of a learning task exceeds a 
student’s working memory capacity, then the student will not be able to complete the task due to 
cognitive overload.  
 
Cognitive overload has massive negative ramifications for students: not only has working 
memory capacity been shown to predict performance in mathematical problem solving 
(Swanson & Beebe-Frankenberger, 2004), but perhaps shockingly, it has also been shown to be a 
better predictor than IQ when predicting a young student’s future academic success (Alloway & 
Alloway, 2010). By minimizing the cognitive load and avoiding cognitive overload, we make 
learning accessible to many students for whom it would otherwise be insurmountable. 
 

 
 
Math Academy maintains this high level of scaffolding even when teaching higher-order 
thinking. In our multi-part problems, students explore challenging, complex problem contexts 
one part at a time, and each part leverages an individual skill that they have previously learned 
in an earlier topic. This way, we fully “split up the staircase” as students climb from practicing 
individual skills in isolation to combining skills in novel higher-order problem contexts. 

 

https://www.researchgate.net/publication/232435921_The_Relationship_Between_Working_Memory_and_Mathematical_Problem_Solving_in_Children_at_Risk_and_Not_at_Risk_for_Serious_Math_Difficulties
https://www.researchgate.net/profile/Tracy-Alloway/publication/223032127_Investigating_the_predictive_roles_of_working_memory_and_IQ_in_academic_attainment/links/59e0eb300f7e9b97fbdf4e08/Investigating-the-predictive-roles-of-working-memory-and-IQ-in-academic-attainment.pdf


The Math Academy Way – Working Draft  |  215 

 

Micro-Scaffolding 

Even within individual knowledge points, we take additional measures to minimize cognitive 
load. Each knowledge point starts with a demonstration or worked example, which has been 
shown by numerous studies (see Sweller, 2006 for a review) to reduce cognitive load and help 
students develop a baseline mental framework or schema when their level of understanding is 
initially low. 
 
After the worked example, students solve problems that are similar to the worked example, only 
progressing onto the next knowledge point once they have demonstrated mastery of the 
previous one. This way, we avoid asking students to solve problems that overload their working 
memory capacity. 
 

 
 
In the explanations of worked examples and practice questions, we leverage subgoal labeling by 
grouping steps into meaningful units. This minimizes the number of chunks of information that 
students need to store in their working memory, thereby reducing cognitive load. Additionally, 
subgoal labeling has been shown to help students grasp the structure of the problem, thereby 
enabling the learning to transfer to novel problems in the same category (Catrambone, 1995). 

 

https://en.wikipedia.org/wiki/Worked-example_effect
https://www.researchgate.net/publication/248498261_The_worked_example_effect_and_human_cognition
https://en.wikipedia.org/wiki/Schema_(psychology)
https://en.wikipedia.org/wiki/Subgoal_labeling
https://sites.gatech.edu/richardcatrambone/files/2020/09/Catrambone1995.pdf
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We also leverage dual-coding theory by including visualizations and diagrams when possible to 
help students develop mental images. In addition to helping students make connections that 
they can use to recall information and consolidate information into chunks, this also helps 
students avoid cognitive overload by distributing cognitive load more evenly between two 
subsystems within the working memory system: the phonological loop, which stores verbal 
information, and the visuo-spatial sketchpad, which stores visual imagery (Baddeley, 1983). 
 
It’s worth noting that unlike most other educational programs, Math Academy makes heavy use 
of visualizations and diagrams throughout the entire math curriculum – not just in elementary 
mathematics, but all the way through university-level subjects. 
 
For instance, just as we use flowcharts to help students classify shapes in elementary 
mathematics, we also use flowcharts to help students classify series in Calculus: 
 

 
 
The visualization doesn’t stop at Calculus. It continues all the way through more advanced 
university-level courses like Multivariable Calculus – even Abstract Algebra, an upper-level 
math-major course about the “structure” of abstract mathematical objects, whose textbooks and 
lectures are usually associated with dense, dry, image-less strings of symbols. 

 

 

https://en.wikipedia.org/wiki/Dual-coding_theory
https://en.wikipedia.org/wiki/Mathematical_visualization
https://en.wikipedia.org/wiki/Mathematical_diagram
https://en.wikipedia.org/wiki/Mental_image
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://en.wikipedia.org/wiki/Baddeley%27s_model_of_working_memory
https://tecfaetu.unige.ch/perso/maltt/carlei0/Fichiers/Baddeley1983.pdf
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Sample Images – Multivariable Calculus 
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Sample Images – Abstract Algebra 
 

 
 

The Expertise Reversal Effect 

While it’s important to use scaffolding to minimize cognitive load when students are learning 
new material, it’s also important to gradually strip away the scaffolding as they become 
comfortable with that material so that the scaffolding does not become a crutch. This 
phenomenon is known as the expertise reversal effect: the instructional techniques that 
promote the most learning in beginners, promote the least learning in experts, and vice versa. 
 
On Math Academy, after a student completes an initial lesson on a topic, we gradually strip 
away scaffolding during later reviews. While we scaffold lessons by having students solve 
questions that are similar to worked examples (one worked example at a time), we mix up review 

 

https://en.wikipedia.org/wiki/Expertise_reversal_effect
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problems so that it is not obvious which worked example is the best reference. This encourages 
students to solve review problems without referring to the worked examples – and while they 
can go back to the lesson and dig up a similar example for reference if they get really stuck on a 
review problem, even students who do this must reason about the structure of their problem to 
match it to helpful reference material. 
 
We also continually quiz our students on the material that they have learned – and during 
quizzes, no scaffolding is provided. Quizzes are quick and frequent, but each quiz covers a wide 
variety of previously learned material. Additionally, quizzes are timed, and students are unable 
to refer back to lessons for reference. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working 

memory and mathematical problem solving in children at risk and not at risk for serious 
math difficulties. Journal of educational psychology, 96(3), 471. 
 
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory 
and IQ in academic attainment. Journal of experimental child psychology, 106(1), 20-29. 
 
Importance: Cognitive overload has massive negative ramifications for students: not only has working memory 
capacity been shown to predict performance in mathematical problem solving, but perhaps shockingly, it has 
also been shown to be a better predictor than IQ when predicting a young student’s future academic success. 
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https://www.researchgate.net/profile/Tracy-Alloway/publication/223032127_Investigating_the_predictive_roles_of_working_memory_and_IQ_in_academic_attainment/links/59e0eb300f7e9b97fbdf4e08/Investigating-the-predictive-roles-of-working-memory-and-IQ-in-academic-attainment.pdf
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Chapter 15. Developing Automaticity 
 

Summary: Automaticity is the ability to perform low-level skills without conscious effort. 
Analogous to a basketball player effortlessly dribbling while strategizing, automaticity allows 
individuals to avoid spending limited cognitive resources on low-level tasks and instead devote 
those cognitive resources to higher-order reasoning. In this way, automaticity is the gateway to 
expertise, creativity, and general academic success. However, insufficient automaticity, 
particularly in basic skills, inflates the cognitive load of tasks, making it exceedingly difficult for 
students to learn and perform. 

 

Importance of Automaticity 

| Automaticity Frees Up Working Memory 

An essential yet often-overlooked part of minimizing cognitive load is developing automaticity 
on basic skills – that is, the ability to execute low-level skills without having to devote conscious 
effort towards them. Automaticity is necessary because it frees up limited working memory to 
execute multiple lower-level skills in parallel and perform higher-level reasoning about the 
lower-level skills. 
 
As a familiar example, think about all the skills that a basketball player has to execute in 
parallel: they have to run around, dribble the basketball, and think about strategic plays, all at 
the same time. If they had to consciously think about the mechanics of running and dribbling, 
they would not be able to do both at the same time, and they would not have enough brainspace 
to think about strategy. 
 
This extends to academics as well. As described by Hattie & Yates (2013, pp.53-58): 
 

“You cannot comprehend a ‘big picture’ if your mind’s energies are hijacked by low-level 
processing. Continuity is broken. The goal shifts from understanding the total context to 
understanding the immediate word before you. … If you read connected text (such as sentences) at 
any pace under 60 wpm, then understanding what you read becomes almost impossible. 
… 
Many [students] arrive at school with a lack of automaticity within their basic sound-symbol 
functioning. With a minimal level of phonics training, they may be able to fully identify letters, 
verbalise sound symbol relationships, and read isolated words through sheer effort. But, if the pace 

 

https://en.wikipedia.org/wiki/Automaticity
https://www.taylorfrancis.com/books/mono/10.4324/9781315885025/visible-learning-science-learn-john-hattie-gregory-yates
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of processing is not brought up to speed, through intensive self-directed practice, reading for 
understanding will remain beyond grasp. 
… 
A well-replicated finding is that students who present with difficulties in mathematics by the end 
of the junior primary years show deficits in their ability to access number facts with automaticity. 
Such deficits stymie further development in this area, often with additional adverse consequences 
such as students experiencing lack of confidence, lack of enjoyment, and feelings of helplessness.” 

 

| Working Memory is Limited, but Long-Term Memory is Not 

Unfortunately, working memory has such limited capacity that most people can only hold a 
handful of pieces of new information simultaneously in their heads (spanning about 7 digits, or 
more generally 4 chunks of coherently grouped items), and only for about 20 seconds as the 
memory degrades from decay or interference (Miller, 1956; Cowan, 2001; Brown, 1958; Ricker, 
Vergauwe, & Cowan, 2016). And that assumes they aren’t needing to perform any mental 
manipulation of those items – if they do, then fewer items can be held due to competition for 
limited processing resources (Wright, 1981). This severe limitation of the working memory when 
processing novel information is known as the narrow limits of change principle (Sweller, 
Ayres, & Kalyuga, 2011). 
 
An intuitive analogy by which to understand the limits of working memory is to think about 
how your hands place a constraint on your ability to hold and manipulate physical objects. You 
can probably hold your phone, wallet, keys, pencil, notebook, and water bottle all at the same 
time – but you can’t hold much more than that, and if you want to perform any activities like 
sending a text, writing in your notebook, or uncapping your water bottle, you probably need to 
put down several items. 
 
In the same way, your working memory only has about 7 slots for new information, and once 
those slots are filled, if you want to hold more information or manipulate the information that 
you are already holding, you have to clear out some slots to make room. 
 
(Note that while this “slots” analogy describes the function of working memory capacity, the 
underlying mechanism is more nuanced: the actual limitation is not a fixed number of neural 
storage units, but rather the ability to sustain relevant neural activity while suppressing 
interference from irrelevant neural activity. At a biological level, hitting a working memory 
capacity limit does not entail exhausting one’s ability to maintain more neural activity in the 
energy sense, but rather exhausting one’s ability to maintain focus and attention, that is, 
appropriate concentration or allocation of one’s neural activity.) 
 

 

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/Memory_span
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://journals.sagepub.com/doi/abs/10.1080/17470215808416249?journalCode=qjpa
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241183/
https://academic.oup.com/geronj/article-abstract/36/5/605/550194
http://ndl.ethernet.edu.et/bitstream/123456789/31186/1/125.John%20Sweller.pdf
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In particular, you can’t solve a problem if you can’t fit all its pieces in your working memory. 
This means that if a student doesn’t achieve automaticity on lower-level skills, it doesn’t even 
matter how well the teacher scaffolds a new skill – they won’t be able to do it. And even for tasks 
within a student’s cognitive capacity, it has been shown that a heavy cognitive load drastically 
increases the likelihood of errors (Ayres, 2001). 
 
When you develop automaticity on a skill or piece of information, however, you can use it 
without it occupying a slot in your working memory. Instead, the skill is stored in your 
long-term memory, where indefinitely many things can be held for indefinitely long without 
requiring cognitive effort. 
 
As Anderson (1987) summarizes, automaticity can effectively turn long-term memory into an 
extension of short-term memory: 
 

 

https://www.researchgate.net/publication/12058826_Systematic_Mathematical_Errors_and_Cognitive_Load
https://en.wikipedia.org/wiki/Long-term_memory
https://files.eric.ed.gov/fulltext/ED264257.pdf
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“Chase and Ericsson (1982) showed that experience in a domain can increase capacity for that 
domain. Their analysis implied that what was happening is that storage of new information in 
long-term memory, became so reliable that long-term became an effective extension of short-term 
memory.” 

 
For emphasis, we quote Chase and Ericsson (1982) directly: 
 

“The major theoretical point we wanted to make here is that one important component of skilled 
performance is the rapid access to a sizable set of knowledge structures that have been stored in 
directly retrievable locations in long-term memory. We have argued that these ingredients produce 
an effective increase in the working memory capacity for that knowledge base.” 

 

| Expertise Requires Automaticity 

Automaticity is the mental capacity that differentiates experts from beginners, a phenomenon 
that has been thoroughly studied in various contexts including the game of chess. As 
summarized by Ross (2006): 
 

“...[A] typical grandmaster has access to roughly 50,000 to 100,000 chunks of chess information 
[Gobet & Simon, 1998]. A grandmaster can retrieve any of these chunks from memory simply by 
looking at a chess position, in the same way that most native English speakers can recite the poem 
‘Mary had a little lamb’ after hearing just the first few words.” 

 
As elaborated by Gobet & Simon (1998): 
 

“...[S]kill in playing chess depends both on (a) recognizing familiar chunks in chess positions while 
playing games, and (b) exploring possible moves and evaluating their consequences. … Expert 
memory, in turn includes slowly acquired structures in long-term memory (retrieval structures, 
templates) that augment short-term memory with slots (variable places) that can be filled rapidly 
with information about the current position.” 

 
Indeed, as Benjamin Bloom noted (1986) while identifying automaticity as a key theme in his 
own research on talent development, automaticity was described as the “hands and feet of 
genius” as early as the 19th century: 
 

“Our talent development studies support the 1899 research of Bryan and Harter who were 
concerned with the development of automaticity in expert Morse Code telegraphers. They most 
eloquently described the benefits of automaticity as an outcome of the learning process. 
 
‘The learner must come to do with one stroke of attention what now requires half a dozen, and 
presently in one still more inclusive stroke, what now requires thirty-six. He must systematize the 
work to be done and must acquire a system of automatic habits corresponding to the system of 
tasks. When he has done this he is master of the situation in his [occupational or professional] 

 

https://apps.dtic.mil/sti/tr/pdf/ADA114634.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA114634.pdf
https://personal.utdallas.edu/~otoole/CGS2301_S09/15_expert.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198602_bloom.pdf
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field. … Finally, his whole array of habits is swiftly obedient to serve in the solution of new 
problems. Automatism is not genius, but it is the hands and feet of genius.’” 

 
It’s important to realize that automaticity goes beyond simple familiarity. If you truly “know” 
something, then you should be able to access and leverage that information both quickly and 
accurately. If you can't, then you're just "familiar" with it. And when learning hierarchical 
bodies of knowledge – whether it be math, chess, a sport, or an instrument – it’s important to 
truly know things, not just be familiar with them. Why? Because you can’t build on familiarity. 
That’s what the term “shaky foundations” refers to. You can only build on a solid foundation of 
knowledge. 
 
To help students develop automaticity (and, consequently, expertise in mathematics), Math 
Academy requires students to practice each skill until they have reached a sufficient level of 
mastery. Students start at their edge of knowledge (not their edge of “familiarity”) and are not 
pushed forward along learning paths until they have mastered the prerequisite skills. 
Additionally, to help consolidate skills into long-term memory after mastery, skills are 
continually reviewed into the future through a systematic method called spaced repetition 
(which is described later in this document). 
 

Case Study: Computing Exponents With vs Without Automaticity  
on Multiplication and Addition Facts 

To convey the importance of automaticity, it helps to walk through a case study in which we 
observe a problem being solved by students who have different levels of automaticity in their 
underlying skills. As we will see, a student’s overall learning experience can vary drastically 
depending on their level of automaticity. 
 
Suppose that we have three different students – Otto, Rica, and Finn – whose names are chosen 
to represent their respective levels of automaticity. 
 

● Otto has developed full automaticity on multiplication facts and procedures. 
 

● Rica doesn’t know her multiplication facts – she recalculates them from scratch. She is 
able to carry out multiplication procedures, but she isn’t fully comfortable with them and 
has to proceed slowly, writing every single step down. 
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● Finn, likewise, doesn’t know his multiplication facts – but he doesn’t know his addition 
facts either, so he uses finger-counting for everything. He is not at all comfortable with 
multiplication procedures. 
 

These students are each given a lesson on cubes of numbers. After an explanation of what it 
means to cube a number, and a demonstration with a worked example, they’re each given a 
problem to practice on their own: compute 43. Let’s observe the thought processes (both 
reasoning and emotions) as each of these students solves the problem. 
 
Otto is so comfortable with his multiplication and addition facts that he solves the problem in 
10 seconds in his head. He feels it was easy, is excited to try another, and can’t wait for harder 
problems like cubing negative numbers, decimal numbers, and fractions. 
 

● 43 = 4 × 4 × 4. I know 4 × 4 = 16, easy, and then 16 × 4 = … well that’s 10 × 4 = 40 and 6 × 4 = 24, 
together making 40 + 24 = 64. Done, easy! What’s next? 

 
Rica solves the problem in 2 minutes, but her answer is not correct. She takes another 2 minutes 
to correct the mistake but gets tired and wants to take a break before moving on to the next 
problem. She’s not looking forward to harder problems. 
 

● 43 = 4 × 4 × 4. What’s 4 × 4? I don’t know, let’s compute it. 
 

○ 4 × 4 is the same as 4 + 4 + 4 + 4, which is … well, 4 + 4 = 8, plus 4 is 12, plus 4 is 16. 
 

● Where was I? Oh right, 4 × 4 = 16 and then 16 × 4 = … ugh, gotta go through that multiplication 
procedure. 
 

○ Put the 16 on top, then × 4 on bottom, and now we carry out the procedure. First 4 × 6 = 
6 + 6 + 6 + 6, count that up to get 6 + 6 = 12, plus 6 is 18, plus 6 is 22. Write down 2, carry 
another 2. Then 4 × 1 = 4, add the carried 2, write down 6. 
 

● Done. Result is 62. Oh wait, the teacher says that’s close but not quite right. Fine, let’s try this 
again. 
 

● (Rica repeats the entire procedure above and this time gets a result of 64.) 
 

● Great, teacher says that 64 is right. I know there are more problems to do but that one was kind of 
hard and I’m tired. Teacher, can I take a break and do the next one later? 
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Finn takes 10 minutes to solve the problem, but his answer is not correct. He tries again for 
another 10 minutes but makes a different mistake. The teacher has to sit with him for another 10 
minutes to carry him through the problem. By the time Finn is done with the problem, it has 
almost been a full class period. He is totally exhausted and overwhelmed and dreads doing the 
rest of the homework. 
 

● 43 = 4 × 4 × 4. What’s 4 × 4? I don’t know, let’s compute it. 
 

○ 4 × 4 is the same as 4 + 4 + 4 + 4, which is … ugh, gotta count all this up. This is annoying. 
 

■ Start at 4, then 4 more is 5, 6, 7, 8. 
■ Start at 8, then 4 more is 9, 10, 11, 12. 
■ Start at 12, then 4 more is 12, 13, 14, 15. 

 
○ Phew, that took a while, but now I have 4 + 4 + 4 + 4 = 15. Why was I doing that, again? 

Oh right, I was really doing 4 × 4 = 15. 
 

● Wait, we’re not even done yet. I did 4 × 4 = 15, but that was because I wanted to do 4 × 4 × 4. 
Okay so now I need to do 15 × 4. Ew, that’s going to be even harder. I don’t like this. But fine, let’s 
do it. 
 

○ 15 × 4 is the same as 15 + 15 + 15 + 15, and those are big numbers so I need to line it up 
on paper. 
 

■ Put 15 at the top, then another 15 below, then another 15, then another 15. 
 

■ Let’s add the right column: 
● Start at 5, then 5 more is 6, 7, 8, 9, 10. 
● Start at 10, then 5 more is 10, 11, 12, 13, 14. 
● Start at 14, then 5 more is 15, 16, 17, 18, 19. 

 
■ Write down 9, carry the 1, then add down the left column: start at 1, then 1 more 

is 2, then 3, then 4, then 5. Write down the 5, we have 59. 
 

● Answer is 59. Glad that’s over. That took forever. Oh wait, the teacher says that’s wrong. Noooo… 
do I have to do this whole thing over again?! This is way too much work. 
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● (Finn repeats the entire procedure above and this time gets a result of 66, which is still 
incorrect. He is getting very noticeably frustrated and his teacher sits down with him to 
go through his work. They find and fix several errors together and arrive at the correct 
result of 64.) 
 

● I can’t do any more of this today. I’m too tired. I hate math, and my teacher gives me way too 
much work. And the next problem looks harder, and there are even more on the homework! This 
is terrible. Class is almost over so I’m just going to zone out until the bell rings. 

 
This case study demonstrates that the more automaticity a student has on their lower-level 
skills, 
 

● the easier they will find it to acquire new higher-level skills, 
 

● the more quickly and independently they will be able to execute those skills, 
 

● the better they will feel about the learning process as a whole, and 
 

● the more excited they will be to continue learning more advanced material. 
 
Students who develop automaticity will feel empowered, while students who do not will feel 
overwhelmed and defeated. 
 

Automaticity, Creativity, and Higher-Level Thinking 

| Automaticity is Necessary for Creativity 

The relationship between automaticity and creativity is commonly misunderstood. Some people 
think that automaticity and creativity are opposite and competing forces: supposedly, because 
automaticity requires repeated practice, it turns students into mindless robots, whereas to 
leverage the power of human creativity, one needs to break free from that robotic mindset. This 
line of reasoning might sound alluring – and even convenient, since students often don’t enjoy 
the repeated practice that’s required to develop automaticity – but there’s one problem: it’s 
completely false. 
 
In reality, automaticity is a necessary component of creativity. The whole purpose of 
automaticity is to reduce the amount of bandwidth that the brain must allocate to robotic tasks, 
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thereby freeing up cognitive resources to engage in higher-level thinking.  If a student does not 
develop automaticity, then they will have to consciously think about every low-level action that 
they perform, which will exhaust their cognitive capacity and leave no room for high-level 
creative thinking. 
 
As a concrete example, consider what is typically considered one of the most creative activities: 
writing. Effective writing requires a frictionless pipeline from ideas in one’s mind to words on 
paper. If a writer had to consciously think about spelling, grammar, word definitions, transitions 
between sentences, when to make a new paragraph, etc, they would become bogged down in 
low-level robotic tasks and would have no mental bandwidth to think about high-level creative 
details like vivid imagery, logical cohesiveness, and emotions evoked by various phrases and 
ideas. 
 
Indeed, the importance of automaticity is documented by researchers in the field of writing 
education (Kellogg & Whiteford, 2009): 
 

“Serious, effective composition is at once a severe test of memory, language, and thinking ability 
… it depends on the author’s ability to manage the burdensome demands made on working 
memory by the task of written composition. 
… 
[T]he necessary coordination and control cannot succeed without reducing the relative demands 
that planning, generation, and reviewing make on working memory. The writer cannot flexibly 
and adaptively coordinate planning, generating, and reviewing when the needs of any single 
process consume too many available resources. The writer cannot be mindful of the whole while 
struggling with the parts.” 

 
What’s more, this view is supported by an overwhelming amount of research over at least the 
past half-century: 
 

“Empirical support for the importance of working memory resources, especially executive 
attention, in the development of advanced writing skills is strong. First, a measurement of overall 
working memory capacity in college students correlates with their writing performance (Ransdell 
& Levy, 1996). Vanderberg and Swanson (2007) extended such findings by discovering that it is 
individual differences in central executive capacity that reliably accounts for variability in writing 
skills among 10th graders in high school. Controlled executive attention, rather than the storage of 
representations, is most critical in explaining individual differences in skill. Converging 
experimental results show that distracting executive attention with a concurrent task of 
remembering six digits disrupts both the quality and fluency of text composition (Ransdell, Levy, & 
Kellogg, 2002). 
 
The advancement of writing skills from beginner to advanced levels depends on the availability of 
adequate working memory resources and the capacity to allocate them appropriately to planning, 
sentence generation, and reviewing. McCutchen (1996) reviewed a large body of evidence in 
support of this view. For example, children’s fluency in generating written text is limited until they 
master the mechanical skills of handwriting and spelling (Graham, Berninger, Abbott, & Whitaker, 

 

https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
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1997). Learning the mechanics of writing to the point that they are automatic during primary 
school years is necessary to free the components of working memory for planning, generating, and 
reviewing. Mastery of handwriting and spelling is also a necessary condition for writers to begin to 
develop the control of cognition, emotion, and behavior that is needed to sustain the production 
of texts as adolescents (Graham & Harris, 2000). 
 
Revision is constrained or even nonexistent in developing writers because of working memory 
limitations. Revision requires detecting a problem, diagnosing its cause, and finding an 
appropriate way to correct it (Flower et al., 1986). If revision fails because of working memory 
limitations, as opposed to knowledge of what revision entails, then providing cues to detect 
problems in the text should benefit revision, because writers can then devote resources solely to 
diagnosis and solution. Cuing in fact does improve the revision of even college students (Hacker, 
Plumb, Butterfield, Quathamer, & Heineken, 1994). 
 
As Beal (1996) observed, very young writers have trouble even seeing the literal meaning of their 
texts. The beginning author focuses on his or her thoughts not on how the text itself reads. 
Maintaining the author’s ideas in working memory requires much, if not all, of the available 
storage and processing capacity of working memory in during childhood and early adolescence. 
This prevents the student from reading the text carefully and maintaining a clear representation 
of what it actually says that is independent of what the author intended to say.” 

 

| Automaticity is Necessary for Higher-Level Thinking 

The same reasoning applies to mathematics. In order to operate at higher levels of mathematical 
thinking and abstract thought, it’s necessary to have developed automaticity at the lower levels. 
Consider the following realization from a skeptic-turned-convert principal (Brown, Roediger, & 
McDaniel, 2014, pp.44-45): 
 

“What about Principal Roger Chamberlain’s initial concerns about practice quizzing at Columbia 
Middle School – that it might be nothing more than a glorified path to rote learning? When we 
asked this question after the study was completed, he paused for a moment to gather his thoughts. 
 
‘What I’ve really gained a comfort level with is this: for kids to be able to evaluate, synthesize, and 
apply a concept in different settings, they’re going to be much more efficient at getting there when 
they have the base of knowledge and the retention, so they’re not wasting time trying to go back 
and figure out what that word might mean or what that concept was about. It allows them to go to 
a higher level.’” 

 
To put it bluntly, according to Lehtinen et al. (2017): 
 

“Fluency in basic arithmetic tasks and number combination skills has proved to be crucial for 
later mathematical learning and weaknesses in automatization of these skills is characteristic of 
mathematically disabled children.” 

 
Allen-Lyall (2018) elaborates further: 
 

 

https://www.hup.harvard.edu/books/9780674729018
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“Internalized facts allow for efficient mental computations that make easier multi-step problem 
solving or recognizing and making connections between mathematical concepts, such as 
multiplication and division, ratio comparison, fraction equivalencies, or exploration of object 
relationships in the world of geometry (Chapin & Johnson, 2006; National Research Council, 
2005). 
… 
When one internalizes multiplication facts, less brainpower is required to perform tasks that 
require more complex or successive arithmetic manipulations (Geary, 1999; Geary, Saults, Liu, & 
Hoard, 2000). Flexible thinking and conceptual leaps between mathematical concepts are possible 
when products are not computed using successive addition or determined by visual inspection of 
tables or charts (Royer, 2003). The relationship between factors and products becomes a point of 
departure into more challenging mathematics. Beginning every new mathematical step forward 
with a return to multiplication as repeated addition or reliance upon visual assistance may 
interrupt intuitive mathematical thinking (Goswami, 2008). 
 
Fluid mental computations are thwarted by the needs of working memory necessarily allocated to 
ascertaining the product of two factors or, conversely, the factors of a particular product. 
Memorizing facts reduces cognitive load, allowing for working memory to better allocate resources 
when processing number relationships required by more complex mathematics (Goswami, 2008; 
LeFevre, DeStefano, Coleman & Shanahan, 2005).” 

 

| Automaticity is a Gatekeeper to Mathematical Literacy and Academic Success 

In a broader scope, Allen-Lyall (2018) also explains how automaticity on math facts is a 
gatekeeper to mathematical literacy, which in turn impacts future academic and career 
prospects: 
 

“Extending beyond successful school mathematics performance, broader options for college study 
and employment opportunity become increasingly likely when one feels confident in one’s 
mathematical thinking and is able to demonstrate solid achievement (Atweh & Clarkson, 2001; 
Marsh & Hau, 2004; Valero, 2004; Williams & Williams, 2010). 
 
For myriad reasons, facts acquisition becomes an educational gatekeeper to true mathematical 
literacy. Consequently, helping children to be successful with this seemingly small element of early 
mathematics learning truly matters in a world rife with challenges requiring the mathematical 
communication of ideas between and within fields (D’Ambrosio & D’Ambrosio, 1994; Thomas, 
2001).” 

 
As other researchers have discovered, the impact on academic achievement begins immediately: 
students who are slow on their basic math facts begin falling behind their faster peers as soon as 
multi-digit arithmetic (Joy Cumming & Elkins, 2010). 
 

“Profiles of children based on latency performance on the fact bundles were clustered. The slowest 
cluster reported use of counting strategies on many bundles; the fastest cluster reported use of 
retrieval or efficient-thinking strategies. Cluster group was the best predictor of performance on 
multidigit tasks. Addition fact accuracy contributed only for tasks without carrying, and grade 
level was not significant. Analysis by error type showed most errors on the multidigit sums were 

 

https://www.tandfonline.com/doi/abs/10.1080/135467999387289
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due to fact inaccuracy, not algorithmic errors. The implication is that the cognitive demands 
caused by inefficient solutions of basic facts made the multidigit sums inaccessible.” 

 
In retrospect, beliefs that paint a false dichotomy between automaticity and creativity are not 
only factually incorrect, but amusingly ironic. Such beliefs suggest that de-emphasizing 
repetition promotes creativity as a skill for life success – when in reality, it causes students to 
perpetually spend mental bandwidth on low-level tasks that they could have (through repetition) 
learned to do automatically, thereby limiting their capacity for higher-level and creative 
mathematical thinking, as well as their future academic and career prospects. 
 

Neuroscience of Automaticity 

At a physical level in the brain, automaticity involves developing strategic neural connections 
that reduce the amount of effort that the brain has to expend to activate patterns of neurons.  
 
Researchers have observed this in functional magnetic resonance imaging (fMRI) brain scans of 
participants performing tasks with and without automaticity (Shamloo & Helie, 2016). When a 
participant is at wakeful rest, not focusing on a task that demands their attention, there is a 
baseline level of activity in a network of connected regions known as the default mode network 
(DMN). The DMN represents background thinking processes, and people who have developed 
automaticity can perform tasks without disrupting those processes: 
 

“The DMN is a network of connected regions that is active when participants are not engaged in 
an external task and inhibited when focusing on an attentionally demanding task … at the 
automatic stage (unlike early stages of categorization), participants do not need to disrupt their 
background thinking process after stimulus presentation: Participants can continue day dreaming, 
and nonetheless perform the task well.” 

 
When an external task requires lots of focus, it inhibits the DMN: brain activity in the DMN is 
reduced because the brain has to redirect lots of effort towards supporting activity in 
task-specific regions. But when the brain develops automaticity on the task, it increases 
connectivity between the DMN and task-specific regions, and performing the task does not 
inhibit the DMN as much: 

 
“...[S]ome DMN regions are deactivated in initial training but not after automaticity has 
developed. There is also a significant decrease in DMN deactivation after extensive practice. 
… 
The results show increased functional connectivity with both DMN and non-DMN regions after 
the development of automaticity, and a decrease in functional connectivity between the medial 
prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the 
hypothesis of a strategy shift in automatic categorization and bridge the cognitive and 
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neuroscientific conceptions of automaticity in showing that the reduced need for cognitive 
resources in automatic processing is accompanied by a disinhibition of the DMN and stronger 
functional connectivity between DMN and task-related brain regions.” 

 
In other words, automaticity is achieved by the formation of neural connections that promote 
more efficient neural processing, and the end result is that those connections reduce the amount 
of effort that the brain has to expend to do the task, thereby freeing up the brain to 
simultaneously allocate more effort to background thinking processes.  
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychological review, 63(2), 81. 
 
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental 
storage capacity. Behavioral and brain sciences, 24(1), 87-114. 
 
Importance: Human working memory has such limited capacity that most people can only hold a handful of 
pieces of new information simultaneously in their heads: about 7 digits, or more generally 4 chunks of 
coherently grouped items. 
 
 

● Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary 
Educational Psychology, 26(2), 227-248. 
 
Importance: Even for tasks within a student’s cognitive capacity, a heavy cognitive load drastically increases 
the likelihood of errors. 
 
 

● Ross, P. E. (2006). The expert mind. Scientific American, 295(2), 64-71. 
 
Importance: A typical grandmaster has access to roughly 50,000 to 100,000 chunks of chess information. A 
grandmaster can retrieve any of these chunks from memory simply by looking at a chess position, in the same 
way that most native English speakers can recite the poem “Mary had a little lamb” after hearing just the first 
few words. 
 
 

● Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. 
Memory, 6(3), 225-255. 
 
Importance: Skill in playing chess depends both on (a) recognizing familiar chunks in chess positions while 
playing games, and (b) exploring possible moves and evaluating their consequences. Expert memory, in turn 

 

https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.researchgate.net/publication/12058826_Systematic_Mathematical_Errors_and_Cognitive_Load
https://personal.utdallas.edu/~otoole/CGS2301_S09/15_expert.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
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includes slowly acquired structures in long-term memory (retrieval structures, templates) that augment 
short-term memory with slots (variable places) that can be filled rapidly with information about the current 
position.  
 
 

● Bloom, B. S. (1986). Automaticity: "The Hands and Feet of Genius." Educational leadership, 
43(5), 70-77. 
 
Importance: Automaticity was a key theme in Benjamin Bloom’s research on talent development and was 
described as the “hands and feet of genius” as early as the 19th century. 
 
 

● Kellogg, R. T., & Whiteford, A. P. (2009). Training advanced writing skills: The case for 
deliberate practice. Educational Psychologist, 44(4), 250-266. 
 
Importance: In the field of writing, the importance of automaticity is supported by an overwhelming amount of 
research over at least the past half-century. Serious, effective composition places burdensome demands on 
working memory. In order to free the components of working memory for planning, generating, and reviewing, 
students must learn the mechanics of writing to the point that they are automatic during primary school years. 
The writer cannot be mindful of the whole while struggling with the parts. 
 
 

● Allen-Lyall, B. (2018). Helping students to automatize multiplication facts: A pilot study. 
International Electronic Journal of Elementary Education, 10(4), 391-396. 
 
Importance: Facts acquisition is an educational gatekeeper to true mathematical literacy. Internalized facts 
allow for efficient mental computations that make easier multi-step problem solving or recognizing and making 
connections between mathematical concepts. Memorizing facts reduces cognitive load, allowing for working 
memory to better allocate resources when performing tasks that require more complex or successive 
manipulations. 
 
 

● Joy Cumming, J., & Elkins, J. (1999). Lack of automaticity in the basic addition facts as a 
characteristic of arithmetic learning problems and instructional needs. Mathematical 
Cognition, 5(2), 149-180. 
 
Importance: The impact of automaticity on academic achievement begins immediately: students who are slow 
on their basic math facts begin falling behind their faster peers as soon as multi-digit arithmetic. 
 
 

 

https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198602_bloom.pdf
https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
https://iejee.com/index.php/IEJEE/article/download/325/333
https://www.tandfonline.com/doi/abs/10.1080/135467999387289
https://www.tandfonline.com/doi/abs/10.1080/135467999387289
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● Shamloo, F., & Helie, S. (2016). Changes in default mode network as automaticity develops in 
a categorization task. Behavioural Brain Research, 313, 324-333. 
 
Importance: Automaticity is achieved by the formation of neural connections that promote more efficient 
neural processing, and the end result is that those connections reduce the amount of effort that the brain has to 
expend to do the task, thereby freeing up the brain to simultaneously allocate more effort to background 
thinking processes. 

 
 

 

https://www.sciencedirect.com/science/article/abs/pii/S0166432816304570
https://www.sciencedirect.com/science/article/abs/pii/S0166432816304570
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Chapter 16. Layering 
 

Summary: Layering is the act of continually building on top of existing knowledge – that is, 
continually acquiring new knowledge that exercises prerequisite or component knowledge. This 
causes existing knowledge to become more ingrained, organized, and deeply understood, thereby 
increasing the structural integrity of a student’s knowledge base and making it easier to assimilate 
new knowledge. To reap the benefits of layering, Math Academy moves students forward to new 
topics immediately after they demonstrate mastery of prerequisites, and employs a 
highly-connected curriculum where new topics exercise and build on earlier topics. 

 

Facilitation and Structural Integrity 

| Facilitation 

As students learn progressively more advanced material, they reinforce and deepen their 
foundational knowledge. In academic literature, this is known as facilitation: when a new task 
exercises knowledge learned in a prior task, learning can be facilitated in two ways: 
 

● (Retroactive Facilitation) The new task can restore memory of prior knowledge to the same 
extent as identical repetition of the prior task, leading to long-lasting retention (Ausubel, 
Robbins, & Blake, 1957; Arzi, Ben-Zvi, & Ganiel, 1985). 
 

● (Proactive Facilitation) Knowledge acquired during the prior task can improve the 
acquisition of knowledge that is specific to the new task (Arzi, Ben-Zvi, & Ganiel, 1985). 

 
As a concrete example, consider that multiplication is a component skill in both long division 
and exponentiation. When you learn long division, you also practice the more basic skill of 
multiplication, which not only reinforces your knowledge of multiplication (retroactive 
facilitation), but also makes it easier for you to learn how to compute exponents (proactive 
facilitation). 
 

 

https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
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To take advantage of facilitation, it is necessary to continually layer on top of existing 
knowledge – that is, continually acquire new knowledge that exercises prerequisite or 
component knowledge. In general, the more connections (neural, cognitive, social, and 
experiential) there are to a piece of knowledge, the more ingrained, organized, and deeply 
understood it is (Cross, 1999), and the easier it is to recall via spreading activation through 
connections. The most efficient way to increase the number of connections to existing 
knowledge is to continue layering on top of it. 
 

| Structural Integrity 

Layering produces structural integrity, a well-known engineering concept that also applies to 
knowledge (the underlying structure of one’s knowledge is known as their schema). When 
advanced features are built on top of a system, they sometimes fail in ways that reveal 
previously-unknown foundational weaknesses in the underlying structure. This forces engineers 
to fortify the underlying structure so that the system can accommodate new elements without 
compromising its integrity. 
 
Fortifying the underlying structure often requires improving its organization and elegance, 
which, when applied to student schemas, produces deep understanding and insight. When the 

 

https://files.eric.ed.gov/fulltext/ED432314.pdf
https://files.eric.ed.gov/fulltext/ED432314.pdf
https://en.wikipedia.org/wiki/Spreading_activation
https://en.wikipedia.org/wiki/Structural_integrity_and_failure
https://en.wikipedia.org/wiki/Schema_(psychology)
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structural integrity of a system is increased, it also becomes easier to add more advanced 
features in general. In the same way, when the structural integrity of a student’s schema is 
increased, it becomes easier to assimilate new knowledge in general.  
 

How We Layer 

To reap the benefits of layering, Math Academy employs two key features: 
 

1. Moving students forward to new topics immediately after they demonstrate mastery of 
prerequisites. 
 

2. A highly-connected curriculum where new topics exercise and build on earlier topics. 
 
After a student completes a lesson on Math Academy, new lessons are immediately unlocked. 
The student will later review what they learned in the lesson that they completed, but they are 
not “held back” to practice already-learned topics any more than is necessary. This stands in 
contrast to traditional classrooms, where students are often tethered to the pace of the class and 
prevented from learning more advanced concepts that come later in the class schedule or in a 
higher grade level, even though they have already mastered the prerequisites. 
 
Additionally, Math Academy’s curriculum is intentionally structured so that earlier topics are 
applied and reinforced in higher-level topics. We have 
 

● advanced application topics that transition students from purely mathematical framings 
to contexts involving word problems, 
 

● topics that explicitly teach non-obvious connections between other topics, and 
 

● multi-part problems that pull together many earlier topics to explore a challenging, 
complex problem context one part at a time. 

 
A high degree of connectivity also arises naturally from our principle that any lesson should cover 
all types of problems that a student could reasonably be expected to solve if they truly know the topic. 
 
It’s worth noting that unlike Math Academy, many other educational resources violate this 
principle and consequently lose out on the benefits of layering because their advanced topics do 
not actually exercise and build on earlier topics. For instance, some watered-down calculus 
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courses steer clear of any kinds of problems that involve extensive algebra, only covering the 
simplest cases possible. As a result, students in those courses are not only unable to solve 
standard problems outside the tiny sandbox of the course, but they also do not fortify their 
foundations, which can lead them to forget lots of lower-level math despite taking a higher-level 
math course. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Ausubel, D. P., Robbins, L. C., & Blake Jr, E. (1957). Retroactive inhibition and facilitation in 

the learning of school materials. Journal of Educational Psychology, 48(6), 334. 
 
Importance: When a new task exercises knowledge from a previous task, the new task can improve memory of 
that knowledge as much as identical repetition of the original task. 
 
 

● Arzi, H. J., Ben-Zvi, R., & Ganiel, U. (1985). Proactive and retroactive facilitation of long-term 
retention by curriculum continuity. American educational research journal, 22(3), 369-388. 
 
Importance: Layering improves retention of prior knowledge and acquisition of new knowledge. Consequently, 
a program composed of a hierarchical sequence of learning units is superior to a discontinuous array of discrete 
courses. 
 
 

● Cross, K. P. (1999). Learning is about making connections. The Cross Papers; 3. 
 
Importance: The more connections there are to a piece of knowledge, the more ingrained, organized, and 
deeply understood it is, and the easier it is to recall. 

 

 

https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://files.eric.ed.gov/fulltext/ED432314.pdf
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Chapter 17. Non-Interference 
 

Summary: Associative interference occurs when related knowledge interferes with recall. It is 
more likely to occur when highly related pieces of knowledge are learned simultaneously or in 
close succession. However, Math Academy mitigates the effects of interference by teaching 
dissimilar concepts simultaneously and spacing out related pieces of knowledge over time. This 
reduces confusion, enhances recall, and facilitates efficient, simultaneous learning of multiple 
topics, promoting smooth, rapid progress in courses while maintaining varied and engaging 
learning experiences. 

 

Associative Interference 

Associative interference describes the phenomenon that conceptually related pieces of 
knowledge can interfere with each other’s recall. For instance, it is easy to mistake a leopard for 
a cheetah. 
 
The same happens in math. Multiple studies have shown that well over half, and potentially as 
high as 90%, of multiplication mistakes are caused by interference (see Campbell, 1987 for a 
summary). For instance, when recalling 4 × 8, related facts like 4 × 6 = 24 and 3 × 8 = 24 interfere 
with the spreading activation during the recall process and increase the likelihood of the error 4 
× 8 = 24. (This phenomenon occurs throughout math – multiplication facts are just a convenient 
setting for academic studies.) 
 

 

https://en.wikipedia.org/wiki/Associative_interference
https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://en.wikipedia.org/wiki/Spreading_activation
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Non-Interference 

While it is not possible for a teacher to change the structure of knowledge to make different 
pieces of information less related, further research in interference theory has revealed a factor 
that can be controlled by a teacher to reduce the impact of interference: time spacing. In a study 
by Underwood & Ekstrand (1967): 
 

“2 groups learned A-B for 32 trials, learned A-C to one perfect recitation 3 days later, and 
recalled A-C after 24 hr. 2 other groups learned both lists in immediate succession followed by 
24-hr, recall of A-C. 1 group from each schedule had 6 A-B pairs retained in A-C. The results 
showed that the 3-day separation of A-B and A-C markedly reduced proactive inhibition …” 

 
In other words, interference is more likely to occur when highly related pieces of knowledge are 
learned simultaneously or in close succession – but by spacing out these related pieces of 
knowledge over time, a teacher can mitigate the effects of interference. We call this strategy 
non-interference. 
 
Unfortunately, traditional classrooms ignore the benefits of non-interference and instead 
operate in a way that exacerbates the problem. The typical math curriculum is divided into units 
of related material and taught in subsequent lessons. This promotes confusion, impedes recall, 

 

https://en.wikipedia.org/wiki/Interference_theory
https://www.researchgate.net/publication/17503018_Effect_of_temporal_separation_of_two_tasks_on_proactive_inhibition
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and places a severe bottleneck on how many topics can be successfully taught simultaneously, 
thereby creating lots of friction and massively slowing down the learning process. 
 
Math Academy, however, practices non-interference by teaching new concepts alongside 
dissimilar material. Students are allowed to choose from an array of diverse, non-overlapping 
learning tasks. As they complete tasks, their knowledge graphs are updated and the system 
chooses new topics to guide them most efficiently through the course. By utilizing 
non-interference, Math Academy reduces confusion, improves recall, and successfully teaches 
many topics simultaneously, thereby enabling students to make smooth, fast progress through 
their courses. 
 
What’s more, non-interference also helps keep Math Academy’s learning tasks varied and 
exciting for students. Learning can feel like a grind when you are made to focus on the same 
types of concepts and problems for a long time, just like exercising can feel like a grind if the 
entire workout consists of a single exercise (especially if it’s one of your least favorite exercises). 
So, just like a personal trainer packs a wide variety of exercises into each workout to maintain 
motivation, Math Academy packs a wide variety of topics into each learning session to keep 
things exciting. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Campbell, J. I. (1987). The role of associative interference in learning and retrieving 

arithmetic facts. Cognitive processes in mathematics, 107-122. 
 
Importance: Multiple studies have shown that well over half, and potentially as high as 90%, of multiplication 
mistakes are caused by interference. (For instance, when recalling 4 × 8, related facts like 4 × 6 = 24 and 3 × 8 = 
24 interfere and increase the likelihood of the error 4 × 8 = 24.) 
 
 

● Underwood, B. J., & Ekstrand, B. R. (1967). Studies of distributed practice: XXIV. 
Differentiation and proactive inhibition. Journal of Experimental Psychology, 74(4p1), 574. 
 
Importance: Interference is more likely to occur when highly related pieces of knowledge are learned 
simultaneously or in close succession. By spacing out these related pieces of knowledge over time, a teacher can 
mitigate the effects of interference. 

 
 

 

https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://psycnet.apa.org/record/1967-13023-001
https://psycnet.apa.org/record/1967-13023-001
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Chapter 18. Spaced Repetition (Distributed Practice) 
 

Summary: When reviews are spaced out or distributed over multiple sessions (as opposed to being 
crammed or massed into a single session), memory is not only restored, but also further 
consolidated into long-term storage, which slows its decay. This is known as the spacing effect. A 
profound consequence of the spacing effect is that the more reviews are completed (with 
appropriate spacing), the longer the memory will be retained, and the longer one can wait until the 
next review is needed. This observation gives rise to a systematic method for reviewing 
previously-learned material called spaced repetition (or distributed practice). A repetition is a 
successful review at the appropriate time. Spaced repetition is complicated in hierarchical bodies 
of knowledge, like mathematics, because repetitions on advanced topics should “trickle down” to 
update the repetition schedules of simpler topics that are implicitly practiced (while being 
discounted appropriately since these repetitions are often too early to count for full credit towards 
the next repetition). However, Math Academy has developed a proprietary model of Fractional 
Implicit Repetition (FIRe) that not only accounts for implicit “trickle-down” repetitions but also 
minimizes the number of reviews by choosing reviews whose implicit repetitions “knock out” other 
due reviews (like dominos), and calibrates the speed of the spaced repetition process to each 
individual student on each individual topic (student ability and topic difficulty are competing 
factors). 

 

Retaining Knowledge Indefinitely 

| The Spacing Effect 

Learning new topics is only half of the puzzle. The other half is remembering what you’ve 
learned. In order to retain knowledge, you must periodically review it – otherwise, in the 
absence of review, it will decay. 
 
A common way to visualize memory decay is through a forgetting curve, first studied by 
psychologist Hermann Ebbinghaus in the late 19th century: 
 

 

https://en.wikipedia.org/wiki/Forgetting_curve
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Ebbinghaus (1885) discovered that when reviews are spaced out or distributed over multiple 
sessions (as opposed to being crammed or massed into a single session), memory is not only 
restored, but also further consolidated into long-term storage, which slows its decay. This is 
now known as the spacing effect.  
 

| Spaced Repetition 

A profound consequence of the spacing effect is that the more reviews are completed (with 
appropriate spacing), the longer the memory will be retained, and the longer one can wait until 
the next review is needed. This observation gives rise to a systematic method for reviewing 
previously-learned material called spaced repetition (or distributed practice). A repetition is a 
successful review at the appropriate time. 
 
Here is an example that illustrates the process and power of spaced repetition. Suppose you 
learn a new word. Initially, you might only remember that word for a day. But if you quiz 
yourself on its meaning tomorrow, then you might remember it until the end of the week. And if 
you quiz yourself again at the end of the week, then you might remember for several weeks. If 
you stick to this spaced repetition schedule, then you’ll eventually be able to go many years 
between repetitions (Bahrick et al., 1993). 

 

 

https://psychclassics.yorku.ca/Ebbinghaus/index.htm
https://en.wikipedia.org/wiki/Memory_consolidation
https://en.wikipedia.org/wiki/Spacing_effect
https://en.wikipedia.org/wiki/Spaced_repetition
https://en.wikipedia.org/wiki/Distributed_practice
https://www.academia.edu/download/92264667/1993-bahrick.pdf
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The main challenge of spaced repetition is choosing the optimal amount of time between 
repetitions. If you wait too long, you will forget the word and move backwards in your spaced 
repetition schedule. But if you perform the next repetition too early, your memory won’t 
strengthen as much and you won’t move forward as quickly. 
 

| Building Intuition About Spaced Repetition 

As Qadir & Imran (2018) describe, spaced repetition can be understood intuitively by way of 
analogy to muscle-building: 
 

“...[M]assed learning can give temporary fluency, just like a body builder can pump muscles 
temporarily by cramming exercises. However, growth only occurs with a spaced exercise routine (in 
which exercise and rest follow each other cyclically). Similarly, long-term learning also requires 
spaced practice and does not result from cramming.” 

 
As Brown, Roediger, & McDaniel (2014, pp.9-10, 81-82, 100-101) elaborate: 
 

“It’s widely believed by teachers, trainers, and coaches that the most effective way to master a new 
skill is to give it dogged, single-minded focus, practicing over and over until you’ve got it down. 

 

https://eprints.gla.ac.uk/147253/7/147253.pdf
https://www.hup.harvard.edu/books/9780674729018
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Our faith in this runs deep, because most of us see fast gains during the learning phase of massed 
practice. What’s apparent from the research is that gains achieved during massed practice are 
transitory and melt away quickly. 
… 
Massed practice gives us the warm sensation of mastery because we’re looping information 
through short- term memory without having to reconstruct the learning from long-term memory. 
But just as with rereading as a study strategy, the fluency gained through massed practice is 
transitory, and our sense of mastery is illusory. It’s the effortful process of reconstructing the 
knowledge that triggers reconsolidation and deeper learning. 
… 
When you recall learning from short- term memory, as in rapid- fire practice, little mental effort is 
required, and little long-term benefit accrues. But when you recall it after some time has elapsed 
and your grasp of it has become a little rusty, you have to make an effort to reconstruct it. This 
effortful retrieval both strengthens the memory but also makes the learning pliable again, leading 
to its reconsolidation. Reconsolidation helps update your memories with new information and 
connect them to more recent learning.” 

 
The process of reconsolidation can be likened (pp.73-74) to the process of composing an essay 
through many iterations: 
 

“An apt analogy for how the brain consolidates new learning may be the experience of composing 
an essay. The first draft is rangy, imprecise. You discover what you want to say by trying to write 
it. After a couple of revisions you have sharpened the piece and cut away some of the extraneous 
points. You put it aside to let it ferment. When you pick it up again a day or two later, what you 
want to say has become clearer in your mind. Perhaps you now perceive that there are three main 
points you are making. You connect them to examples and supporting information familiar to 
your audience. You rearrange and draw together the elements of your argument to make it more 
effective and elegant. 
 
Similarly, the process of learning something often starts out feeling disorganized and unwieldy; the 
most important aspects are not always salient. Consolidation helps organize and solidify learning, 
and, notably, so does retrieval after a lapse of some time, because the act of retrieving a memory 
from long- term storage can both strengthen the memory traces and at the same time make them 
modifiable again, enabling them, for example, to connect to more recent learning. This process is 
called reconsolidation. This is how [spaced] retrieval practice modifies and strengthens learning.” 

 

| Consensus Among Researchers 

It’s worth noting that the spacing effect is still an active area of research. As Hartwig, Rohrer, & 
Dedrick (2022) describe, there may be other factors at play besides reconsolidation – but while 
the exact mechanism(s) underlying the spacing effect may still be debated, the result and utility 
of the spacing effect is fully agreed upon by researchers: 
 

“Researchers have proposed numerous theoretical explanations for the spacing effect (for reviews, 
see Benjamin & Tullis, 2010; Delaney et al., 2010; Dempster, 1989). According to various theories, 
the spacing effect may derive from mechanisms such as encoding variability (i.e., contextual 
variation provides richer encoding when two learning episodes are spaced apart), deficient 

 

https://psycnet.apa.org/manuscript/2022-18497-001.pdf
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processing (i.e., processing of material during a second learning episode is diminished if close in 
time to the first episode), consolidation (i.e., a second learning episode benefits from any memory 
consolidation that occurs in the interim), or study-phase retrieval (i.e., spacing promotes effortful 
retrieval during a second learning episode). However, no single mechanism has accounted for the 
entire body of spacing-related findings, and it is possible that a combination of mechanisms may 
best explain the effect (Delaney et al., 2010). 
 
Regardless of mechanism, spacing effects are robust – occurring across various materials, 
procedures, and learner characteristics (Dunlosky et al., 2013). Most important for the present 
study, spacing effects have been demonstrated in numerous classroom-based randomized studies 
(e.g., Seabrook et al., 2005; Sobel et al., 2011; for a review, see Dunlosky et al., 2013). Moreover, 
classroom studies have found spacing effects with math learning (Barzagar Nazari & Ebersbach, 
2019; Hopkins et al., 2016; Lyle et al., 2020; Schutte et al., 2015). In short, considerable data show 
that spaced math practice improves scores on delayed tests. … [T]he literature is clear that practice 
should be spaced across many class sessions if students are to retain the information long-term 
(Rawson et al., 2013; Rawson et al., 2018).” 

 
As Rohrer (2009) states: 
 

“...[T]he spacing effect is arguably one of the largest and most robust findings in learning research, 
and it appears to have few constraints.” 

 
Indeed, according to researcher Kang (2016), hundreds of studies have demonstrated that spaced 
repetition produces superior long-term retention. As a memorable example, he describes one of 
the earliest spaced repetition studies, whose findings have been backed up by 254 follow-up 
studies over the past century: 
 

“In one early study, to illustrate a specific instance, college students were asked to learn the 
Athenian Oath (Gordon, 1925). One group of students heard the oath read 6 times in a row; 
another group heard the oath 3 times on 1 day and 3 more times 3 days later. 
 
On the immediate test, the group that received massed repetition recalled slightly more than the 
group that received spaced repetition. But on the delayed test 4 weeks later, the spaced group 
clearly outperformed the massed group. 
 
While massed practice might appear [slightly] more effective than spaced practice in the short 
term, spaced practice produces durable long-term learning.” 

 
The benefits of spacing are so pronounced and conclusive that they have even attracted 
attention from the field of advertising, where the spacing effect has been reproduced in 
numerous studies of consumer memory of brands (Schmidt & Eisend, 2015). 
 

 

http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://www.tandfonline.com/doi/full/10.1080/00913367.2015.1018460
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Spaced Repetition is Underused 

Unfortunately, as with mastery learning, spaced repetition deviates from traditional convention 
in education and consequently remains rarely used in classrooms. As Kang (2016) laments: 
 

“Despite over a century of research findings demonstrating the spacing effect, however, it does not 
have widespread application in the classroom. The spacing effect is ‘a case study in the failure to 
apply the results of psychological research’ (Dempster, 1988, p. 627). 
… 
When deciding on what instructional techniques to use (and when to use them), many teachers 
default to familiar methods (e.g., how they themselves were taught; Lortie, 1975) or rely on their 
intuitions, both less than ideal: Our intuitions about learning can sometimes be plain wrong, and 
it would be a waste to overlook the growing evidence base regarding the effectiveness of various 
teaching or learning strategies.  
… 
The second major hurdle is conventional instructional practice, which typically favors massed 
practice. Teaching materials and aids (e.g., textbooks, worksheets) are usually organized in a 
modular way, which makes massed practice convenient. After presenting a new topic in class, 
teachers commonly give students practice with the topic via a homework assignment. But aside 
from that block of practice shortly after the introduction of a topic, no further practice usually 
follows, until a review session prior to a major exam.” 

 
Perhaps shockingly, Cepeda et al. (2009) observed that even many instructional design and 
educational psychology textbooks have little to no coverage of spaced repetition as a learning 
strategy: 
 

“Failure to consider distributed practice research is evident in instructional design and 
educational psychology texts, many of which fail even to mention the distributed practice effect 
(e.g., Bransford, Brown, & Cocking, 2000; Bruning, Schraw, Norby, & Ronning, 2004; Craig, 1996; 
Gardner, 1991; Morrison, Ross, & Kemp, 2001; Piskurich, Beckschi, & Hall, 2000). 
 
Those texts that mention the distributed practice effect often devote a paragraph or less to the 
topic (e.g., Glaser, 2000; Jensen, 1998; Ormrod, 1998; Rothwell & Kazanas, 1998; Schunk, 2000; 
Smith & Ragan, 1999) and offer widely divergent suggestions – many incorrect – about how long 
the lag between study sessions ought to be (cf. Gagné, Briggs, & Wager, 1992; Glaser, 2000; Jensen, 
1998; Morrison et al., 2001; Ormrod, 2003; Rothwell & Kazanas, 1998; Schunk, 2000; Smith & 
Ragan, 1999).” 

 
Typically, students learn a topic during class, practice it on the homework, and then forget 
about it until it’s time to study for a test. After the test, students are rarely required to practice 
the topic again, unless it just happens that some new topic requires them to remember the old 
one. The end result is that students end up forgetting most of what they learn – and as Rohrer 
(2009) notes, the forgetting can be so severe that it can appear as though they never learned 
those things in the first place: 
 

 

https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://escholarship.org/content/qt1n15d7xr/qt1n15d7xr.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf


The Math Academy Way – Working Draft  |  253 

“The effects of forgetting are often neglected by learning theorists, but acquisition has little utility 
unless material is retained. Indeed, although poor performance on standard achievement tests is 
often attributed to the absence of acquisition, forgetting may often be the culprit.  
 
For example, in the 1996 National Assessment of Educational Progress, 50% of U.S. eighth 
graders were unable to correctly multiply -5 and -7, even though the question was presented in a 
multiple-choice format (Reese, Miller, Mazzeo, & Dosse, 1997). If any of these erring students 
knew the product previously, which seems likely, their error was likely due to forgetting.” 

 
Often, students don’t even realize how quickly they forget in the absence of spaced review. For 
instance, Emeny, Hartwig, & Rohrer (2021) found that students who engaged in spaced practice 
could predict their own future test scores fairly accurately, while students who engaged in 
massed practice were severely overconfident in their predictions: 
 

“Following spaced practice, students predicted their future test scores very accurately, whereas 
massed practice yielded gross overconfidence. The overconfidence after massed practice might be 
due to the fluency or success with which students can solve a set of similar problems by merely 
repeating the same procedure over and over, giving the impression that students have mastered the 
content. In turn, overconfidence may lead students and their teachers to believe that further 
practice is unnecessary when, in fact, the gains will not be retained across time. 
 
Though massed practice produced overconfidence, we note that predictions following massed 
practice were only slightly greater than predictions following spaced practice. Thus, massed 
practice did not elevate predictions to an unrealistically high level but instead failed to help 
students recognize their low level of mastery.” 

 
Another factor keeping spaced repetition out of STEM classrooms in particular is that, to our 
best knowledge, the current literature on mathematical models for determining optimal 
repetition spacing is limited to the setting of independent flashcard-like tasks. STEM subjects, 
in contrast, are highly connected bodies of knowledge. This introduces significant modeling 
complexities: for instance, repetitions on advanced topics should “trickle down” to update the 
repetition schedules of simpler topics that are implicitly practiced (while being discounted 
appropriately since these repetitions are often too early to count for full credit towards the next 
repetition). 
 
To overcome this hurdle, Math Academy has developed a proprietary model of Fractional 
Implicit Repetition (FIRe) that not only accounts for implicit “trickle-down” repetitions but 
also 
 

● minimizes the number of reviews by choosing reviews whose implicit repetitions “knock 
out” other due reviews (like dominos), and 
 

 

https://files.eric.ed.gov/fulltext/ED611846.pdf
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● calibrates the spaced repetition process to each individual student on each individual 
topic (student ability and topic difficulty are competing factors – high student ability 
speeds up the overall student-topic learning speed, while high topic difficulty slows it 
down). 

 
Our highly sophisticated spaced repetition model is the product of years of research, practice, 
and development since 2019, and it continues to be refined as we gain more data on student 
learning outcomes. 
 

Spaced Repetition Improves Generalization 

People usually think of spaced repetition as a process to remember isolated pieces of 
information. But in a highly connected body of complex skills, like math, spaced repetition can 
also promote generalized learning that can more easily transfer across different contexts. 
 
To start off with some loose intuition, think about what happens when you reread a book or 
rewatch a movie that you haven’t seen in a while. Often, you see things that you didn’t notice 
before. You come in with a different mental state compared to the last time you watched, and 
you come out with some fresh perspectives and a more comprehensive understanding of the 
work. 
 
Indeed, a review by Smith & Scarf (2017) recounted multiple studies demonstrating that “spacing 
not only benefits the learning and retention of specific items but improves the generalization of learning”: 
 

“Hagman (1980) had participants learn and practice electrical testing on the same equipment or 
different equipment, with practice massed all in 1 day or spaced on 3 consecutive days. On a 
transfer test after a 2-week delay, spaced practice on different equipment resulted in better 
transfer than spaced practice on the same equipment. Spaced practice on the same equipment 
resulted in better performance on the transfer test than massed practice on the same or different 
equipment. Moreover, massed practice on the same or different equipment resulted in equivalent 
performance on the transfer test, indicating that spacing was necessary for training variations to 
promote generalization. 
 
Similarly, Moulton et al. (2006) compared massed and spaced groups who practiced microsurgical 
skills on PVC-artery models and arteries from a turkey thigh, and tested to what extent their skills 
transferred to a live rat 1 month after training. Moulton et al. (2006) found that the spaced group 
performed significantly better on a variety of outcome measures than the massed group. 
 
Studies with children have investigated the impact of spacing on generalization using a greater 
range of spacing intervals relative to the adult literature. For example, Vlach and Sandhofer 
(2012) investigated the impact of spacing on the generalization of simple and complex science 
concepts in 5- to 7-year-olds. The children in their study completed 4 lessons on biomes, with 

 

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00962/full
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each lesson involving a different context (desert, grasslands, artic, ocean or swamp), and a 
post-test 1 week after the last lesson. The massed group completed all four lessons in 1 day, the 
intermediate group completed 2 lessons per day for 2 days, and the Spaced Group completed 1 
lesson per day for 4 days. For simple generalization, the spaced group showed significantly greater 
improvement from the pre- to post-test than the massed group, and the intermediate group’s 
improvement was not significantly different when compared to the massed or spaced groups. In 
contrast, for complex generalization, the spaced group’s improvement was significantly better than 
both the massed and intermediate groups. In fact, the data suggest that the spaced group is the 
only group to show an improvement in their gain scores as the questions moved from simple to 
complex, though unfortunately this trend was not tested for statistical significance. Spacing 
therefore may provide a greater benefit for more complex generalizations. 
 
Gluckman et al. (2014) replicated Vlach and Sandhofer’s (2012) findings, but in the post-test they 
included questions on the children’s memory for facts and concepts talked about during the 
lessons (e.g., what is a biome?), in addition to generalization questions. The spaced group showed 
significantly greater improvement than the massed group for simple and complex generalization 
questions and for memory questions. The reported means displayed the same pattern as above, 
with spacing benefiting complex generalizations more than simple generalizations.” 

 
In a follow-up study, Vlach, Sandhofer, & Bjork (2014) also found that higher-fidelity spaced 
repetition with expanding intervals promoted even better generalization than spaced repetition 
with constant intervals, suggesting that optimizing the spaced repetition process can lead to 
significant gains in generalization: 
 

“...[W]e examined whether an expanding learning schedule would promote generalization to a 
greater degree than would an equally spaced learning schedule … [A]t the 24-hour delayed 
generalization test, we observed a significant difference between the two conditions: Children in 
the expanding learning condition significantly outperformed children in the equal spacing 
condition. 
… 
These findings suggest that the benefits of expanding schedules are not constrained to memory 
tasks, but that these learning schedules can promote multiple types of learning, such as the 
acquisition and generalization of information.” 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995866/
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Repetition Compression 

A common criticism of spaced repetition is that it requires an overwhelming number of reviews. 
While this can be true if spaced repetition is used to learn unrelated flashcards, there is 
something special about the subject of mathematics that allows Math Academy to avoid this 
issue. 
 
Unlike independent flashcards, mathematics is a hierarchical and highly connected body of 
knowledge. Whenever a student solves an advanced mathematical problem, there are many 
simpler mathematical skills that they practice implicitly. In other words, in mathematics, 
advanced skills tend to encompass many simpler skills. 
 
As a result, whenever a student has due reviews, Math Academy is able to compress them into a 
much smaller set of learning tasks that implicitly covers (i.e. provides repetitions on) all of the 
due reviews. We call this process repetition compression. 
 
To illustrate, consider the following multiplication problem, in which we multiply the two-digit 
number 39 by the one-digit number 6: 
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In order to perform the multiplication above, we have to multiply one-digit numbers and add a 
one-digit number to a two-digit number: 
 

● First, we multiply 6 × 9 = 54. We carry the 5 and write the 4 at the bottom. 
 

● Then, we multiply 6 × 3 = 18 and add 18 + 5 = 23. We write 23 at the bottom. 
 
In other words, Multiplying a Two-Digit Number by a One-Digit Number encompasses Multiplying 
One-Digit Numbers and Adding a One-Digit Number to a Two-Digit Number. 
 
We can visualize this using an encompassing graph as shown below. The encompassing graph 
is similar to a prerequisite graph, except the arrows indicate that a simpler topic is encompassed 
by a more advanced topic. (Encompassed topics are usually prerequisites, but prerequisites are 
often not fully encompassed.) 
 

 
 
Now, suppose that a student is due for reviews on all three of these topics. Because of the 
encompassings, the only review that they will actually have to do is Multiplying a Two-Digit 
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Number by a One-Digit Number. When they complete this review, it will implicitly provide 
repetitions on the topics that it encompasses because the student has effectively practiced those 
skills as well. 

 

→  

 

 
In general, the more encompassings there are, the fewer reviews are actually required. And 
mathematics has lots of encompassings! 
 

Calibrating to Individual Students and Topics 

As discussed in chapter 7, the speed at which students learn (and remember what they’ve 
learned) varies from student to student. It has been shown that some students learn faster and 
remember longer, while other students learn slower and forget more quickly (e.g., Kyllonen & 
Tirre, 1988; Zerr et al., 2018; McDermott & Zerr, 2019). Similarly, learning speed also varies 
across topics: easier topics are learned faster and remembered longer, while harder topics take 
longer to learn and are forgotten more quickly. 
 
So, for each student, each topic has a learning speed that depends on the student’s ability and 
the topic’s difficulty. Math Academy computes these student-topic learning speeds and uses 
them to adjust the speed of the spaced review process. 
 

● For instance, if a student does a review on a topic for which their learning speed is 2x, 
then that review counts as being worth 2 spaced repetitions. 
 

 

https://apps.dtic.mil/sti/pdfs/ADA212765.pdf
https://apps.dtic.mil/sti/pdfs/ADA212765.pdf
https://apps.dtic.mil/sti/pdfs/ADA212765.pdf
https://jeffberg.github.io/cv/papers/Zerr_2018_PsychologicalScience.pdf
https://journals.sagepub.com/doi/full/10.1177/096372141986900
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● Likewise, if a student does a review on a topic for which their learning speed is 0.5x, then 
that review counts as being worth 0.5 spaced repetitions. 

 

 

 

 
 

Student-topic learning speeds are also considered within the fractional implicit repetition 
algorithm. Whenever a topic’s spaced repetition process is being slowed down (i.e. whenever the 
student-topic learning speed is less than 1), we also shut down all incoming implicit repetition 
credit and instead force explicit reviews. The topic does not receive any implicit repetition 
credit that would normally “trickle down” from more advanced topics that encompass it. 
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We do this because, in practice, weaker students often have trouble absorbing implicit 
repetitions on difficult topics – they have a harder time generalizing that “what I learned earlier 
is a special case (or component) of what I'm learning now.'' The decision of whether or not to 
force explicit reviews is based on the student-topic learning speed because when a topic’s 
spaced repetition process is being slowed down, it indicates that the topic is considered rather 
difficult relative to the student’s ability. 
 
Lastly, it’s important to realize that while there are a number of factors that could affect a 
student's learning speed, such as their aptitude, forgetting rate, level of interest/motivation, or 
how tired or distracted they typically are while working on learning tasks – these factors are 
ultimately only as relevant as their effects on the student’s observed performance, which is what 
we use when adapting to each student’s individual learning curve. 
 

Spaced Repetition vs Spiraling 

Some curricula adopt a spiral approach where material is naturally revisited and further built 
upon in later textbook chapters and/or grades. Spiraling is clearly an improvement over the 
default mode of instruction, which includes little to no systematic review – and it allows 
teachers to make use of the spacing effect to some extent while teaching manually at a group 
level without the assistance of technology. However, spiraling is still nowhere near the level of 
granularity, precision, and individualization that is required to capture the maximum benefit of 
true spaced repetition. 
 
Note that while spiraling is sometimes conflated with discovery learning (both are widely 
attributed to psychologist Jerome Bruner in the 1960s), these are really two separate ideas, the 
latter of which we do not intend to endorse. There are plenty of spiral curricula (e.g., Saxon Math) 
that leverage direct instruction instead of discovery learning. The discussion here shall be 
concerned purely with the extent to which spiraling leverages the spacing effect, not the method 
by which instruction is delivered. 
 
To understand the difference between spiraling and spaced repetition, it helps to visualize the 
corresponding forgetting curves. We start with the default mode of instruction, in which large 
groups of related material are covered all at once and are not systematically revisited in the 
future. Under this mode of instruction, students quickly forget what they learn, and their overall 
retention is extremely low. 
 

 

https://en.wikipedia.org/wiki/Spiral_approach
https://en.wikipedia.org/wiki/Saxon_math
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By periodically revisiting content, a spiral curriculum periodically restores forgotten knowledge 
and leverages the spacing effect to slow the decay of that knowledge. This raises students’ 
overall retention of what they have learned. To illustrate, a forgetting curve for a spiral 
curriculum with two spirals is shown below: 
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Spaced repetition takes this line of thought to its fullest extent by fully optimizing the review 
process. It precisely calibrates the spacing of reviews so as to maintain a consistently high level 
of retention and slow down the decay (i.e. stretch out the decay curves) as quickly as possible. 
Review spacing continually adapts to student performance, expanding in response to good 
performance and shrinking in response to poor performance. By optimizing the review process 
to the fullest extent, spaced repetition further raises students’ retention of what they have 
learned. 
 

 
 
However, while spaced repetition is more optimal, it requires an inhuman amount of work from 
the instructor. Taken to its fullest extent, spaced repetition requires the instructor to keep track 
of a repetition schedule for every topic for every student and continually update that schedule 
based on the student’s performance – and each time a student learns (or reviews) an advanced 
topic, they’re implicitly reviewing many simpler topics, all of whose repetition schedules need to 
be adjusted as a result. 
 
In this view, spiraling can be characterized as “the best an instructor can do” manually while 
teaching at a group level without the assistance of technology. Spaced repetition is the optimal 
solution to maximizing retention, but it is infeasible to perform spaced repetition manually, so 
spiraling is the next-best option that an instructor can actually perform without the assistance 
of technology. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology, trans. HA Ruger 

& CE Bussenius. Teachers College, Columbia University. 
 
Importance: When reviews are spaced out or distributed over multiple sessions (as opposed to being crammed 
or massed into a single session), memory is not only restored, but also further consolidated, which slows its 
decay. This is now known as the spacing effect.  
 
 

● Kang, S. H. (2016). Spaced repetition promotes efficient and effective learning: Policy 
implications for instruction. Policy Insights from the Behavioral and Brain Sciences, 3(1), 12-19. 
 
Hartwig, M. K., Rohrer, D., & Dedrick, R. F. (2022). Scheduling math practice: Students’ 
underappreciation of spacing and interleaving. Journal of Experimental Psychology: Applied, 
28(1), 100. 
 
Rohrer, D. (2009). Research commentary: The effects of spacing and mixing practice 
problems. Journal for Research in Mathematics Education, 40(1), 4-17. 
 
Emeny, W. G., Hartwig, M. K., & Rohrer, D. (2021). Spaced mathematics practice improves 
test scores and reduces overconfidence. Applied Cognitive Psychology, 35(4), 1082-1089. 
 
Importance: Hundreds of studies have demonstrated that spaced repetition produces superior long-term 
learning. However, spaced repetition deviates from traditional convention in education and consequently 
remains rarely used in classrooms. As a result, severe forgetting sets in quickly, and students and teachers are 
often overconfident about how well students will perform on tests. 
 
 

● Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreign 
language vocabulary and the spacing effect. Psychological Science, 4(5), 316-321. 
 
Importance: Using spaced repetition, memory can be retained up to at least (and likely longer than) 5 years, the 

 

https://psychclassics.yorku.ca/Ebbinghaus/index.htm
https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://psycnet.apa.org/manuscript/2022-18497-001.pdf
https://psycnet.apa.org/manuscript/2022-18497-001.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://files.eric.ed.gov/fulltext/ED611846.pdf
https://files.eric.ed.gov/fulltext/ED611846.pdf
https://www.academia.edu/download/92264667/1993-bahrick.pdf
https://www.academia.edu/download/92264667/1993-bahrick.pdf
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longest delay period tested in the study. 
 
 

● Smith, C. D., & Scarf, D. (2017). Spacing repetitions over long timescales: a review and a 
reconsolidation explanation. Frontiers in Psychology, 8, 962. 
 
Vlach, H. A., Sandhofer, C. M., & Bjork, R. A. (2014). Equal spacing and expanding schedules 
in children’s categorization and generalization. Journal of experimental child psychology, 123, 
129-137. 
 
Importance: Multiple studies have demonstrated that spacing not only benefits the learning and retention of 
specific items but improves the generalization of learning. In a follow-up study, Vlach and colleagues also 
found that higher-fidelity spaced repetition with expanding intervals promoted even better generalization than 
spaced repetition with constant intervals, suggesting that optimizing the spaced repetition process can lead to 
significant gains in generalization. 
 
 

● Kyllonen, P. C., & Tirre, W. C. (1988). Individual differences in associative learning and 
forgetting. Intelligence, 12(4), 393-421. 
 
Zerr, C. L., Berg, J. J., Nelson, S. M., Fishell, A. K., Savalia, N. K., & McDermott, K. B. (2018). 
Learning efficiency: Identifying individual differences in learning rate and retention in 
healthy adults. Psychological science, 29(9), 1436-1450. 
 
McDermott, K. B., & Zerr, C. L. (2019). Individual differences in learning efficiency. Current 
Directions in Psychological Science, 28(6), 607-613. 
 
Importance: Stronger students learn faster and remember longer, while weaker students learn slower and forget 
more quickly. (This implies that spaced repetition schedules should be calibrated to the strengths of individual 
students.) 
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Additional Resources 

 
● Carpenter, S. K., & Agarwal, P. K. (2019). How to use spaced retrieval practice to boost 

learning. Iowa State University. 
 

● Rohrer, D., & Hartwig, M. K. (2023). Spaced and Interleaved Mathematics Practice. In C. 
Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.), In Their Own Words: What 
Scholars and Teachers Want You to Know About Why and How to Apply the Science of Learning in 
Your Academic Setting (pp. 111-21). Society for the Teaching of Psychology. 
 

● Pashler, H., Rohrer, D., & Cepeda, N. J. (2006). Temporal spacing and learning. APS Observer, 
19. 
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Chapter 19. Interleaving (Mixed Practice) 
 

Summary: Interleaving (or mixed practice) involves spreading minimal effective doses of practice 
across various skills, in contrast to blocked practice, which involves extensive consecutive 
repetition of a single skill. Blocked practice can give a false sense of mastery and fluency because 
it allows students to settle into a robotic rhythm of mindlessly applying one type of solution to one 
type of problem. Interleaving, on the other hand, creates a “desirable difficulty” that promotes 
vastly superior retention and generalization, making it a more effective review strategy. But 
despite its proven efficacy, interleaving faces resistance in classrooms due to a preference for 
practice that feels easier and appears to produce immediate performance gains, even if those 
performance gains quickly vanish afterwards and do not carry over to test performance. 

 

Interleaving vs Blocking 

In a traditional classroom, homework assignments usually focus on a single topic. For instance, 
if a student learns how to subtract multi-digit whole numbers during class, then their 
homework might contain 15 review problems to practice that skill. This is called blocked 
practice or blocking, in which a single skill is practiced many times consecutively. 
 
While some initial amount of blocking is useful when first learning a skill, blocking is very 
inefficient for building long-term memory afterwards during the review stage. Instead of putting 
those 10 review problems on a single review assignment, it would be more effective to spread 
them out over multiple review assignments that each cover a broad mix of previously-learned 
topics. 
 
For instance, one of those assignments might have the following breakdown of problems: 

● (3 problems) Subtracting Multi-Digit Whole Numbers 
● (3 problems) Adding One-Digit Decimals 
● (3 problems) Converting One-Digit Decimals Into Fractions 
● (3 problems) Converting Improper Fractions Into Mixed Numbers 
● (3 problems) Solving Word Problems Using Multi-Digit Addition 

 
This strategy is called interleaving (also known as varied practice or mixed practice). 
 

 

https://en.wikipedia.org/wiki/Varied_practice
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Benefits of Interleaving 

| Efficiency 

One benefit of interleaving is that it provides minimum effective doses of review for a handful of 
different topics, whereas blocked practice only hits a single topic and wastes most of the review 
effort in the realm of diminishing returns. As Rohrer & Pashler (2007) describe in a paper titled 
Increasing Retention without Increasing Study Time: 
 

“Our results suggest that a single session devoted to the study of some material should continue 
long enough to ensure that mastery is achieved but that immediate further study of the same 
material is an inefficient use of time. … The continuation of study immediately after the student 
has achieved error-free performance is known as overlearning. … [W]hile overlearning often 
increases performance for a short while, the benefit diminishes sharply over time.  
… 
Because overlearning requires more study time than not overlearning, the critical question is how 
the benefits of overlearning compare to the benefits resulting from some alternative use of the 
same time period. … [D]evoting this study time to the review of materials studied weeks, months, 
or even years earlier will typically pay far greater dividends than the continued study of material 
learned just a moment ago. 
 
In essence, overlearning simply provides very little bang for the buck, as each additional unit of 
uninterrupted study time provides an ever smaller return on the investment of study time.” 

 
As quoted elsewhere: 
 

“...[O]verlearning has the deficiencies of massed practice, and when the choice presents itself, our 
results suggest that overlearning will typically represent an inefficient use of study time.” – 
Pashler et al. (2007) 
 
“...[A] typical mathematics assignment consists of many problems relating to the same skill or 
concept, yet evidence suggests that students receive little long-term benefit from working more 
than several problems of the same kind in immediate succession (e.g., Lyle, Bego, Hopkins, Hieb, 
& Ralston, 2020).” – Rohrer & Hartwig (2020) 

 
This can be visualized on forgetting curves (shown below), and it suggests an effective method 
that Math Academy uses to select topics for interleaved review: simply choose those topics 
whose spaced repetitions are due (or are closest to being due). 

 

 

https://files.eric.ed.gov/fulltext/ED505647.pdf
https://link.springer.com/content/pdf/10.3758/BF03194050.pdf
https://files.eric.ed.gov/fulltext/ED611861.pdf
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Interleaving Blocking 

 

 

 

| Discrimination and Category Induction Learning 

Another benefit of interleaving is that, in addition to helping students practice carrying out 
solution techniques, it also enhances other types of learning that are necessary components of 
true mastery (see Rohrer, 2012 for a review): 
 

● (discrimination learning) matching problems with the appropriate solution techniques – 
for instance, the equations x2 + 3x + 2 = 0 and x + 3x + 2 = 0 look similar but require wildly 
different solution techniques. 
 

● (category induction learning) recognizing general features that distinguish problems 
requiring different solution techniques 

 
As Taylor & Rohrer (2010) elaborate: 
 

“When practice problems are blocked, however, students can successfully solve a set of practice 
problems without learning how to pair a problem with the skill. Indeed, because all of the 
problems relate to the topic – typically the one presented in the immediately preceding lesson – 
students can choose the appropriate procedure for each practice problem before they read the 
problem. While this reduces the difficulty of the practice problems, students are effectively relying 
on a crutch. Unfortunately for students, this weakness is exposed when these same kinds of 
problems appear on a cumulative exam, standardized test, or during a subsequent research career. 
 

 

https://files.eric.ed.gov/fulltext/ED536926.pdf
https://en.wikipedia.org/wiki/Discrimination_learning
https://en.wikipedia.org/wiki/Inductive_reasoning
http://uweb.cas.usf.edu/~drohrer/pdfs/Taylor%26Rohrer2010ACP.pdf
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By contrast, interleaved practice gives students an opportunity to practice pairing each kind of 
problem with the appropriate procedure. Far from being limited to statistics courses, the difficulty 
of pairing a problem with the appropriate procedure or concept is ubiquitous in mathematics. 
 
For example, the notorious difficulty of word problems is due partly to the fact that few word 
problems explicitly indicate which procedure or concept is appropriate. For example, the word 
problem, ‘If a bug crawls eastward for 8 m and then crawls northward for 15 m, how far is it from 
its starting point’? requires students to infer the need for the Pythagorean Theorem. However, no 
such inference is required if the word problem appears immediately after a block of problems that 
explicitly indicate the need for the Pythagorean theorem (e.g. if the legs of a right triangle have 
lengths 8 and 15 m, what is the length of its hypotenuse?). Thus, blocked practice can largely 
reduce the pedagogical value of a word problem. 
 
As a final example, it should be noted that blocked practice may facilitate students’ failure to 
discriminate between different kinds of problems even when these kinds of problems are not 
superficially similar. In elementary school, for example, students are ordinarily taught to find both 
the greatest common factor of two integers and the least common multiple of two integers. Thus, 
the instructions for these two kinds of problems are easily distinguished from each other (‘Find the 
greatest common factor ...’ vs. ‘Find the least common multiple ...’). However, if the practice 
problems of each kind are blocked, students can ignore the instruction and instead focus solely on 
the information that varies from problem to problem (i.e. the pair of integers). Students can then 
solve problems by merely repeatedly performing the same procedure without giving much thought 
to why it is appropriate.” 

 

| Experimental Support 

The benefits of interleaving are supported by numerous studies across a wide variety of domains 
including math, other academic subjects, raw cognitive tasks, motor skills, and even sports 
practice (see Rohrer, 2012 for a review). As summarized elsewhere by Rohrer (2009): 
 

“Experiments have shown that test scores can be dramatically improved by the introduction of 
spaced practice or mixed practice, which are the two defining features of mixed review. Moreover, 
neither spacing nor mixing requires an increase in the number of practice problems, meaning that 
both features increase efficiency as well as effectiveness. … Its effects on mathematics learning 
deserve greater consideration by teachers and researchers.” 

 
While blocking leads to more rapid gains in performance (which makes it useful when first 
learning a skill), interleaving promotes vastly superior retention and generalization (which 
makes it a more effective review strategy). As Rohrer, Dedrick, & Stershic (2015) clarify 
elsewhere: 
 

“...[A] small block of problems might be optimal, especially at the outset of an assignment given 
immediately after students are introduced to that kind of problem, perhaps because it gives 
students an opportunity to focus on the execution of a strategy (e.g., procedural steps and 
computation). Yet students who work more than a few problems of the same kind in immediate 

 

https://files.eric.ed.gov/fulltext/ED536926.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://files.eric.ed.gov/fulltext/ED557355.pdf


The Math Academy Way – Working Draft  |  271 

succession are likely to receive sharply diminishing returns on their additional effort (e.g., Rohrer 
& Taylor, 2006; Son & Sethi, 2006).” 

 
It’s hard to overstate how beneficial interleaving is, especially in the context of mathematics. 
Taylor & Rohrer (2010) found that simply interleaving practice problems, as opposed to blocking 
them, doubled test scores. This phenomenon was observed again by Rohrer, Dedrick, & Stershic 
(2015) using different, older students and more advanced math problems. As summarized by 
Scientific American (Pan, 2015): 
 

“The three-month study involved teaching 7th graders slope and graph problems. Weekly lessons, 
given by teachers, were largely unchanged from standard practice. Weekly homework worksheets, 
however, featured an interleaved or blocked design. When interleaved, both old and new problems 
of different types were mixed together. Of the nine participating classes, five used interleaving for 
slope problems and blocking for graph problems; the reverse occurred in the remaining four. 
 
Five days after the last lesson, each class held a review session for all students. A surprise final test 
occurred one day or one month later. The result? When the test was one day later, scores were 25 
percent better for problems trained with interleaving; at one month later, the interleaving 
advantage grew to 76 percent.” 

 
As Rohrer, Dedrick, & Stershic (2015) elaborate further, students whose practice was interleaved 
also demonstrated vastly superior retention of the tested material through a delay period: 
 

“...[A]part from its superiority to blocked practice, interleaved practice provided near immunity 
against forgetting, as the 30-fold increase in test delay reduced test scores by less than a tenth 
(from 80% to 74%). 
… 
Another reason for the large effects of interleaving observed here and elsewhere is that interleaved 
mathematics practice inherently guarantees that students space their practice. That is, in addition 
to the juxtaposition of different kinds of problems within an assignment, problems of the same 
kind are spaced across assignments.” 

 

Desirable Difficulty: Why Interleaving is Underused 

It is natural to ask, then: why is interleaving so rarely leveraged in classrooms? The answer is all 
too familiar. In addition to deviating from traditional teaching convention, interleaving has 
been shown to suffer from the same misconception that plagues active learning: interleaving 
produces more learning by increasing cognitive activation, but students often mistakenly 
interpret extra cognitive effort as an indication that they are not learning as well, when in fact 
the opposite is true (Kornell & Bjork, 2008). Consider the following concrete example (Brown, 
Roediger, & McDaniel, 2014, pp.65): 
 

 

http://uweb.cas.usf.edu/~drohrer/pdfs/Taylor%26Rohrer2010ACP.pdf
https://files.eric.ed.gov/fulltext/ED557355.pdf
https://www.scientificamerican.com/article/the-interleaving-effect-mixing-it-up-boosts-learning/
https://files.eric.ed.gov/fulltext/ED557355.pdf
https://web.williams.edu/Psychology/Faculty/Kornell/Publications/Kornell.Bjork.2008a.pdf
https://www.hup.harvard.edu/books/9780674729018
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“In interleaving, you don’t move from a complete practice set of one topic to go to another. You 
switch before each practice is complete. A friend of ours describes his own experience with this: 
 
‘I go to a hockey class and we’re learning skating skills, puck handling, shooting, and I notice that 
I get frustrated because we do a little bit of skating and just when I think I’m getting it, we go to 
stick handling, and I go home frustrated, saying, ‘Why doesn’t this guy keep letting us do these 
things until we get it?’’ 
 
This is actually the rare coach who understands that it’s more effective to distribute practice 
across these different skills than polish each one in turn. The athlete gets frustrated because the 
learning’s not proceeding quickly, but the next week he will be better at all aspects, the skating, the 
stick handling, and so on, than if he’d dedicated each session to polishing one skill.” 

 
Blocking, on the other hand, creates a more comfortable sense of fluent learning which 
artificially improves practice performance by reducing cognitive activation. When practicing a 
single skill many times consecutively, students settle into a robotic rhythm of mindlessly 
applying one type of solution to one type of problem. The mindlessness is quite literal: in a study 
that measured “mind-wandering” during practice, people were found to mind-wander much 
more while blocking than while interleaving (Metcalfe & Xu, 2016). But the artificially improved 
practice performance tricks students into thinking that they are learning better, even though the 
effect quickly vanishes afterwards and does not actually carry over to test performance. 
 
As summarized by Rohrer (2009): 
 

“A feature that decreases practice performance while increasing test performance has been 
described by Bjork and his colleagues as a desirable difficulty, and spacing and mixing are two of 
the most robust ones. As these researchers have noted, students and teachers sometimes avoid 
desirable difficulties such as spacing and mixing because they falsely believe that features yielding 
inferior practice performance must also yield inferior learning.” 

 
In the literature, a practice condition that makes the task harder, slowing down the learning 
process yet improving recall and transfer, is known as a desirable difficulty. As Rohrer & 
Hartwig (2020) elaborate: 
 

“Both spacing and interleaving are instances of a phenomenon known as a desirable difficulty 
(Bjork, 1994) – the focus of this forum. A desirable difficulty is a learning method that, when 
compared to an alternative, makes practice more difficult while nevertheless improving scores on 
a subsequent test (e.g., Bjork & Bjork, 2014; Bjork, 2018; Bjork & Bjork, 2019; Bjork & Kroll, 
2015; Schmidt & Bjork, 1992).” 

 
Many types of cognitive learning strategies introduce desirable difficulties – for instance, Bjork 
& Bjork (2011) list a few more: 
 

“Such desirable difficulties (Bjork, 1994; 2013) include varying the conditions of learning, rather 
than keeping them constant and predictable; interleaving instruction on separate topics, rather 

 

https://psycnet.apa.org/record/2015-53532-001
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://en.wikipedia.org/wiki/Desirable_difficulty
https://files.eric.ed.gov/fulltext/ED611861.pdf
https://burrell.edu/wp-content/uploads/2020/09/EBjorkRBjork_FABBSchapter2014-2nd-ed._WithCoverPage.pdf


The Math Academy Way – Working Draft  |  273 

than grouping instruction by topic (called blocking); spacing, rather than massing, study sessions 
on a given topic; and using tests, rather than presentations, as study events.” 

 
However, as Rohrer & Hartwig (2020) explain, the idea of desirable difficulties can be 
counterintuitive: 
 

“That difficulties can be desirable is not intuitive. In fact, many people mistakenly assume that 
the degree of fluency achieved during practice is a good marker of a strategy’s long-term efficacy 
(Bjork, Dunlosky, & Kornell, 2013). Indeed, many difficulties are undesirable in that they impede 
not only practice performance but also test scores, as might be true for students who do homework 
while watching television.” 

 
Furthermore, as Robert Bjork (1994) explains, the typical teacher is incentivized to maximize the 
immediate performance and/or happiness of their students, which biases them against 
introducing desirable difficulties: 
 

“Recent surveys of the relevant research literatures (see, e.g., Christina & Bjork, 1991; Farr, 1987; 
Reder & Klatzky, 1993; Schmidt & Bjork, 1992) leave no doubt that many of the most effective 
manipulations of training – in terms of post-training retention and transfer – share the property 
that they introduce difficulties for the learner. 
… 
If the research picture is so clear, why then are … nonproductive manipulations such common 
features of real-world training programs? … [T]he typical trainer is overexposed, so to speak, to the 
day-to-day performance and evaluative reactions of his or her trainees. A trainer, in effect, is 
vulnerable to a type of operant conditioning, where the reinforcing events are improvements in the 
[immediate] performance and/or happiness of trainees. 
 
Such a conditioning process, over time, can act to shift the trainer toward manipulations that 
increase the rate of correct responding – that make the trainee’s life easier, so to speak. Doing 
that, of course, will move the trainer away from introducing the types of desirable difficulties 
summarized in the preceding section.” 

 
What’s more, most educational organizations operate in a way that exacerbates this issue: 
 

“The tendency for instructors to be pushed toward training programs that maximize the 
performance or evaluative reaction of their trainees during is exacerbated by certain institutional 
characteristics that are common in real-world organizations. 
 
First, those responsible for training are often themselves evaluated in terms of the performance 
and satisfaction of their trainees during training, or at the end of training. 
 
Second, individuals with the day-to-day responsibility for training often do not get a chance to 
observe the post-training performance of the people they have trained; a trainee’s later successes 
and failures tend to occur in settings that are far removed from the original training environment, 
and from the trainer himself or herself. 
 

 

https://files.eric.ed.gov/fulltext/ED611861.pdf
https://gwern.net/doc/psychology/spaced-repetition/1994-bjork.pdf
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It is also rarely the case that systematic measurements of post-training on-the-job performance 
are even collected, let alone provided to a trainer as a guide to what manipulations do and do not 
achieve the post-training goals of training. 
 
And, finally, where refresher or retraining programs exist, they are typically the concern of 
individuals other than those responsible for the original training.” 

 

Micro- and Macro-Interleaving 

| Macro-Interleaving 

Math Academy practices interleaving within review and quiz tasks, where students interleave 
individual practice problems within the learning task. Lessons, on the other hand, involve 
minimal doses of blocked practice as this is more appropriate when a student is first learning 
new information. 
 
However, by breaking up our curriculum into a massive number of bite-size, atomic lessons, we 
implement some degree of interleaving by doing a breadth-first (as opposed to depth-first) 
learning path through those lessons. We call this macro-interleaving, as opposed to 
micro-interleaving (which entails interleaving practice problems within a single learning task). 
 
Most resources don't leverage macro-interleaving. For instance, when learning calculus in a 
typical school, a class might spend a month on limits, then a month on derivative rules, then a 
month on integration techniques, then a month on sequences and series – essentially, 
macro-blocking. The class spends all their time on one unit at a time before declaring it "done" 
and moving to the next one. To leverage macro-interleaving, it would be better to split up every 
hour-long class into 15 minutes learning one bite-size topic in each of the 4 categories. 
 

| Micro-Interleaving 

Math Academy uses macro-interleaving to its fullest extent. The same can be said about 
micro-interleaving, even though it may not appear that way on the surface. 
 
On the surface, it may appear that micro-interleaving is not fully leveraged when lessons 
(blocked practice) provide implicit spaced repetition credit towards component skills in need of 
micro-interleaved review. Shouldn’t every topic receive micro-interleaved review before 
appearing on a quiz? 

 



The Math Academy Way – Working Draft  |  275 

 
However, this is actually the optimal solution to a crucial tradeoff. 
 

● If you want to micro-interleave the problem types within every single topic before seeing 
them on quizzes, then you have to do an explicit review on every single topic before 
seeing it on the quiz. 

 
● And if you have to do an explicit review on every single topic, then pretty soon you're 

going to have way too many reviews and your progress is going to grind to a halt because 
you're spending all your time reviewing instead of learning new material (this is a 
common complaint about spaced repetition systems). 

 
So, you have to make a decision: should you 
 

1. fully micro-interleave everything before quizzes, or 
 

2. give up a little bit of micro-interleaving to enable spaced repetition optimizations 
leading to much faster progress through new material? 

 
If you want to maximize your learning efficiency, the rate at which your learning effort gets 
transformed into educational progress, then option 2 is better. 
 
Furthermore, in option 2, when engaging in repetition compression, very little 
micro-interleaving is actually being given up. Reviews micro-interleave not only the problem 
types in the original lesson, but also the component (prerequisite) skills -- and reviews are 
specifically chosen to cover as many component skills as possible that you need practice on, so 
you'll actually get an outsized dose of micro-interleaving compressed into each review. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Rohrer, D., & Pashler, H. (2007). Increasing retention without increasing study time. Current 

Directions in Psychological Science, 16(4), 183-186. 
 
Importance: Interleaving provides minimum effective doses of review for a handful of different topics, whereas 
blocked practice only hits a single topic and wastes most of the review effort in the realm of diminishing 
returns. 
 
 

● Rohrer, D. (2012). Interleaving helps students distinguish among similar concepts. 
Educational Psychology Review, 24, 355-367. 
 
Taylor, K., & Rohrer, D. (2010). The effects of interleaved practice. Applied cognitive psychology, 
24(6), 837-848. 
 
Importance: Interleaving enhances discrimination learning and category induction learning. While blocking 
leads to more rapid gains in performance (which makes it useful when first learning a skill), interleaving 
promotes vastly superior retention and transfer (which makes it a more effective review strategy). 
 
 

● Rohrer, D. (2009). Research commentary: The effects of spacing and mixing practice 
problems. Journal for Research in Mathematics Education, 40(1), 4-17. 
 
Importance: Test scores can be dramatically improved by the introduction of spaced practice or mixed practice, 
which are the two defining features of mixed review. Moreover, neither spacing nor mixing requires an increase 
in the number of practice problems, meaning that both features increase efficiency as well as effectiveness. 
 
 

● Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: 
Creating desirable difficulties to enhance learning. Psychology and the real world: Essays 
illustrating fundamental contributions to society, 2(59-68). 
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Rohrer, D., & Hartwig, M. K. (2020). Unanswered questions about spaced interleaved 
mathematics practice. Journal of Applied Research in Memory and Cognition, 9(4), 433. 
 
Importance: Desirable difficulties include varying the conditions of learning, rather than keeping them 
constant and predictable; interleaving instruction on separate topics, rather than grouping instruction by topic 
(called blocking); spacing, rather than massing, study sessions on a given topic; and using tests, rather than 
presentations, as study events. However, people may not capitalize on these advantageous forms of practice 
advantage because the fact that difficulties can be desirable is not intuitive 
 
 

● Bjork, R. A. (1994). Memory and metamemory considerations in the training of human 
beings.  In J. Metcalfe and A. Shimamura (Eds.), Metacognition: Knowing about knowing 
(pp.185-205). 
 
Importance: Many of the most effective manipulations of training – in terms of post-training retention and 
transfer – share the property that they introduce difficulties for the learner. The typical trainer is incentivized to 
maximize the immediate performance and/or happiness of trainees, which biases them against introducing 
these types of desirable difficulties. What’s more, most training organizations are set up to exacerbate this issue. 
 
 

● Taylor, K., & Rohrer, D. (2010). The effects of interleaved practice. Applied cognitive psychology, 
24(6), 837-848. 
 
Pan, S. C. (2015). The interleaving effect: mixing it up boosts learning. Scientific American, 
313(2). 
 
Rohrer, D., Dedrick, R. F., & Stershic, S. (2015). Interleaved practice improves mathematics 
learning. Journal of Educational Psychology, 107(3), 900. 
 
Importance: In multiple studies, simply interleaving practice problems, as opposed to blocking them, doubled 
or nearly doubled test scores. Additionally, students whose practice was interleaved also demonstrated vastly 
superior retention of the tested material through a delay period. 
 
 

● Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: Is spacing the “enemy of 
induction”?. Psychological science, 19(6), 585-592. 
 
Importance: It turns out that interleaving is NOT the “enemy of induction,” even though blocking apparently 
created a sense of fluent learning: participants rated blocking as more effective than interleaving, even after 
their own test performance had demonstrated the opposite. 
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● Metcalfe, J., & Xu, J. (2016). People mind wander more during massed than spaced inductive 
learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(6), 978. 
 
Importance: Participants were found to exhibit more frequent “mind wandering” while blocking than while 
interleaving. 
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● Carpenter, S. K., & Agarwal, P. K. (2019). How to use spaced retrieval practice to boost 

learning. Iowa State University. 
 

● Rohrer, D., & Hartwig, M. K. (2023). Spaced and Interleaved Mathematics Practice. In C. 
Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.), In Their Own Words: What 
Scholars and Teachers Want You to Know About Why and How to Apply the Science of Learning in 
Your Academic Setting (pp. 111-21). Society for the Teaching of Psychology. 
 

● Agarwal, P. K., & Agostinelli, A. (2020). Interleaving in Math: A Research-Based Strategy to 
Boost Learning. American Educator, 44(1), 24. 
 

● Atchison, K. (2020). True Mastery: The Benefits of Mixed Practice for Learning. 
EducationalRenaissance.com. 
 

● Are Spacing and Interleaving the Same Thing? InnerDrive.co.uk. 
 

● Interleaving Do’s and Don’ts. InnerDrive.co.uk. 
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Chapter 20. The Testing Effect (Retrieval Practice) 
 

Summary: The testing effect (or the retrieval practice effect) emphasizes that recalling 
information from memory, rather than repeated reading, enhances learning. It can be combined 
with spaced repetition to produce an even more potent learning technique known as spaced 
retrieval practice. Math Academy leverages the testing effect by continuously assessing students 
through quick, frequent, quizzes, and encouraging students to solve review problems without 
referring back to reference material. Measures are taken to reduce anxiety and promote a growth 
mindset during quizzes. 

 

Retrieval is the Most Effective Method of Review 

To maximize the amount by which your memory is extended when solving review problems, it’s 
necessary to avoid looking back at reference material unless you are totally stuck and cannot 
remember how to proceed. This is called the testing effect (also known as the retrieval practice 
effect): the best way to review material is to test yourself on it. As Yang et al. (2023b) summarize: 
 

“...[P]ractice testing (i.e., practice retrieval) is one of the most effective strategies to consolidate 
long-term retention of studied information and facilitate subsequent learning of new information, 
a phenomenon labeled the testing effect, the retrieval practice effect, or test-enhanced learning 
(Carpenter et  al., 2022; Pan & Rickard, 2018; Roediger & Butler, 2011; Shanks et al., 2023; Yang 
et al., 2021). 
 
It has been firmly established that retrieval practice is more beneficial by comparison with many 
other learning strategies, such as restudying (Roediger & Karpicke, 2006b), note-taking (Heitmann 
et al., 2018; Rummer et al., 2017), concept-mapping (Karpicke & Blunt, 2011) and other 
elaborative strategies (Larsen et al., 2013).” 

 
In other words, the testing effect exposes that "following along" is not the same as learning. 
Students often mistakenly believe that if they can follow along with a video, book, lecture, or any 
other resource, without feeling confused, then they're learning. However, if you define learning 
as a positive change in long-term memory, then you haven't learned unless you’re able to 
consistently reproduce the information you consumed and use it to solve problems. 
 
This doesn't happen when you just "follow along," even if you understand perfectly. It’s the act 
of retrieving information from memory that transfers the information to long-term memory. If 
you don’t practice retrieval, then the information quickly dissipates. It stays with you only 

 

https://en.wikipedia.org/wiki/Testing_effect
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briefly – just long enough to trick you into thinking it'll stick with you, when it's really on the 
way out the door. 
 
Amusingly, the testing effect is one of the oldest cognitive learning strategies known to 
humankind – records date back as far as 1620, when Francis Bacon noted (pp. 76) the following: 
 

“...[Y]ou won’t learn a passage as well by reading it straight through·twenty times as you will by 
reading it only ten times and trying each time to recite it from memory and looking at the text 
only when your memory fails.” 

 
Since the early 1900s, this observation has been experimentally supported by hundreds of studies 
across widely different memory tasks, content domains, and experimental methodologies, which 
have indicated that the benefits of retrieval practice are caused by increased cognitive effort 
(Rowland, 2014). In particular, the testing effect has been shown to carry over to classroom 
settings, where frequent quizzing (with feedback) promotes greater learning on both tested and 
non-tested material (McDaniel et al., 2007). Its reliability has even been explicitly demonstrated 
across individual cognitive differences like working memory capacity (Pastötter & Frings, 2019). 
As Yang et al. (2023b) summarize: 
 

“The classroom testing effect generalizes to students across different educational levels (including 
elementary school, middle school, high school, and university/college), and across 18 subject 
categories (e.g., Education, Medicine, Psychology, etc.). More importantly, the results showed that 
classroom quizzes not only benefit retention of factual knowledge, but also promote concept 
comprehension and facilitate knowledge transfer in the service of solving applied problems. 
Test-enhanced knowledge transfer has also been observed in many other studies (for a review, see 
Carpenter, 2012).” 

 

Spaced Retrieval Practice 

What’s more, as Kang (2016) notes, the testing effect can be combined with spaced repetition to 
produce an even more potent learning technique known as spaced retrieval practice: 
 

“Testing or spaced practice, each on its own, confers considerable advantages for learning. But, 
even better, the two strategies can be combined to amplify the benefits: Reviewing previously 
studied material can be accomplished through testing (often followed by corrective feedback) 
instead of rereading. 
 
In fact, many studies of the spacing effect compared spaced against massed retrieval practice, not 
just rereading (e.g., Bahrick, 1979; Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008). Spaced retrieval 
practice (with feedback) leads to better retention than spaced rereading. 
 
One study examined how type of review (reread vs. test with feedback), along with timing of review 
(massed vs. spaced), affected eighth-grade students’ retention of history facts (Carpenter, Pashler, 
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& Cepeda, 2009). On a final test 9 months later, spaced retrieval practice yielded the highest 
performance (higher than spaced rereading).” 

 
As Halpern & Hakel (2003) elaborate: 
 

“The single most important variable in promoting long-term retention and transfer is ‘practice at 
retrieval.’ This principle means that learners need to generate responses, with minimal cues, 
repeatedly over time with varied applications so that recall becomes fluent and is more likely to 
occur across different contexts and content domains. Simply stated, information that is frequently 
retrieved becomes more retrievable. 
… 
The effects of practice at retrieval are necessarily tied to a second robust finding in the learning 
literature – spaced practice is preferable to massed practice. For example, Bjork and his colleagues 
recommend spacing the intervals between instances of retrieval so that the time between them 
becomes increasingly longer – but not so long that retrieval accuracy suffers.” 

 
And as Yang et al. (2023a, pp.257) emphasize, frequent tests are ideal: 
 

“Although it has been widely documented that a single test is sufficient to enhance memory 
compared to restudying, many laboratory studies have observed that repeated tests (i.e., with 
studied content tested repeatedly) produce a larger enhancing effect on knowledge retention and 
transfer than a single test (e.g., Butler, 2010; Dunlosky et al., this volume; Roediger & Karpicke, 
2006b). 
 
The enhancing effect of repeated tests has been re-confirmed by many classroom studies. 
Moreover, Yang et al.’s (2021) metaanalysis coded the number of test repetitions (i.e., how many 
times the studied information was tested), and conducted analyses to quantify the relation 
between the magnitude of test-enhanced learning and the number of test (quiz) repetitions. The 
results showed a clear trend that the more occasions on which class content is quizzed, the more 
effectively quizzing aids exam performance.” 

 

The Testing Effect is Underused 

Unfortunately, the testing effect remains underused in traditional classrooms, where usually 
only a handful of tests are given throughout the entire duration of a course. As McDaniel et al. 
(2007) lament: 
 

“...[D]espite this impressive body of evidence, the implications of the testing effect literature for 
educational practice have been virtually ignored by the educational community and educational 
research.” 

 
Math Academy, however, leverages the testing effect to its fullest extent by testing frequently as 
a part of the learning process itself. We implement a form of continuous assessment with quick, 
frequent quizzes, and we also incorporate the testing effect into normal spaced reviews (i.e. 
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spaced retrieval practice) by encouraging students to solve problems without referring to worked 
examples (though they can go back to lesson and dig up a similar example for reference if they 
really get stuck on a review problem). Even multi-part problems – which pull together many 
earlier topics to explore a challenging, complex problem context one part at a time – leverage 
the testing effect by requiring the student to recall each previously-learned skill and apply it to a 
novel context. 
 
Yet another inefficiency of traditional classrooms is that, in addition to occurring relatively 
infrequently, tests and quizzes are normally focused around a single set of closely-related topics. 
As we discussed in the context of interleaving, Math Academy achieves far greater efficiency by 
selecting a broad mixture of topics – not only on reviews and multi-part problems, but also on 
assessments. This produces much more forward progress in spaced repetition schedules and 
also helps students learn to match problems with the appropriate solution techniques. 
 

Reducing Anxiety and Promoting a Growth Mindset 

| Appropriate vs Inappropriate Usage of Timed Tests 

Many people view tests, especially timed tests, as anxiety-inducing and consequently something 
to be avoided. However, it is important to realize that test anxiety can be mitigated, and often 
even reduced, by giving frequent, low-stakes quizzes on skills that a student is ready to be tested 
on. 
 
Often, negative feelings toward timed tests are the result of inappropriate usage of the timed test, 
such as introducing it too early in the student’s skill development process. A prerequisite for 
timed testing is that the student should be able to perform the tested skills successfully in an 
untimed setting. Timed testing demands a high level of proficiency, and anxiety can be produced 
if there is a mismatch between a student’s level of proficiency and the performance expectations 
that are placed on them. 
 
As Codding, Peltier, & Campbell (2023) summarize: 
 

“Learners may benefit more or less from various instructional strategies or tactics, depending on 
the learners’ stage of skill development (Burns et al., 2010). That is, are learners working on 
acquiring a math skill or concept, building skill fluency, generalizing or transferring a skill or 
concept, or using known skills and concepts to solve novel problems? 
 
Just because timed practice opportunities have been proven effective to build fluency, for example, 
does not mean that timed trials always benefit learners (Fuchs et al., 2021). Using timed trials with 
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students who are working to acquire new knowledge or skills is an instructional mismatch; rather, 
students need to display accuracy with skills and concepts before building fluency. It is not the 
fault of the strategy; it is an issue with when to implement the strategy.” 

 

| Desirable vs Undesirable Difficulties 

More generally, while desirable difficulties are a necessary component of effective practice, they 
are only effective insofar as the learner is able to overcome them. Introducing an 
insurmountable difficulty is never desirable, even if that type of difficulty may be desirable later 
on in the learning process once the student has increased their proficiency. It is the act of 
overcoming a desirable difficulty that leads to greater learning. As echoed by Brown, Roediger, & 
McDaniel (2014, pp.98-99): 
 

“Elizabeth and Robert Bjork, who coined the phrase ‘desirable difficulties,’ write that difficulties 
are desirable because ‘they trigger encoding and retrieval processes that support learning, 
comprehension, and remembering. If, however, the learner does not have the background 
knowledge or skills to respond to them successfully, they become undesirable difficulties.’ 
… 
Clearly, impediments that you cannot overcome are not desirable. … To be desirable, a difficulty 
must be something learners can overcome through increased effort.” 

 
As Bjork & Bjork (2023, pp.22) elaborate: 
 

“...[I]t is necessary to consider what level of difficulty is appropriate in order for that level to 
enhance a given student’s learning, and the appropriate level that is optimal may vary 
considerably based on a student’s background and prior level of knowledge. 
 
To illustrate, while it is typically desirable to have learners generate a skill or some knowledge 
from memory, rather than simply showing them that skill or presenting that knowledge to them, a 
given learner needs to be equipped via prior learning to succeed at the generation task – or at 
least succeed in activating relevant aspects of the necessary skill or knowledge – for the act of 
generating to then potentiate their subsequent practice or study (e.g., Little & Bjork, 2016; 
Richland, Kornell, & Kao, 2009).” 

 
Indeed, Codding, VanDerHeyden, & Chehayeb (2023) found that when the type of instruction is 
mismatched against a student’s level of proficiency, the instruction will not only be ineffective, 
but can also lead to anxiety: 
 

“This study illustrated that when instructional strategies are misaligned with students’ stage of 
skill development, even when the instructional target is appropriate, students’ math performance 
will not improve. Furthermore, as suggested in this study, students may exhibit higher levels of 
anxiety and lower acceptability of misaligned instructional practices.” 
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| Appropriate Timed Testing Can Reduce Math Anxiety 

However, when used appropriately, timed testing can be a valuable tool for overcoming math 
anxiety by building fluency and automaticity. According to VanDerHeyden & Codding (2020), 
who have extensive experience researching academic intervention in mathematics, the 
relationship between math anxiety and timed testing is unclear, but there is a clear relationship 
between math anxiety and math proficiency (lower proficiency promotes anxiety, which further 
hinders skill development), and timed tests are useful for building proficiency: 
 

“Teachers and parents worry about math anxiety, and some math education experts caution 
against tactics used in math class, such as timed tasks and tests, that might theoretically stoke 
anxiety (Boaler, 2012). First, the evidence does not support that people are naturally anxious or 
not anxious in the context of math assessment and instruction (Hart & Ganley, 2019). Second, 
simply avoiding math or certain math tactics should not be expected to ameliorate anxiety in the 
long term. Third, preventing a student from full exposure to math assessment and intervention 
costs the student the opportunity to develop adaptive coping mechanisms to deal with possible 
anxiety in the face of challenging academic content. 
… 
Gunderson, Park, Maloney, Bellock, and Levine (2018) found a reciprocal relationship between 
skill proficiency and anxiety, such that weak skill reliably preceded anxiety and anxiety further 
contributed to weak skill development. They found that anxiety could be attenuated by two 
strategies: improving skill proficiency (this cannot be done by avoiding challenging math work and 
timed assessment) and promoting a growth mindset (as opposed to a fixed ability mindset) using 
specific language and instructional arrangements to promote the idea that I, as a student, can 
work hard and beat my score; I can grow today; my brain is like a muscle that gets stronger when I 
work it with challenging math content. 
… 
There is very little empirical evidence examining whether timed tests have a causal impact on 
anxiety, and the existing few studies that include school-age participants do not support the idea 
(Grays, Rhymer, & Swartzmiller, 2017; Tsui & Mazzocco, 2006). What is clear is there is a modest, 
negative bidirectional relationship between math anxiety and math performance (Namkung et al., 
2019). These correlational data suggest that poor mathematics performance can lead to high math 
anxiety and that high math anxiety can lead to poor mathematics performance. The remedy that 
school psychologists can advocate for is to identify, through effective and efficient screening, the 
presence of high math anxiety and determine which students would benefit from supplemental 
and targeted mathematics supports. Intervention approaches should target math skill deficits, 
address high anxiety, and promote a growth mindset as well as monitor progress toward clearly 
defined objectives using tools that are brief (often timed), reliable, and valid.” 

 
These sentiments are echoed by the U.S. Department of Education (Fuchs et al., 2021, pp.58), 
which recommends regularly using timed review activities to promote automatic retrieval of 
previously-learned material, since students will struggle to learn more advanced material unless 
they are able to automatically retrieve previously-learned material: 
 

“Regularly include timed activities as one way to build students’ fluency in mathematics. … 
[However,] Do not use timed activities to introduce and teach mathematics concepts and 
operations. 
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… 
Quickly retrieving basic arithmetic facts (addition, subtraction, multiplication, and division) is not 
easy for students who experience difficulties in mathematics. Without such retrieval, students will 
struggle to follow their teachers’ explanations of new mathematical ideas. Automatic retrieval 
gives students more mental energy to understand relatively complex mathematical tasks and 
execute multistep mathematical procedures. 
 
Thus, building automatic fact retrieval in students is one (of many) important goals of 
intervention. In addition to basic facts, timed activities may address other mathematical subtasks 
important for solving complex problems.” 

 
As summarized by Yang et al. (2023b), quizzes can increase students’ skill proficiency and 
familiarity with the format of assessment, which can reduce their test anxiety: 
 

“...[I]t is well-known that tests motivate students to study harder (Yang et al., 2017a), encourage 
them to read the assigned textbook materials to prepare for the lecture (Heiner et al., 2014), reduce 
mind wandering while learning (Szpunar et al., 2013), and increase class attendance (Schrank, 
2016). 
 
These beneficial effects of practice tests [i.e., quizzes] may make students more prepared for tests 
and reduce their worry about poor test performance, therefore alleviating TA [test anxiety] (Brown 
& Tallon, 2015; Yusefzadeh et al., 2019). Furthermore, tests may inform students about the 
formats and contents of future assessments, hence reducing uncertainty (i.e., uncertainty about 
how and what content will later be assessed) and mitigating anxiety (Jerrell & Betty, 2005).” 

 
What’s more, as Hattie & Yates (2013, pp.59) explain, performing well on a timed test has been 
shown to build confidence and promote positive feelings: 
 

“...[S]tudies conducted under laboratory conditions show that, for both adults and children, speed 
of access in memory functions strongly predicts two other attributes: confidence and positive 
feelings. Whenever people are able to recall important information quickly there is an inherent 
sense in that the information is correct, together with a momentary flush of pleasure.” 

 
Indeed, in a study of thousands of middle and high schoolers’ reactions to frequent (at least 
weekly), low-stakes, immediate-feedback quizzes during class, Agarwal et al. (2014) found that 
most students felt it made them less nervous for higher-stakes tests, and students were more 
likely to report a decrease in overall test anxiety than an increase: 
 

“We asked students whether clicker quizzes (i.e., retrieval practice) made them more or less 
nervous for unit tests and exams … Remarkably, 72% of students reported that retrieval practice 
made them less nervous for tests and exams, 22% said they experienced about the same level of 
nervousness, and only 6% of students said clickers made them more nervous. 
 
Next, we asked students whether they experienced more, less, or about the same level of test 
anxiety for the class with retrieval practice compared to other classes in which they did not have 
retrieval practice … [O]nly 19% of students reported experiencing more anxiety, while 81% of 
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students said they experienced about the same level of test anxiety or less in the class with 
retrieval practice compared to their other classes (33% reported less nervousness). 
… 
[T]he use of clicker response systems reduced self-reported test anxiety. … We hypothesize that 
students became familiar with taking quizzes, knew the course material better, and hence were less 
anxious when facing the unit test on which they would receive a grade.” 

 
As echoed by Yang et al. (2023a): 
 

“...[F]requent testing has little impact on or even reduces (rather than increases) test anxiety. For 
instance, in a large sample study (over 1,000 college participants), Yang et al. (2020) observed that 
interpolating tests across a study phase has minimal influence on participants’ test anxiety. 
Szpunar et al. (2013) found that frequent tests significantly relieve test anxiety (for related 
findings, see Khanna, 2015). Furthermore, in a large-scale survey conducted by Agarwal et al. 
(2014), 72% of 1,306 middle and 102 high school students reported that frequent quizzes made 
them less anxious about exams, with only 8% reporting the opposite.” 

 
In a separate meta-analysis, Yang et al. (2023b) summarized some other empirical studies 
observing that quizzes reduced test anxiety: 
 

“...[I]n a quasi-experimental study conducted by Piroozmanesh and Imanipour (2018), two classes 
of nursing undergraduates took a coronary care course, with the experimental class taking class 
quizzes across the semester, whereas the control class did not take these quizzes. For both classes, 
students’ TA was measured at the beginning of the semester (pretest) and one week before the final 
exam (posttest). The results showed that although there was minimal difference in TA during the 
pretest between the two classes, students in the experimental class were much less anxious before 
the final exam than those in the control class.  
… 
Szpunar et  al. (2013) obtained consistent findings. Specifically, after both the test and the no-test 
group completed the interim test on Segment 4, both groups were told that they would take a 
cumulative test on all four segments and were instructed to report how anxious they were about 
the cumulative test. Consistent with the findings from Piroozmanesh and Imanipour (2018) and 
Brown and Tallon (2015), Szpunar et al. (2013) observed that participants in the test group were 
much less anxious than those in the no-test group.” 

 
The meta-analysis, which included 24 studies across thousands of participants, ultimately 
concluded that quizzes reduce test anxiety about as much as they increase academic 
performance (in both cases, a medium effect size of about 0.5). 
 

“The current review integrates results across 24 studies (i.e., 25 effects based on 3,374 participants) 
to determine the effect of practice tests (quizzes) on test anxiety (TA) and explore potential 
moderators of the effect. The results show strong Bayesian evidence (BF10>25,000) that practice 
tests appreciably reduce TA to a medium extent (Hedges’ g=-0.52), with minimal evidence of 
publication bias. 
… 
In a recent meta-analytic review, Yang et al. (2021) integrated data from over 48,000 students, 
extracted from 222 classroom studies, to determine whether class quizzes improve students’ 
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academic performance. The answer is affirmative: Class quizzes enhance students’ academic 
attainment to a medium extent (Hedges’ g=0.50).” 

 

| Implementing Appropriate Timed Testing 

Granted, in a traditional classroom, it is difficult to keep instructional practices aligned to 
student proficiencies because each student develops their skills at a different rate. For any given 
skill, at any given time, some students may be ready for timed testing while others may need 
additional practice – but the teacher generally does not have enough bandwidth to manage 
different learning tasks for different students on different skills, and the best they can do is 
provide learning tasks that feel appropriate for the class “on average.” Of course, those learning 
tasks will be inappropriate for some students and may lead to decreased learning and increased 
anxiety. 
 
Math Academy, however, adapts the level of instruction to each individual student on each 
individual skill. Students initially learn skills during highly-scaffolded lessons, where they are 
given as much practice as they need to master the skills. Only after they demonstrate their 
ability to perform the skills do they begin seeing those skills on higher-intensity forms of 
practice like timed quizzes. 
 
The quizzes are low-stakes and frequent, and are structured in a way that promotes an “I can do 
this” growth mindset. Whenever a student misses a question on a quiz, they receive a remedial 
review on the corresponding topic so that they can increase their proficiency in that area. If a 
student does less than “well” on a quiz, then they are also given the opportunity to retake the 
quiz to demonstrate their improved proficiency. The goal is not only to give students realistic 
feedback about their skill proficiency, but also to demonstrate to students that they can improve 
their proficiency by putting forth effort on their learning tasks.  

 



290  |  The Math Academy Way – Working Draft 

 

Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic 

review of the testing effect. Psychological bulletin, 140(6), 1432. 
 
Importance: The testing effect has been experimentally supported by hundreds of studies across widely 
different memory tasks, content domains, and experimental methodologies, which have indicated that the 
benefits of retrieval practice are caused by increased cognitive effort. 
 
 

● McDaniel, M. A., Anderson, J. L., Derbish, M. H., & Morrisette, N. (2007). Testing the testing 
effect in the classroom. European journal of cognitive psychology, 19(4-5), 494-513. 
 
Yang, C., Shanks, D. R., Zhao, W., Fan, T., & Luo, L. (2023). Frequent Quizzing Accelerates 
Classroom Learning. In C. Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.), 
In Their Own Words: What Scholars and Teachers Want You to Know About Why and How to Apply 
the Science of Learning in Your Academic Setting (pp. 252-62). Society for the Teaching of 
Psychology. 
 
Importance: The testing effect has been shown to carry over to classroom settings, where frequent quizzing 
(with feedback) promotes greater learning on both tested and non-tested material. 
 
 

● Pastötter, B., & Frings, C. (2019). The forward testing effect is reliable and independent of 
learners’ working memory capacity. Journal of cognition, 2(1). 
 
Importance: The reliability of the testing effect has even been explicitly demonstrated across individual 
cognitive differences like working memory capacity. 
 
 

● Codding, R. S., Peltier, C., & Campbell, J. (2023). Introducing the Science of Math. 
TEACHING Exceptional Children, 00400599221121721. 
 

 

https://www.researchgate.net/publication/264988491_The_Effect_of_Testing_Versus_Restudy_on_Retention_A_Meta-Analytic_Review_of_the_Testing_Effect
https://www.researchgate.net/publication/264988491_The_Effect_of_Testing_Versus_Restudy_on_Retention_A_Meta-Analytic_Review_of_the_Testing_Effect
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5890758fdccf8e4ea75571f7d8741940660ba38f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5890758fdccf8e4ea75571f7d8741940660ba38f
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://journalofcognition.org/articles/10.5334/joc.82
https://journalofcognition.org/articles/10.5334/joc.82
https://journals.sagepub.com/doi/10.1177/00400599221121721


The Math Academy Way – Working Draft  |  291 

Codding, R. S., VanDerHeyden, A., & Chehayeb, R. (2023). Using Data to Intensify Math 
Instruction: An Evaluation of the Instructional Hierarchy. Remedial and Special Education, 
07419325231194354. 
 
Importance: Often, negative feelings toward timed tests are the result of inappropriate usage of the timed test, 
such as introducing it too early in the student’s skill development process. A prerequisite for timed testing is 
that the student should be able to perform the tested skills successfully in an untimed setting. Timed testing 
demands a high level of proficiency, and anxiety can be produced if there is a mismatch between a student’s 
level of proficiency and the performance expectations that are placed on them. 
 
 

● VanDerHeyden, A. M., & Codding, R. S. (2020). Belief-Based versus Evidence-Based Math 
Assessment and Instruction. Communique, 48(5). 
 
Fuchs, L. S., Bucka, N., Clarke, B., Dougherty, B., Jordan, N. C., Karp, K. S., ... & Morgan, S. 
(2021). Assisting Students Struggling with Mathematics: Intervention in the Elementary 
Grades. Educator's Practice Guide. WWC 2021006. What Works Clearinghouse. 
 
Importance: The relationship between math anxiety and timed testing is unclear, but there is a clear 
relationship between math anxiety and math proficiency (lower proficiency promotes anxiety, which further 
hinders skill development), and timed tests are useful for building proficiency. Timed review activities should be 
used to promote automatic retrieval of previously-learned material, since students will struggle to learn more 
advanced material unless they are able to automatically retrieve previously-learned material. 
 
 

● Agarwal, P. K., D’antonio, L., Roediger III, H. L., McDermott, K. B., & McDaniel, M. A. 
(2014). Classroom-based programs of retrieval practice reduce middle school and high school 
students’ test anxiety. Journal of applied research in memory and cognition, 3(3), 131-139. 
 
Yang, C., Shanks, D. R., Zhao, W., Fan, T., & Luo, L. (2023a). Frequent Quizzing Accelerates 
Classroom Learning. In C. Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.), 
In Their Own Words: What Scholars and Teachers Want You to Know About Why and How to Apply 
the Science of Learning in Your Academic Setting (pp. 252-62). Society for the Teaching of 
Psychology. 
 
Yang, C., Li, J., Zhao, W., Luo, L., & Shanks, D. R. (2023b). Do practice tests (quizzes) reduce 
or provoke test anxiety? A meta-analytic review. Educational Psychology Review, 35(3), 87. 
 

 

https://journals.sagepub.com/doi/10.1177/07419325231194354
https://journals.sagepub.com/doi/10.1177/07419325231194354
https://eric.ed.gov/?id=EJ1238887
https://eric.ed.gov/?id=EJ1238887
https://ies.ed.gov/ncee/WWC/Docs/PracticeGuide/WWC2021006-Math-PG.pdf#page=58
https://ies.ed.gov/ncee/WWC/Docs/PracticeGuide/WWC2021006-Math-PG.pdf#page=58
https://pdf.retrievalpractice.org/guide/Agarwal_etal_2014_JARMAC.pdf
https://pdf.retrievalpractice.org/guide/Agarwal_etal_2014_JARMAC.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
http://metacog.bnu.edu.cn/pdf/articles/2023/YangLiZhaoLuo2023.pdf
http://metacog.bnu.edu.cn/pdf/articles/2023/YangLiZhaoLuo2023.pdf


292  |  The Math Academy Way – Working Draft 

Importance: Frequent, low-stakes, immediate-feedback quizzes can make students less nervous for 
higher-stakes tests and reduce their overall test anxiety. 
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retrieval practice to improve learning. Washington University in St. Louis. 
 

● Gonzalez, J. (2017). Retrieval Practice: The Most Powerful Learning Strategy You’re Not 
Using. CultOfPedagogy.com.  

 

http://uweb.cas.usf.edu/~drohrer/pdfs/Interleaved_Mathematics_Practice_Guide.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Interleaved_Mathematics_Practice_Guide.pdf
https://ctl.wustl.edu/resources/using-retrieval-practice-to-increase-student-learning/
https://ctl.wustl.edu/resources/using-retrieval-practice-to-increase-student-learning/
https://www.cultofpedagogy.com/retrieval-practice/
https://www.cultofpedagogy.com/retrieval-practice/
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Chapter 21. Targeted Remediation 
 

Summary: Math Academy provides automated, precise support to help students strengthen 
weaknesses on specific topics or component skills that are personal sources of struggle. The bar for 
success is never lowered; rather, students are given additional practice that helps them clear the 
bar fully and independently on their next attempt. 

 

High-Granularity, High-Integrity Remediation 

In the academic literature, the term targeted remediation usually describes identifying individual 
students in need of broad remedial intervention such as tutoring, remedial courses, academic 
advisor meetings, etc. 
 
But in the context of Math Academy, targeted remediation refers to fully-automated support 
mechanisms that are targeted to individual students on individual topics – and often even more 
precisely to the individual component skills that are causing a student to struggle on a topic. 
 
Math Academy’s targeted remediation is different from the concept of adaptive feedback in 
intelligent tutoring systems, which the Handbook of Learning Analytics describes as providing 
hints to the learner or recommendations for the instructional designer to better match a task to 
students’ abilities (Pardo et al., 2017, pp.166): 
 

“A large portion of the studies related to adaptive feedback have been developed through … 
systems that provide a set of learning tasks to students in specific knowledge domains. … the 
system commonly offers various types of task-level feedback, such as next-step hints (e.g., 
Peddycord, Hicks, & Barnes, 2014); correctness hints, also known as flag feedback 
(Barker-Plummer, Cox, & Dale, 2011); positive or encouraging hints (Stefanescu, Rus, & Graesser, 
2014); recommendations on next steps or tasks [not for the students, but for the instructional 
designer to better match the task to students’ abilities] (Ben-Naim, Bain, & Marcus, 2009); or 
various combinations of the above.” 

 
Unlike the forms of adaptive feedback described above, which effectively lower the bar for 
success on the learning task, Math Academy’s targeted remediation mechanisms keep the bar 
where it’s at. Instead, we focus on actions that are most likely to strengthen a student’s area of 
weakness and empower them to clear the bar fully and independently on their next attempt. 
 

 

https://www.researchgate.net/profile/Dragan-Gasevic/publication/324687610_Handbook_of_Learning_Analytics/links/5add21e1aca272fdaf86c95c/Handbook-of-Learning-Analytics.pdf
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To our best knowledge, targeted remediation at Math Academy’s level of granularity (individual 
students on individual topics) and integrity (maintaining the bar for success) has not been 
studied in academic literature. 
 
As stated by the handbook (Pardo et al., 2017, pp.168): 
 

“A dearth of research explores how students interact with and are transformed by 
algorithm-produced feedback. Furthermore, the relationship between the type of interventions 
that can be derived from data analysis and adequate forms of feedback remains inadequately 
explored.” 

 
This may be for reasons of academic infeasibility: the expense (both time and money) to develop 
an automated learning system is large and increases proportionally with the granularity of the 
curriculum, making it a rather industrial endeavor. 
 

Corrective Remediation 

When students struggle, we follow up with corrective remedial support that is targeted to their 
specific point of struggle. 
 

● If they struggle during a task, we give more questions – that is, more chances to learn 
and demonstrate their learning. 
 

● If they fail a lesson, we give them a break and enable them to make progress learning 
unrelated topics before asking them to re-attempt the failed lesson. Usually, all it takes 
to rebound is a bit of rest and a fresh pair of eyes. On average, students pass their first 
attempt 95% of the time, and within two attempts 99% of the time, without any further 
intervention.  
 

● However, if we detect that they get stuck again in the same place in a lesson, without 
making any additional forward progress, we give them remedial reviews to help them 
strengthen their foundations in the areas most relevant to their point of struggle. 
 

● Whenever they miss a question on a quiz, we immediately follow up with a remedial 
review on the corresponding topic. 

 
One challenge in properly targeting remedial reviews is that often, the key prerequisite concepts 
or skills required to solve a particular problem lie several steps back in the hierarchy of 

 

https://www.researchgate.net/profile/Dragan-Gasevic/publication/324687610_Handbook_of_Learning_Analytics/links/5add21e1aca272fdaf86c95c/Handbook-of-Learning-Analytics.pdf
https://en.wikipedia.org/wiki/Corrective_action
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mathematical knowledge. However, when developing our content and building our knowledge 
graph, we explicitly keep track of the key prerequisites that are used in each part of each lesson. 
This allows us to pinpoint the exact topics that are necessary for successful remediation. 
 
As a concrete example, suppose that while re-attempting the lesson Exponents with Rational 
Bases, a student 
 

● manages to pass Part 1: Expressing a Product Using an Exponent, e.g. expressing 4 × 4 × 4 as 
43 , but 
 

● gets stuck again at Part 2: Evaluating an Exponential Expression, e.g. computing (–4)3 = (–4) × 
(–4) × (–4). 
 

In this situation, the student has demonstrated that they understand the concept of an exponent, 
but they are struggling to use multiplication to compute the result. 
 
Although multiplication occurs several steps back in the sequence of prerequisites, we have 
linked Part 2: Evaluating an Exponential Expression to the key prerequisite topic Multiplying 
Negative Numbers, which allows us to automatically trigger a targeted remedial review on 
Multiplying Negative Numbers. 
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Preventative Remediation 

We also attempt to predict struggle beforehand and leverage preventative remediation to avoid 
the struggle entirely. Conveniently, this happens naturally when we tailor the spaced repetition 
process to individual student-topic learning speeds. 
 
The initial starting value of a student-topic learning speed is a prediction of how difficult that 
topic is going to be for the given student. The prediction is primarily based on learning speeds 
of other related topics – so if the predicted learning speed is low (i.e. we predict that the student 
is going to struggle on the topic), then it is low because one or more of the other related topics 
has a low learning speed. 
 
Those other related topics with low learning speed are the predicted points of failure in the 
student’s predicted struggle, we are already performing preventative remediation on them by 
slowing down their spaced repetition processes and forcing explicit reviews. In other words, 
“post”-remediation of earlier topics naturally functions as “pre”-remediation for later topics. 

 

https://en.wikipedia.org/wiki/Preventive_action
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Foundational Remediation 

Math Academy’s diagnostics are tailored to specific courses – but in addition to assessing 
knowledge of course content, they also assess knowledge of lower-grade foundations that 
students need to know in order to succeed in the course (i.e. they are prerequisites for the 
course). 
 
For instance, students need to know plenty of arithmetic in order to solve problems in algebra. 
So, the foundations of algebra include those necessary topics from arithmetic. Likewise, the 
foundations of calculus include plenty of algebra and also some geometry, and the foundations 
of most university-level courses (such as multivariable calculus) include plenty of single-variable 
calculus and precalculus. 
 
It is common for incoming students to lack some foundational knowledge that is necessary to 
succeed in their chosen course. While this could spell doom in a traditional classroom, Math 
Academy is able to estimate a student’s knowledge frontier even if it is below their course, and help 
them fill in any missing foundational knowledge while simultaneously allowing them to learn 
course topics that don’t rely on that missing foundational knowledge. 
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Math Academy also optimizes the timing of when to have students begin shoring up their 
missing foundations. Students are generally more excited to work on topics in the course that 
they are enrolled in, than they are to shore up missing foundations – and students tend to be 
more productive and consistent when they’re excited about what they’re doing. So, we allow 
students to start out completing the topics in their enrolled course that don’t depend on their 
missing foundations. This helps students build up some momentum, make some progress 
towards their primary goal, and get into a habit of frequent learning. Once a student reaches the 
point where they need to shore up missing foundations in order to continue making progress in 
their enrolled course, they have built up plenty of momentum that will help carry them through 
the process of foundational remediation and make them far less likely to get discouraged and 
quit. 
 

Content Remediation 

As a mastery learning system, Math Academy holds its students accountable for learning – and 
in return, our students hold us accountable for providing material that is properly scaffolded and 
easy to learn from. If there is ever a topic that more than a tiny percentage of students struggle 
with, then we see it as an indication that we need to not only remediate the students, but also 
remediate our own content. 
 
We take content remediation extremely seriously. Math Academy is like a tutor whose 
livelihood depends on the actual learning outcomes of its students – unlike many other learning 
platforms (and even many human teachers) that let students move on to more advanced content 
despite poor performance on prerequisite content. If a student can’t succeed in mastering the 
material that we ask them to learn, then we are out of a job. 
 
To help us remediate our content, we have developed learning analytics tools that allow us to 
analyze the performance of any piece of content, at any level of granularity: not just individual 
topics, but also each individual knowledge point within a topic, and each individual question 
within a knowledge point. 
 
If the pass rate for any lesson is unacceptably low, we can pinpoint the exact knowledge point(s) 
within that topic where students are getting stuck, as well as any particular questions within 
that knowledge point that are causing issues. 
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By continually refining our content and algorithms over the course of many years, we have 
reached the point that our students pass lessons 95% of the time on the first try and 99% of 
the time within two tries. As we continue refining our content into the future, these pass rates 
will continue to increase. 
 
It’s worth emphasizing that when we refine and remediate our own content, we do not lower 
standards. The way we raise pass rates is by introducing more scaffolding into lessons to further 
reduce cognitive load. Sometimes this means improving the way a concept or worked example is 
explained; other times it means adding an intermediate knowledge point to a lesson, or 
occasionally even splitting an entire topic into two or more different topics that more 
specifically address different contexts of the original topic. 
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Chapter 22. Gamification 
 

Summary: Gamification, integrating game-like elements into learning environments, proves 
effective in increasing student learning, engagement, and enjoyment. Math Academy utilizes 
eXperience Points (XP) to gamify learning, incentivizing both quantity and quality of work. XP 
awards bonus points for stellar performance and introduces penalties for poor efforts, preventing 
exploitation by adversarial students. Math Academy also remedies loopholes that are typically 
found (and exploited) in traditional classrooms. 

 

Importance of Gamification 

| Increasing Learning, Engagement, and Enjoyment 

A common theme across many of the cognitive learning strategies described in this document 
has been that they produce more learning by increasing cognitive activation, which students 
find less enjoyable because it’s more mentally taxing. Furthering the inconvenience, students 
often mistakenly interpret extra cognitive effort as an indication that they are not learning as 
well, when in fact the opposite is true. 
 
Thankfully, the strategy of gamification behaves differently. Numerous studies have shown that 
when game-like elements (such as points and leaderboards) are integrated into student learning 
environments in ways that are 
 

1. aligned with the goals of a course, the motivations of the students, and the context of the 
educational setting, and 
 

2. robust to “hacking” or “gaming the system” (i.e. behaviors that attempt to bypass 
learning by exploiting loopholes in the rules of the game), 
 

students typically not only learn more and engage more with the content, but also enjoy it more 
(Bai, Hew, & Huang, 2020; Looyestyn et al., 2017; Lei et al., 2022). 
 

 

https://en.wikipedia.org/wiki/Gamification
https://www.sciencedirect.com/science/article/abs/pii/S1747938X19302908
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173403
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12664
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This applies not only to young students, but also to university-level students and even 
postgraduate students in technically-challenging courses. As the authors of a gamification study 
at Delft University of Technology describe (Iosup & Epema, 2014): 
 

“Over the past three years, we have applied gamification to undergraduate and graduate courses 
in a leading technical university in the Netherlands and in Europe. Ours is one of the first 
long-running attempts to show that gamification can be used to teach technically challenging 
courses. 
 
The two gamification-based courses, the first-year B.Sc. course Computer Organization and an 
M.Sc.-level course on the emerging technology of Cloud Computing, have been cumulatively 
followed by over 450 students and passed by over 75% of them, at the first attempt. 
 
We find that gamification is correlated with an increase in the percentage of passing students, and 
in the participation in voluntary activities and challenging assignments. Gamification seems to 
also foster interaction in the classroom and trigger students to pay more attention to the design of 
the course. We also observe very positive student assessments and volunteered testimonials, and a 
Teacher of the Year award.” 

 

| Increasing Learning Efficiency 

Clearly, gamification is a potent strategy for maintaining student motivation and helping 
students feel good about hard work. (Any readers with experience in high-performance athletics 
will know the wonders that a bit of gamification can do for maintaining morale while working 
hard at practice – usually in the form of tracking personal progress or engaging in friendly 
competition with teammates.) 
 
But even more importantly, gamification also functions as a lever by which to incentivize 
high-quality work. Because adaptive learning systems like Math Academy speed up or slow 
down based on student performance, a student’s learning efficiency depends highly on the 
quality of their work: 
 

● a student who performs well can make a lot of progress in a course by doing a relatively 
small amount of work, while 
 

● a student who performs poorly will have to do significantly more work to make the same 
amount of progress. 

 
In effect, for a student to make educational progress in an adaptive learning system like Math 
Academy, they have to put forth a sufficient amount of high-quality work. 
 

 

https://www.researchgate.net/profile/Alexandru-Iosup/publication/262395542_An_experience_report_on_using_gamification_in_technical_higher_education/links/544f9f240cf2bca5ce92aa8f/An-experience-report-on-using-gamification-in-technical-higher-education.pdf
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Incentivizing Quantity and Quality of Work 

| XP-Time Equivalence 

To incentivize both quantity and quality of work, Math Academy uses eXperience Points (XP) 
to implement a gamified reward system. Students earn XP upon successful completion of 
learning tasks, and XP is calibrated so that 1 XP represents 1 minute of fully-focused, 
fully-productive work for an average serious (but imperfect) student. 
 

 
 
XP makes it easy for parents and teachers to set reasonable learning goals as a daily target 
number of XP, and it gives the system a lever by which to incentivize student behavior that is 
beneficial to learning. 
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| Incentivizing Quantity of Work 

For instance, to incentivize students to put forth a sufficient quantity of work, we implemented 
(optional) competitive weekly leaderboards where students are grouped into smaller leagues 
with other students of similar competitive ability. If a student earns enough XP to end the week 
near the top of their league, they promote to a higher league. But if they end the week near the 
bottom of their league, they demote to a lower league. 
 

 
 

 



The Math Academy Way – Working Draft  |  307 

| Incentivizing Quality of Work 

Likewise, to incentivize students to maintain high quality of work, we scale XP awards so that 
there is a large reward for doing a stellar job (as opposed to just “good enough”), and students 
must clear a bar in order to earn any XP. This stands in contrast to traditional 
aggregate-percentage grades, which provide minimal reward for going above and beyond while 
simultaneously often allowing students to “get by” with poor performance. 
 
XP allows us to implement a “carrot and stick” approach to incentivizing student effort: we 
award 
 

● bonus XP for perfect performance – awarding bonus points for high performance has 
been shown to increase performance (Egram, 1979), 
 

● full XP for nearly perfect performance, 
 

● most XP for otherwise passable performance, 
 

● a little XP for nearly passable performance, 
 

● zero XP for poor performance, and 
 

● a negative XP penalty for blowing off a task. 
 

 

https://library2.smu.ca/bitstream/handle/01/22155/clarke_engram_deborah_p_masters_1979.PDF?sequence=1
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Closing Loopholes 

Most students use Math Academy properly and therefore rarely (if ever) see XP penalties. 
However, we have experienced on numerous occasions that in the absence of a penalty system, 
adversarial students will complete tasks that they feel are easy and then submit random guesses 
to intentionally fail out of tasks that require more effort. This tanks their performance, causing 
their adaptive learning schedule to slow down or even begin falling backwards, which drastically 
slows or even prevents progress towards their educational goals. 
 
We call these students “XP hackers.” They engage in this behavior because they are trying to 
minimize their effort per XP. Without XP penalties, the XP hacker strategy can be exploited 
indefinitely and students can rack up XP without making progress. 
 
As Baker et al. (2006) noted, a way to prevent adversarial students from gaming the system is to 
tweak the rules in a way that “change[s] the incentive to game – whereas gaming might previously have 
been seen as a way to avoid work, it now leads to extra work.” In our case, this means taking away 

 

https://www.cs.cmu.edu/~listen/pdfs/Baker175.pdf
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some XP whenever a student blows off a task (and even more XP if they continue blowing off 
tasks). By introducing a penalty, we tweak the game so that the way to minimize effort per XP is 
to give a legitimate effort on every task. 
 
In order to trigger and calibrate XP penalties appropriately, we interpret penalties as conveying 
how frustrated a teacher, tutor, or guardian sitting next to the student would become. After 
implementing XP penalties, we found that many adversarial students’ rates of passing learning 
tasks jumped from under 50% to over 90%, while students who used the system properly and 
truly gave their best effort rarely (if ever) experienced penalties. 
 
Math Academy also remedies loopholes that are typically found (and exploited) in traditional 
classrooms. For instance, the most obvious enabler of cheating in traditional classrooms is 
giving all students the same homework and assessments. But Math Academy customizes its 
learning path to each individual student, so it’s unusual for classmates to have the opportunity 
to work on the same topic at the same time – and even if they do, then they are served different 
questions, since we have a large bank of questions for each topic. Our assessments are also fully 
individualized and even randomized, meaning that there is absolutely no edge that a student can 
gain from seeing a classmate’s quiz. And if a student fails a task and has to re-attempt it, we 
change up the questions and even wait for a delay period before allowing the re-attempt (in the 
meantime, the student is able to continue making progress along other learning paths). 
 

Progress vs XP 

It’s important to realize that a student’s progress (percent of topics completed) in a course is 
highly correlated with, but fundamentally different from, the amount of XP that they have 
earned in the course. The only time a student's progress percent increases is when they 
complete a lesson. As a student gets further into their course (and math in general), more review 
is required to maintain their growing knowledge base. As a result, students make progress faster 
at the beginning of a course than they do at the end of a course. 
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Progress is nonlinear. Students make progress very quickly at the beginning of a course because 
they can focus primarily on learning new topics (i.e. lessons) as opposed to maintaining existing 
knowledge (i.e. reviews). But the more they learn, the more there is to review – so progress slows 
down. That said, we have a hard rule to ensure that on average, students have the opportunity to 
work on a lesson at least ~25% of the time or so at a minimum. 
 
At surface level, it might seem like it would be more straightforward to measure progress in 
terms of XP completed relative to the total estimated XP in the course. However, this would 
create issues because the amount of XP in a course can change significantly in response to 
changes in student performance (because the spaced repetition process speeds up when students 
are doing well and slows down when students are struggling). If progress were measured in 
terms of XP, then a student could run into a situation where they are completing lessons but 
their progress is going down because their overall performance is decreasing, which would be 
far more counterintuitive and confusing. 
 
It is also worth noting that progress naturally slow downs at the end of a course, when a student 
only has a handful of topics remaining. Often, when we give a student a new lesson, we are 
actually knocking out one or more due reviews with that lesson. The more lessons are on the 
student’s "knowledge frontier," the more likely it is that we can find a new lesson to knock out 
some due reviews. The flipside is that when a student only has a handful of lessons left in a 
course, it severely restricts our ability to carry out this sort of optimization. To be clear, the 
system is not moving slowly in an absolute sense, just “less fast” relative to the normal 
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turbo-boosted behavior, because it is unable to take advantage of a strategy that it normally uses 
to turbo-boost the rate at which students can make progress. 
 
While this constraint can be circumvented by allowing the system to receive topics from the 
next course (that knock out some currently-due reviews) once they are in the last handful of 
topics of a course, that would lead to confusion, and in the big picture it would just be a 
micro-optimization that has negligible impact on total XP per course. 
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Key Papers 

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier 
in this chapter. If citing this chapter, cite from the body (above). 

 
 
● Bai, S., Hew, K. F., & Huang, B. (2020). Does gamification improve student learning outcome? 

Evidence from a meta-analysis and synthesis of qualitative data in educational contexts. 
Educational Research Review, 30, 100322. 
 
Looyestyn, J., Kernot, J., Boshoff, K., Ryan, J., Edney, S., & Maher, C. (2017). Does 
gamification increase engagement with online programs? A systematic review. PloS one, 
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Lei, H., Wang, C., Chiu, M. M., & Chen, S. (2022). Do educational games affect students' 
achievement emotions? Evidence from a meta‐analysis. Journal of Computer Assisted Learning, 
38(4), 946-959. 
 
Importance: When game-like elements are properly integrated into student learning environments, students 
typically not only learn and engage more with the content, but also enjoy it more. 
 
 

● Iosup, A., & Epema, D. (2014, March). An experience report on using gamification in 
technical higher education. In Proceedings of the 45th ACM technical symposium on Computer 
science education (pp. 27-32). 
 
Importance: The benefits of gamification apply not only to young students, but also to university-level students 
and even postgraduate students in technically-challenging courses. In addition to increasing learning and 
engagement, the authors note that gamification “seems to also foster interaction in the classroom and trigger 
students to pay more attention to the design of the course. We also observe very positive student assessments 
and volunteered testimonials, and a Teacher of the Year award.” 
 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S1747938X19302908
https://www.sciencedirect.com/science/article/abs/pii/S1747938X19302908
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173403
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173403
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12664
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12664
https://www.researchgate.net/profile/Alexandru-Iosup/publication/262395542_An_experience_report_on_using_gamification_in_technical_higher_education/links/544f9f240cf2bca5ce92aa8f/An-experience-report-on-using-gamification-in-technical-higher-education.pdf
https://www.researchgate.net/profile/Alexandru-Iosup/publication/262395542_An_experience_report_on_using_gamification_in_technical_higher_education/links/544f9f240cf2bca5ce92aa8f/An-experience-report-on-using-gamification-in-technical-higher-education.pdf
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Chapter 23. Leveraging Cognitive Learning 
Strategies Requires Technology 

 
Summary: While there is plenty of room for teachers to make better use of cognitive learning 
strategies in the classroom, teachers are victims of circumstance in a profession lacking effective 
accountability and incentive structures, and the end result is that students continue to receive 
mediocre educational experiences. Given a sufficient degree of accountability and incentives, 
there is no law of physics preventing a teacher from putting forth the work needed to deliver an 
optimal learning experience to a single student. However, in the absence of technology, it is 
impossible for a single human teacher to deliver an optimal learning experience to a classroom of 
many students with heterogeneous knowledge profiles, each of whom needs to work on different 
types of problems and receive immediate feedback on each of their attempts. This is why 
technology is necessary. By automatically leveraging cognitive learning strategies to their fullest 
extent, Math Academy is able to deliver an optimized, adaptive, personalized learning experience 
to each individual student. Math Academy students are perpetually engaged in productive 
problem-solving, with immediate feedback (and remediation when necessary), on the specific types 
of problems (and in the specific types of settings) that will move the needle the most for their 
personal learning progress. 

 

High-Level Context 

| The Problem: Cognitive Learning Strategies Remain Underused 

It is common knowledge among researchers that the cognitive learning strategies discussed in 
previous chapters have the potential to drastically improve the depth, pace, and overall success 
of student learning. These strategies have been identified and researched extensively since the 
early to mid-1900s, with key findings being successfully reproduced over and over again since 
then. However, as discussed in chapter 2, the disappointing reality is that the practice of 
education has barely changed, and in many ways remains in direct opposition to these 
strategies. 
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| The Blame: Teachers are Victims of Circumstance 

So, what happened? Why does the potential of these cognitive learning strategies remain 
unrealized, and who – or what – is to blame? 
 
We do not wish to direct the blame at teachers. For instance, one cannot blame Sherman (1992) – 
who did everything in his power to leverage mastery-based learning within his own classroom 
and promote its widespread adoption – for having his efforts opposed and ultimately 
overpowered by various forces at play within the education system. Likewise, one cannot blame 
other teachers who have thought about ways to capitalize on these cognitive learning strategies 
to improve student learning, but, for one reason or another, found it too difficult to integrate 
them into their classroom in practice. 
 
Teachers are victims of circumstance. The education system – like any other system whose 
intended function (promoting learning) is limited by the scarce resources (teachers and funding) 
available to achieve that function – has developed its own conventions while seeking the closest 
thing to a solution to an intractable problem. As the education system has evolved over 
hundreds of years, these conventions have accumulated and ossified into hard-baked constraints 
that outlive their usefulness. Many constraints are no longer helpful to the goal of promoting 
learning, yet remain deeply ingrained and act to resist change. 
 
As summarized by Sherman (1992): 
 

“...[T]he investment in keeping things as they are may be impossible to overcome. … Improving 
instruction is the goal, but only in the context of not changing anything that is important to any 
vested interest. … [When the role of the teacher] does not conform to what most people think of as 
teaching; this is a problem and an obstacle to implementation.” 

 

| The Solution: Technology Changes Everything 

In the past, scarcity of resources (teachers and funding) has made it impossible to fully leverage 
cognitive learning strategies in traditional classrooms. This scarcity persists today. However, a 
new variable has also entered the equation: technology.  
 
Technology changes everything. Individualized digital learning environments are now 
technologically possible and commercially viable. Technology not only lets us circumvent the 
opposing inertia in the education system, but also helps us leverage cognitive learning strategies 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
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to a degree that would not be feasible for even the most agreeable and hard-working human 
teacher.  
 

Resistance to Additional Effort 

One force keeping cognitive learning strategies out of the classroom is that they require 
additional effort from teachers and students. Again, we do not say this with the intent to cast 
blame – it is simply a fact that as humans, we tend to resist additional effort, especially when we 
(like teachers) are already tired or (like young students) do not fully understand the long-term 
consequences of our decisions. 
 
Teachers are already under a high level of baseline stress while facing strenuous – and often 
conflicting – demands from administrators, parents, and students. When it comes to promoting 
learning, teachers can keep all parties satisfied (or, perhaps, not too dissatisfied) by checking the 
boxes on long-standing conventions of the educational system: some lectures, some homework, 
several quizzes, and a couple tests. There’s only so much you can deride a teacher for meeting 
the societal and institutional expectations that are placed on them, but not going above and 
beyond. 
 
The same applies to students. Like a child who prefers to eat junk food and watch TV, but 
manages to complete their chores and eat the vegetables on their dinner plate, there’s only so 
much you can deride a student for showing up to class, being undisruptive, and performing well 
enough on homework and tests to earn a passing grade, but not going above and beyond to 
maximize their learning and retention – especially when they are too young to fully grasp the 
long-term impact of their present habits on their future life. 
 
Additionally, it is unreasonable to expect students to be highly motivated to maximize their 
learning in every subject when a reality of human nature is that most people are unmotivated to 
do most things. The tiny subset of things that a person is motivated to do in life are called their 
career and hobbies, and most people only have at most one career and a few hobbies. Everything 
else – i.e., the vast majority of things – are chores. 
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| Active Learning 

Active learning requires teachers to spend more time and effort preparing and managing 
classroom activities. As we emphasized in chapter 10, true active learning requires every 
individual student to be actively engaged on every piece of material to be learned. 
 
To implement true active learning in a math classroom, a teacher must continually supply 
problems, enforce that each student is attempting the problems, and check each student’s 
solution to each problem, providing corrective feedback whenever a solution is incorrect. 
Enforcing that students are doing the problems can be particularly difficult and frustrating, 
since all but the most motivated students will typically avoid mentally taxing work when 
possible. (While it’s true that more students may become motivated to put forth a high level of 
effort and maintain it in the absence of supervision if they enter a state of flow, there is typically 
an initial “activation energy” that must be overcome before reaching the flow experience, 
similar to how one might not look forward to working out but actually have a lot of fun and feel 
proud of their effort once they get going with it.) 
 
Additionally, active learning requires the teacher to make lots of on-the-fly decisions, which can 
feel overwhelming to teachers who are more comfortable planning everything out beforehand. 
What the class does next should depend on whether students were able to do what the teacher 
originally asked them to do. These decisions can get especially tricky when the class becomes 
“split” with many students being able to do the original activity and being ready to move on to 
something more challenging, but many other students struggling and needing more practice (or 
even remedial support) with the original activity. No active learning lesson plan survives contact 
with a class full of students of varying abilities. 
 
On the whole, it’s way easier for a teacher to just talk and write on the board and “check the 
box” on active learning (without really leveraging it) by making sure that students appear to be 
listening, having some discussion with the smartest kids in the class, and maybe displaying a 
few problems and asking who wants to come up to the board to present a solution. 
 

| Non-Interference, Interleaving, and Spaced Repetition 

> Shuffling Instructional Material 

As discussed in chapter 17, conceptually related pieces of knowledge can interfere with each 
other’s recall, especially when taught simultaneously or in close succession. To minimize the 
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impact of interference, new concepts should be taught alongside dissimilar material. However, it 
is easier for teachers to work in batch, creating week-by-week class lesson plans around groups 
of related material. 
 
Additionally, the instructional material that’s provided to teachers is typically structured around 
curricular units of related content. While it may make sense to structure a reference book this 
way (for ease of lookup), this organization does not reflect the optimal order to actually teach the 
material. As a result, a teacher wishing to leverage non-interference would have to invest 
additional time and effort into “shuffling” their instructional material while ensuring that every 
topic comes later than its prerequisites in the shuffled order. 
 
Similar effort is required to leverage interleaving, which, as discussed in chapter 18, involves 
spreading out review problems over multiple review assignments that each cover a broad mix of 
previously-learned topics. Most textbooks are structured the opposite way – in blocks, where a 
single skill is practiced many times consecutively. As a result, a teacher typically cannot just 
grab an interleaved assignment “off the shelf” – rather, they will need to invest time and effort 
to manually allocate problems across interleaved assignments and keep track of how much 
practice they’ve given the class on each topic. 
 

> Opening a Can of Worms on Forgetting 

Interleaving can open a can of worms on who doesn’t remember what: when students are doing 
a variety of different things and are not able to mindlessly apply one type of procedure to one 
type of problem, they may need reminders of how and when to apply various solution 
techniques, they may make a variety of different types of mistakes, and they may have scattered 
questions in class the next day about the previous day’s homework. The same thing happens 
during spaced repetition, which, as discussed in chapter 18, involves spacing out reviews over 
time. 
 
Opening this can of worms is actually a good thing because it provides an immense amount of 
information about what each student needs to work on – but it can feel overwhelming for 
teachers to have so many student needs at one time, especially when the teacher is under 
pressure for the class to cover a set amount of content by a fixed deadline, and the teacher feels 
like remediating student forgetting is “slowing down” their progress towards that goal. 
 
Of course, good teachers understand the importance of continual review and periodically revisit 
previously-learned material to help their students retain it. However, as discussed in chapter 18, 
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optimizing retention through true spaced repetition requires a massive, inhuman amount of 
bookkeeping and computation. Carrying out even a loose approximation of spaced repetition for 
the class as a whole requires an immense level of effort. Given the additional stress that 
continual review creates for teachers, it’s easier to just stick to the status quo and cram a class or 
two of review before each major test. 
 

| Testing Effect 

Good, highly-engaged teachers understand the importance of quizzes and give regular weekly or 
biweekly quizzes (which is reasonably frequent, though a higher frequency would be ideal). 
However, unless these quizzes are built into some existing curriculum that they are working 
from, it takes a lot of work to create those quizzes, grade them, and go over mistakes with 
students. And that’s not all: 
 

● Ideally, students who don’t do so well will be given the opportunity to demonstrate 
learning from their mistakes on a retake quiz with different (but similar) questions – 
which effectively doubles the teacher’s workload relating to quizzes. 
 

● In a class of more than a handful of students, there is always a good chance that one or 
more students will be absent due to sickness, medical appointments, or other things, in 
which case the teacher has to schedule make-up quizzes. 
 

● Especially at the high school and university levels, a minority of students may cause 
further headache by routinely complaining that questions they missed were unfair (and 
should be thrown out) or begging for undeserved partial credit. 

 
Considering that most full-time teachers teach about 5-6 different classes each day, it’s an 
infeasible amount of work to quiz students every few days. Giving regular weekly or biweekly 
quizzes in all of one’s classes is hard enough. Realistically, given the additional stress that 
teachers experience when they give additional quizzes, it’s easier to just stick to the status quo 
and quiz students at the bare minimum frequency required to meet one’s professional 
expectations. 
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| Gamification 

Managing a gamified metric like eXperience Points (XP), and other gamified features like 
leaderboards, takes an immense amount of bookkeeping. It can be done, but it takes a really 
engaged teacher, and even then, it’s typically too much work for a teacher to integrate every 
single learning task into the gamification structure. Gamification is typically not a part of a 
teacher’s professional expectations, so it’s easier for teachers to just forego it. 
 

Tutoring the King’s Kid: How Would You Teach if Your Life 
Depended On It? 

The issues described above are not impossible to overcome manually. Each issue is solvable, but 
the solution requires a lot of work from the teacher. There is no law of physics preventing the 
teacher from putting forth that work, but the degree of accountability and incentives in place is 
not sufficient to motivate the teacher to do so. 
 
(We again emphasize that this is not the fault of teachers, who are victims of circumstance in a 
profession lacking effective accountability and incentive structures. Who wants to work harder 
than necessary if they know they’re not going to be rewarded for it, and there is no punishment 
for mediocre work? Nobody.) 
 
To intuitively understand the importance of accountability and incentives, it may help to 
imagine yourself as an educator in a life-or-death situation, where the outcome of the situation 
depends on whether you can teach a student effectively enough that they are able to 
unequivocally demonstrate their learning to a third party. Below is a retelling of Jason Roberts's 
Tutoring the King's Kid anecdote: 
 

Suppose that you are an educator back in medieval times, and you work within the kingdom of the 
wealthiest, but also the fiercest, king in all the world. The king’s child has participated in a school 
within the kingdom, but the king has been unhappy with the results: the child has gone to school 
for over a year, and has learned how to count, but remains unable to solve any problem requiring 
simple application of arithmetic. 
 
One day, the king sends for you to appear immediately at his throne. When you show up, he 
commands you to teach simple arithmetic to his child as your sole duty for the next month. The 
child shall spend the entirety of each school day with you, and in exactly one month, the king shall 
ask his child five questions, each one requiring the addition, subtraction, multiplication, or 
division of two numbers, each number being one or two digits long. The child will have two 
minutes to complete each question, and their performance on this test will determine your fate. 
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Being the wealthiest king in all the world, he has decided that if the child answers at least four of 
the five questions correctly, then he will grant you a fortune so extravagant that you can live out 
the rest of your life to the same level of luxury as a lesser king. However, if the child answers three 
or fewer questions correctly, then you shall be executed the following day. 

 
In this situation, you’re motivated to put in the work to overcome each of the issues described 
earlier. The instructional experience becomes entirely student-centered, leveraging cognitive 
learning strategies as much as humanly possible. 
 

Suddenly, you realize that you don’t care at all about how much time, effort, and stress you have 
to endure to make this child learn. Your own feelings are completely out of the picture. All that 
matters is whether the child comes to know their arithmetic facts by heart, understand the 
meaning of the operations deeply enough to know when to apply each one in problem-solving 
contexts, and quickly and reliably calculate the result of any arithmetic operation with numbers 
up to two digits long. 
 
To accomplish this, every moment you have with the child will be devoted to getting the child to 
the point where they are able to do all of these things independently. 
 
• You will of course introduce each skill along with a quick demonstration, but you won’t ramble 
about anything that’s irrelevant because your goal will be to have them start attempting to solve 
problems on each skill as soon as possible. 
 
• You will provide corrective feedback on every single problem that they solve, talking them 
through the correct solution whenever they make a mistake. If they do well, you will quickly move 
them onwards to more difficult problems, but if they struggle, you will give them however much 
practice they need to master the skill before moving forwards. 
 
• You will cover a mix of different topics every day and continually feed them review problems on 
previously-learned skills (but not too much review – just a “minimal effective dose” to restore their 
memory on any topics that they might be in danger of forgetting). 
 
• You will also provide frequent timed quizzes on a mixture of different problem types, go over 
their quizzes with them, give them more practice on anything they missed on the quizzes, and give 
them a retake to make sure they learned from their mistakes. 
 
• Lastly, you will gamify the experience in a way that incentivizes the child to put their best effort 
forward all the time. 

 

Heterogeneity of Student Knowledge Profiles 

| Tutoring the King’s Kid vs Teaching Many Kings’ Kids 

The “tutoring the king’s kid” anecdote illustrates that there is no law of physics preventing a 
teacher from putting forth the work needed to deliver an optimal learning experience to a single 
student: rather, it is a matter of accountability and incentives. 
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However, a key assumption in the anecdote is that the teacher is working with a single student. 
If the same story were told with a class full of 30 children, each from a king who will execute the 
teacher if their own child fails the test, then it would emphasize a different perspective: the 
teacher may be doomed because no matter how hard the they try, they will not be able to deliver 
that same optimal learning experience to every student in the class. Regardless of the level of 
accountability and incentives, the amount of work required would be inhuman. 
 
Loosely speaking, it boils down to the physics of learning. The reason why it’s so much harder to 
teach 30 students than to teach a single student is that the 30 students all have unique, 
heterogeneous knowledge profiles. 
 

| Differences in Background Knowledge 

Students who earned different grades in a prerequisite math course typically come into the next 
course with vastly different knowledge profiles. For instance, students who received a C in the 
prerequisite course typically have far more foundational knowledge gaps than students who 
received an A (though even students who received an A usually have some foundational 
knowledge gaps, even if they tend to be fewer and/or less severe).  
 
Moreover, and more subtly, even students who earned the exact same grade in a prerequisite 
math course typically have vastly different knowledge profiles from each other. Any two 
students who mastered the same amount of material in the prerequisite course may completely 
differ in the material that they were unable to master. One student may have struggled with 
fractions, while another may have struggled with decimals. One student may have struggled 
with solving equations, while another may have struggled with graphing functions. 
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| Student Knowledge Profiles Naturally Tend Towards Heterogeneity 

Even in an unrealistic hypothetical scenario where all the students in a class were academic 
“clones” of one another with exactly the same knowledge profiles, learning speeds, and levels of 
motivation, their knowledge profiles would naturally diverge over time as the class went on. 
Despite having the same academic profile, each student would be missing class or spacing out at 
different times, and as a result, some students would struggle with some topics more than 
others. (Missing class and spacing out are effectively the same thing, just on different time 
scales: they differ only in frequency and duration.) 
 
Everyone spaces out sometimes – even adults. It happens constantly, even to people who are 
consciously trying to pay attention. People have a hard time focusing when they have other 
things on their minds: what they’re going to eat for lunch, their plans for the weekend, anxiety 
about a personal relationship, etc. The author of this book spaced out at least twice while 
writing the four paragraphs in this subsection. 
 
This is especially true for students, who also face an endless list of mini-distractions in a 
classroom. For instance, a student might need to spend 30 seconds ruffling through their 
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backpack for another pencil/pen or piece of paper (or their friend might ask them for one of 
those things). Or, a student may need to miss several minutes of class to use the bathroom.  
 
Regardless of whether it is their fault or not, students are momentarily distracted at different 
times and they miss things. These differences compound over time unless the teacher 
immediately detects and fully remediates them at the instant that they arise – but this requires 
an inhuman amount of work, so teachers aren’t doing it unless they have technology that does it. 
 

| Every Student in the Class Effectively Needs a Private Tutor 

The heterogeneity of student knowledge profiles means that different students need different 
amounts of practice, on different skills, at different times. Consequently, to deliver an optimal 
learning experience to all students in the class, the teacher must effectively function as a private 
tutor for every individual student. Needless to say, no matter how a teacher attempts this, it’s an 
intractable problem if their class consists of more than a few students. Even if a teacher tries 
their hardest, they will not be able to deliver an optimal learning experience to every student in 
the class. 
 
To fully leverage the cognitive learning strategies discussed in this book, and deliver an optimal 
learning experience to every student in the class, every individual student needs to be fully 
engaged in productive problem-solving, with immediate feedback (including remedial support 
when necessary), on the specific types of problems, and in the specific types of settings (e.g., 
with vs without reference material, blocked vs interleaved, timed vs untimed), that will move the 
needle the most for their personal learning progress at that specific moment in time. This needs 
to be happening throughout the entirety of class time, the only exceptions being those brief 
moments when a student is introduced to a new topic and observes a worked example before 
jumping into active problem-solving. 
 
However, when students have heterogeneous knowledge profiles, it’s at best extremely difficult, 
and at worst (and most commonly) impossible, to find a type of problem that is productive for all 
students in the class. Even if a teacher chooses a type of problem that is appropriate for what 
they perceive to be the “class average” knowledge profile, it will typically be too hard for many 
students and too easy for many others (an unproductive use of time for those students either 
way). 
 
To even know the specific problem types that each student needs to work on, the teacher has to 
separately track each student’s progress on each problem type, manage a spaced repetition 
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schedule of when each student needs to review each topic, and continually update each schedule 
based on the student’s performance (which can be incredibly complicated given that each time a 
student learns or reviews an advanced topic, they’re implicitly reviewing many simpler topics, 
all of whose repetition schedules need to be adjusted as a result, depending on how the student 
performed). This is an inhuman amount of bookkeeping and computation. 
 
Furthermore, even on the rare occasion that a teacher manages to find a type of problem that is 
productive for all students in the class, different students will require different amounts of 
practice to master the solution technique. Some students will catch on quickly and be ready to 
move on to more difficult problems after solving just a couple problems of the given type, while 
other students will require many more attempts before they are able to solve problems of the 
given type successfully on their own. Additionally, some students will solve problems quickly 
while others will require more time. 
 
In the absence of technology, it is impossible for a single human teacher to deliver an optimal 
learning experience to a classroom of many students with heterogeneous knowledge profiles, 
who all need to work on different types of problems and receive immediate feedback on each 
attempt. However, technology changes everything. By automatically leveraging cognitive 
learning strategies to their fullest extent, Math Academy is able to deliver an optimized, 
adaptive, personalized learning experience to each individual student. Math Academy students 
are perpetually engaged in productive problem-solving, with immediate feedback (and 
remediation when necessary), on the specific types of problems (and in the specific types of 
settings) that will move the needle the most for their personal learning progress.  
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IV. COACHING 
 

 



326  |  The Math Academy Way – Working Draft 

 

 



The Math Academy Way – Working Draft  |  327 

 

[In Progress] Chapter 24. Parental Support 
 

Summary: (in progress) 
 

Why Parental Support is (Usually) Necessary 

As discussed in Chapter 11, developing expertise requires accumulating large amounts of 
deliberate practice – but deliberate practice tends to be more effortful and less enjoyable, so 
people tend to avoid it. 
 
A practical consequence of this is that, for a child to develop a high level of talent in 
mathematics or any other skill domain, they will typically require a high level of parental 
support. 
 
In particular, while some children take to Math Academy naturally, most children require 
parental support in maintaining proper usage habits.  
 
What, then, must parents do to support and motivate their children to engage in deliberate 
practice? 
 

The Bare Minimum: Incentives and Accountability 

To develop their talents, most children need a responsible adult – such as a parent or teacher – 
to incentivize them and hold them accountable for their behavior. 
 
For instance, here is what often happens when a parent signs their child up for Math Academy 
but does not set up an incentive and accountability structure with their child: 
 

● Child puts forth little to no effort: they skim instead of reading carefully, rush and guess 
on practice questions instead of referring back to the worked example, and ultimately 
fail their learning tasks. Even if they appear to work for the expected amount of time, 
they are actually spending most of that time distracted by other activities (browsing 
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other websites, socializing with friends, doodling or daydreaming, etc.). 
 

● Adult checks in, realizes the student is not accomplishing anything, and asks the student 
what's going on. 
 

● Child says that the system is too hard or otherwise doesn't work. 
 

● Adult might take the student's word at face value. Or, if the adult notices that the child 
hasn't actually attempted any work and calls them out on it, the scenario repeats with 
the child putting forth as little effort as possible – enough to convince the adult that 
they're trying, but not enough to really make progress. 

 
In these situations, here is what needs to happen: 
 

● The adult needs to sit down next to the student and force them to actually put forth the 
effort required to use the system properly. 
 

● Once it's established that the student is able to make progress by putting forth sufficient 
effort, the adult needs to continue holding the student accountable for their daily 
progress. If the student ever stops making progress, the adult needs to sit down next to 
the student again and get them back on the rails. 
 

● To keep the student on the rails without having to sit down next to them all the time, the 
adult needs to set up an incentive structure. Even little things go a long way, like "if you 
complete all your work this week then we'll go get ice cream on the weekend," or "no video 
games tonight until you complete your work." The incentive has to be centered around 
something that the student actually cares about, whether that be dessert, gaming, 
movies, books, etc. 

 
Even if an adult puts a child on a system that leverages every single cognitive learning strategy 
to its fullest extent, if the adult clocks out and stops holding the student accountable for 
completing their work every day, then the overall learning outcome is going to be poor. 
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The Platonic Ideal 

To paint a picture of the Platonic ideal of parental support, consider Bloom’s description of the 
level of parental support that was required to produce the world-class concert pianists that were 
studied in Developing Talent in Young People (1985, pp. 453-58): 
 

“Most of the pianists' parents monitored the amount of daily practice in the home. They listened 
or watched to ensure the quality of time spent. The children were not allowed to "play around," 
skip drills, or quit before the designated time. Practice had priority and was to be done every day, 
despite the inconvenience of schedules. 
… 
In addition to monitoring the amount of practice time, the parents did whatever they could to 
make the practice productive and enjoyable. ... The parents also applauded and encouraged the 
child's efforts and tried to convey to the child their interest and involvement. 
… 
'I would always sit down with him [to practice]. … And I think that helped, especially when they're 
young. Because it's pretty hard to just sit down and practice without someone there beside you (M 
of P-4).' 
… 
[The parents] knew what the instructional goals were from their involvement in daily practice. 
They were learning more and more about the field – the rates of progress that were reasonable to 
expect and what the child's next goals would be. 
… 
The child's efforts in the field became a central part of the family's life. Discussions at the dinner 
table often focused on practice, the child's progress, future competitions, or the performance of 
other talents in the field. … Close bonds were also developed with other families who had similar 
interests. 
… 
In addition to providing an opportunity for the family to pursue activities together, the talent field 
also became a means of translating the value of achievement into specific behaviors. The 
importance of goals and self-discipline were evident in the rules and expectations surrounding 
lessons and practice. The parents saw to it that the child worked consistently toward the goals set 
by the teachers or coaches. 
 
Progress was monitored by the parents at practice and at public performances. In some families, 
goals and progress were recorded on charts or in notebooks. When progress faltered, the parents 
discussed possible causes with the child and/or the teacher and sought solutions to the problem 
immediately. 
 
Doing one's best was stressed continuously, with respect not only to public performances but also 
to daily practice. "Slacking off" during practice or repeating mistakes were cause for reprimand. 
As might be expected, the parents had different methods of handling this situation. Some 
appealed to the child's professed love of the field or reprimanded the child of goals and 
accomplishments that lay ahead. Others emphasized the time, energy, and resources already 
committed. Still others threatened to discontinue their support and provision of resources if the 
child was not dedicated to working hard. 
 
Along with self-discipline and doing one's best were rewards and praise for a job well done. 
Ribbons and trophies decorated the family room; scrapbooks were filled with newspaper clippings. 
The joys and pride in winning were stressed, as was the satisfaction of doing your best even if you 

 

https://archive.org/details/developingtalent0000unse
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weren't first – this time. The parents were there with applause and verbal praise when goals were 
attained, with solace and encouragement when goals were not quite reached.” 

 
Similar descriptions are echoed throughout the literature. For instance, according to Sloboda 
(1996), who studied factors underlying variability in musical achievement: 
 

“Parents of Group 1 students [the higher-achieving group] were more likely to attend instrumental 
lessons with their children, obtain detailed feedback and instructions from teachers, and actively 
supervise daily practice on a moment-to-moment basis, often at some considerable cost to their 
own schedule. 
… 
Parents of low-achieving children were less likely to have meaningful contact with the teacher, 
and were likely to confine their domestic interventions to telling children to "go and do your 
practice," without any direct involvement in it. 
 
In sum, therefore, it seems that abnormally high levels of early practice are sustained by abnormal 
levels of social and cognitive support, mainly from parents.” 

 

 

https://www.taylorfrancis.com/chapters/edit/10.4324/9781315805948-4/acquisition-musical-performance-expertise-deconstructing-talent-account-individual-differences-musical-expressivity-john-sloboda
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[In Progress] Chapter 25. In-Task Coaching 
 

Summary: (in progress) 
 

The Vicious Cycle of Forgetting 

In an attempt to mitigate the effects of forgetting, students sometimes solve problems alongside 
reference material. However, this actually has the opposite effect: when a student continually 
looks back at a reference, the information doesn’t stay in their brain. It is held in short-term 
memory, but only temporarily – it dissipates after their focus redirects elsewhere. The action 
that transfers information to long-term memory is retrieving said information from memory, 
and this action isn’t being performed when a student looks back at a reference instead. 
 
When a student continually looks back at a reference instead of trying their best to recall from 
memory, the reference material becomes a crutch, and they’re lost without it. They learn slower, 
forget faster, and miss out on making connections that would deepen their understanding. They 
might think it’s because they’re not getting enough review, when in reality it’s because they’re 
not reviewing properly, pulling information from memory. 
 
To break – or better, avoid – the vicious cycle of forgetting, students need to practice retrieving 
information without assistance so that it actually transfers into long-term memory. Every time a 
student successfully recalls a fuzzy memory, it stays intact longer before getting fuzzy again. If a 
student can’t recall something after trying, it’s okay to check reference material, but only as a 
last resort. They should peek once – just at the specific piece of information that they were 
trying to remember, nothing else – and then close the reference, re-pull the information from 
memory, and try to solve the rest of the problem without looking again. Challenging oneself to 
remember may be tough initially, but it pays off in the long run. 
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V. TECHNICAL DEEP DIVES 
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Chapter 26. Technical Deep Dive on 
Spaced Repetition 

Note: this chapter elaborates on concepts introduced in chapter 18. 
 

Summary: Math Academy employs Fractional Implicit Repetition (FIRe), a novel spaced 
repetition algorithm, to calculate student learning profiles. FIRe generalizes spaced repetition to 
hierarchical knowledge, allowing repetitions on advanced topics to implicitly trickle down to 
simpler topics. The algorithm handles partial encompassings and extends repetition flows through 
fractional encompassings, optimizing credit distribution. The speed of the spaced repetition 
process is calibrated to each individual student on each individual topic, where student ability 
and topic difficulty are competing factors. 

 

Fractional Implicit Repetition (FIRe) 

To calculate student spaced repetition profiles, Math Academy uses a novel spaced repetition 
algorithm called Fractional Implicit Repetition (FIRe). FIRe generalizes spaced repetition to 
hierarchical bodies of knowledge where 
 

1. repetitions on advanced topics “trickle down” implicitly to simpler topics through 
encompassing relationships, and 
 

2. simpler topics receiving lots of implicit repetitions discount the repetitions 
appropriately (since they are often too early to count for full credit towards the next 
repetition). 

 

| Concrete Example 

As a concrete example, recall that Multiplying a Two-Digit Number by a One-Digit Number 
encompasses Multiplying One-Digit Numbers and Adding a One-Digit Number to a Two-Digit 
Number. 
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If you pass a review on Multiplying a Two-Digit Number by a One-Digit Number, then the repetition 
will also flow backward to reward Multiplying One-Digit Numbers and Adding a One-Digit Number 
to a Two-Digit Number because you’ve just shown evidence that you still know how to perform 
these skills. 

 

→  

 

 
On the other hand, if you fail a repetition on Adding a One-Digit Number to a Two-Digit Number, 
then the failed repetition will also flow forward to penalize Multiplying a Two-Digit Number by a 
One-Digit Number. If you can’t add a one-digit number to a two-digit number, then there’s no 
way you’re able to multiply a two-digit number by a one-digit number. The same thing happens 
if you fail a repetition on Multiplying One-Digit Numbers. 

 

→  
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| Visualizing Repetition Flow 

Note that repetition flows can extend many layers deep – not just to directly encompassed 
topics, but also to “second-order” topics that are encompassed by the encompassed topics, and 
then to third-order topics that are encompassed by second-order topics, and so on. 
 
Visually, credit travels downwards through the knowledge graph like lightning bolts. 

 

 

→  

 

→ 

 
 

Penalties travel upwards through the knowledge graph like growing trees. 
 

 

→  

 

→ 

 
 

| Partial Encompassings 

FIRe also naturally handles cases of partial encompassings, in which only some part of a 
simpler topic is practiced implicitly in an advanced topic. This occurs more frequently in 
higher-level math. 
 
For instance, in calculus, advanced integration techniques like integration by parts require you 
to calculate integrals of a variety of mathematical functions such as polynomials, exponentials, 
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and trigonometric functions. But some of those functions might only appear in a portion of the 
integration by parts problems. So, if you complete a repetition on integration by parts, you 
should only receive a fraction of a repetition towards each partially-encompassed topic. 
 
In the diagram below, we label encompassings with numerical weights that represent what 
fraction of each simpler topic is practiced during the more advanced topic. You can loosely 
interpret each weight as representing the probability that a random problem from the advanced 
topic encompasses a random problem from the simpler topic. 
 

 
 
FIRe extends repetition flows many layers deep through fractional encompassings as well. The 
end result is that repetitions 
 

1. travel unhindered along a “trunk” of full encompassings, and 
 

2. fade off along partial encompassings branching outwards from the trunk. 
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Setting Encompassing Weights Manually 

| Direct and Key Prerequisites are Sufficient 

Because encompassing weights are set manually, it is not feasible to set an explicit weight 
between every pair of topics in the graph. We have thousands of topics, so the full pairwise 
weight matrix would contain tens of millions of entries. How do we set all those weights? 
 
It turns out that it is not actually necessary to explicitly set every weight in the matrix. It suffices 
to set only the weights for topic pairs where 
 

1. the weight has a nontrivial value, 
 

2. the weight cannot otherwise be inferred using repetition flow, and 
 

3. the distance between the topics in the prerequisite graph is low, 
 
and assume that all other weights not computed implicitly during repetition flow are zero. The 
reasoning behind these conditions is as follows: 
 

1. The magnitude of the weight represents the magnitude of the implicit repetition credit. 
In order for an implicit repetition to make an impact on staving off explicit reviews, it 
has to be associated with a nontrivial amount of credit. 
 

2. If repetition flow can infer a weight, then nothing will change if the weight is set 
manually (unless the manually-set weight is being used to correct a value that would 
otherwise be inferred by repetition flow). 
 

3. If two topics are far apart in the prerequisite graph, then their weight will not make 
much of an impact on staving off reviews, even if it is a full encompassing. In that case, 
by the time the student reaches the more advanced topic, they will already have done 
most of their explicit reviews on the simpler topic. 

 
Conveniently, the weights that satisfy the above conditions tend to be those along direct and key 
prerequisite edges, the number of which scales linearly with the number of topics. This makes it 
feasible to set encompassing weights manually: one weight for each direct or key prerequisite 
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Note that it is not unusual to find direct and key prerequisite edges with a weight as low as zero. 
This can happen when a topic requires some amount of conceptual familiarity with the 
prerequisite, but does not require the student to actually have mastered the prerequisite to the 
point of being able to solve problems in the prerequisite topic. 
 

| Non-Ancestor Encompassings and Mastery Floors 

To comply with course standards, it is sometimes necessary to have equivalent topics spread 
out across multiple courses, with the equivalent topics in higher courses covering a more 
advanced treatment of the same skills taught in lower courses. However, the simpler equivalent 
topics are usually not required as prerequisites for the more advanced equivalent topics. 
 
For instance, courses on algebra-based statistics and calculus-based statistics would have many 
equivalent topics that cover the same skills. Although the calculus-based statistics course would 
provide more advanced treatments of these skills, the corresponding equivalent topics in the 
algebra-based statistics course would not be prerequisites. 
 
Even though simple equivalent topics would not be ancestors of advanced equivalent topics via 
direct or key prerequisite paths, we can still set full-encompassing edge weights between them 
so that a student who completes an advanced topic will implicitly receive credit for any simpler 
equivalent topics as well. These are called non-ancestor encompassings. 
 
Non-ancestor encompassings, along with course-based mastery floors (lower-course topics that 
are automatically considered mastered by any student taking the course), can also be useful for 
assigning credit to leaf topics in lower-level courses. The mastery floor of a course consists of 
the lower-course topics that 
 

● are “far back” enough that it is safe to automatically consider them mastered, or 
 

● lie “below” the simplest topics that could be assessed on the course’s diagnostic. 
 
Intuitively, the top of the mastery floor marks the dividing line regarding whether it is at all 
feasible for a student to take a course. 
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Student-Topic Learning Speeds 

| Ratio of Student Ability and Topic Difficulty 

Student ability and topic difficulty are competing factors – high student ability speeds up the 
overall student-topic learning speed, while high topic difficulty slows it down. So, to compute a 
student-topic learning speed, we compute 
 

1. the speedup due to student ability, 
 

2. the slowdown due to topic difficulty, and then 
 

3. their ratio. 
 

 

 

Student-Topic Learning Speed 
vs 

Student Ability and Topic Difficulty  

Student Ability 

Strong Moderate Weak 

Topic Difficulty 

Easy fastest faster baseline 

Moderate faster baseline slower 

Hard baseline slower slowest 

 

| Measuring Student Ability at the Level of Individual Topics 

Student ability is measured at the granular level of individual topics – we keep track of accuracy 
across answers, giving more weight to recent answers, and also propagating 
 

● correct answers down to simpler encompassed topics and 
 

● incorrect answers up to more advanced topics that encompass the answered topic. 
 

 

https://www.codecogs.com/eqnedit.php?latex=%5Ctextrm%7Bstudent-topic%20learning%20speed%7D%20%3D%20%5Cdfrac%7B%5Ctextrm%7Bspeedup%20due%20to%20student%20ability%7D%7D%7B%5Ctextrm%7Bslowdown%20due%20to%20topic%20difficulty%7D%7D#0
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To choose the initial starting value for a topic’s accuracy, we make a prediction based on the 
accuracy values of the topic’s local neighborhood consisting of its direct prerequisites, key 
prerequisites, encompassings, and same-module topics. 
 

 

| Measuring Topic Difficulty 

Topic difficulty is measured by computing the topic’s accuracy across all instances when one of 
its questions was answered by a serious student on an assessment. 
 
In theory, if student abilities could be measured on each topic with perfect fidelity, then topic 
difficulties would no longer be needed and student-topic learning speeds could be based entirely 
on student abilities. But in practice, there are two reasons why it is helpful to rely on topic 
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difficulty as well: 
 

1. It improves the initial prediction. Although we already have information about the 
particular student’s learning speed on other topics, the topic difficulty provides 
information about the particular topic’s learning speed for other students. This is an 
independent, information-rich signal.  
 

2. It naturally acts as a correction factor. When topic difficulty is high, it decreases the 
learning speed – which is desirable given that high topic difficulty is caused by low 
assessment performance, which is in turn (largely) caused by students not getting enough 
review. Similarly, when topic difficulty is low, it increases the learning speed – which is 
desirable given that low topic difficulty is caused by extremely high assessment 
performance, which indicates that students might not need as much review as they are 
receiving. 

 

High-Level Structure 

At a high level, the structure of Math Academy’s spaced repetition model can be summarized as 
follows: 
 

 
 
 

● repNum = how many successful rounds of spaced repetition the student has accumulated 
on a particular topic. 
 
In following definitions, a "repetition" is a successful review at the appropriate time. 
 

● days = how many days it's been since the previous repetition. 
 

● interval = the ideal number of days to be spaced between repetition repNum and 
repetition repNum+1. 
 

● memory = how well the student is expected to remember now that it's been some time 
since the previous repetition. Memory decays over time and the next repetition becomes 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20repNum%20%26%5Cto%20%5Cmax%20%5Cleft(%200%2C%20%5Cphantom%7B%2C%7D%20repNum%20%2B%20speed%20%5Ccdot%20decay%5E%7B%5C%2C%20failed%7D%20%5Ccdot%20rawDelta%20%5Cright)%20%5C%5C%5C%5C%20memory%20%26%5Cto%20%5Cmax%20%5Cleft(%200%2C%20%5Cphantom%7B%2C%7D%20memory%20%2B%20rawDelta%20%5Cright)%20(0.5)%5E%7B%20%5C%2C%20days%20%5C%2C%20%2F%20%5C%2C%20interval%7D%20%5Cend%7Balign*%7D#0
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due when the memory becomes sufficiently low. 
 

● speed = the learning speed for the student on this particular topic, based on how well the 
student is performing. Governs how quickly the student moves forwards or backwards 
through the spaced repetition process. 
 

● failed = 1 if repetition was failed and 0 if it was passed. 
 

● rawDelta = how much raw spaced repetition credit the student earned during the 
repetition, ignoring speed and decay. rawDelta is positive if the repetition was passed and 
negative if failed. 
 
The higher the quality of work in a passed repetition, or the worse the quality of work in 
a failed repetition, the larger the magnitude of rawDelta. 
 
The magnitude of rawDelta is also discounted if the repetition was completed early 
relative to the desired interval, i.e., if memory is sufficiently high. 
 
Note that successful work (positive credit) on an advanced topic is also counted towards 
any simpler topics that are implicitly practiced as component skills, and unsuccessful 
work (negative credit) on a simpler topic is also counted towards any more advanced 
topics of which that simpler topic is a component skill. 
 

● decay = the speed at which the student moves backwards in the spaced repetition 
process, relative to their forwards speed, if they fail a repetition. 
 
decay is a positive quantity that starts at 1 and grows larger as the repetition becomes 
more overdue relative to its ideal interval, i.e., as memory becomes severely low. 
 
decay was introduced to model severe knowledge decay like the notorious "summer 
slide," where topics learned shortly before the end of the previous school year may be 
forgotten so severely over summer vacation that they need to be reviewed more 
frequently or even completely re-taught at the start of the following year. 
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Chapter 27. Technical Deep Dive on 
Diagnostic Exams 

Note: this chapter elaborates on concepts introduced in chapter 4 and chapter 20. 
 

Summary: Math Academy uses adaptive diagnostics to infer each incoming student’s knowledge 
profile. The novel diagnostic assessment algorithm leverages causal relationships and 
correlation-based inference in the knowledge graph to efficiently gauge a student’s knowledge 
frontier to a sufficient level of detail while minimizing the number of questions on the diagnostic. 
It measures knowledge confidence and handles conflicting information, adapting its diagnosis to 
nuanced scenarios like prerequisite-postrequisite and accuracy-time conflicts. Conditional 
completion is employed for areas where knowledge was inferred with low confidence, allowing the 
system to continue fine-tuning a student’s placement as it collects more data about their 
performance. 

 

Minimizing the Number of Questions 

Without any clever algorithms, it would take a massive number of diagnostic questions to infer a 
student’s knowledge frontier. Courses often contain up to several hundred topics, plus twice as 
many foundational topics – which means that if we started at the bottom and asked you a 
diagnostic question for every topic up until the point that you could no longer answer them 
correctly, we’d end up asking you 500+ questions in total. 
 
However, Math Academy is able to cut down this number of diagnostic questions by an order of 
magnitude using a novel diagnostic question selection algorithm. Our diagnostics generally take 
only 20-40 questions for lower-grade courses (like Prealgebra) and 40-60 questions for 
higher-grade courses (like Calculus). 
 
We’re able to achieve this level of diagnostic efficiency for two reasons: 
 

1. In addition to leveraging “causal” relationships, i.e. encompassings, we also leverage 
looser forms of correlation-based inference. 
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2. We compress the knowledge graph beforehand into the smallest number of topics that 
fully "covers" a course and its foundations at a desired level of granularity. 

 
As a result, our diagnostic assessment algorithm is highly leveraged on both accuracy and 
precision. While a perfect-accuracy, perfect-precision diagnostic could require up to a thousand 
questions, we are able to reduce this by an order of magnitude by giving up a negligible amount 
of accuracy and precision. 
 
(Of course, highly leveraged algorithms have a higher risk of being thrown off by false input – 
but we mitigate this risk by detecting and re-assessing questions that we suspect may have been 
incorrectly assessed.) 
 

Knowledge Confidence and Conditional Completion 

| Theory 

During diagnostics, Math Academy also measures knowledge confidence, i.e., our confidence in 
our classification of whether the student knows or does not know a topic. Most diagnostics 
complete with fairly high confidence across the student’s entire knowledge profile, but 
occasionally, there can be areas of low confidence. These do not arise from a lack of diagnostic 
coverage, but rather, from conflicting evidence in a student’s responses. 
 
There are two main types of conflicts: 
 

1. Prerequisite-Postrequisite Conflict: a student answers a more advanced topic correctly but a 
simpler question incorrectly, which may indicate a gap in the student’s knowledge. 
 

2. Accuracy-Time Conflict: a student submits a correct answer but takes an excessively long 
time to solve the problem, which may indicate that they have not yet mastered the 
corresponding topic. 

 
To handle these conflicts, we carefully weight positive and negative evidence against each other 
to form a highly nuanced diagnosis of student knowledge that adapts appropriately to future 
observations, just like a tutor would. 
 
In particular, if the evidence balances out to “just barely” place a student out of some topics, the 
system will consider those topics conditionally completed: the student will initially be given 
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tasks under the assumption that they know those topics, but if the student struggles, then the 
system will immediately begin “falling backwards” along the appropriate learning paths. 
 

| Example 

As an example, suppose 
 

● student A answers many questions correctly on their diagnostic but takes excessively 
long on most questions, while 
 

● student B answers fewer questions correctly but supplies correct answers quickly and 
confidently. 

 
Then 
 

● student A will have a higher amount of overall knowledge, a significant portion of which 
is low-confidence (and may be quickly pruned back if they struggle), while 
 

● student B will have less overall knowledge but may have more high-confidence 
knowledge. 
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| Implementation 

To achieve this behavior, we weight diagnostic evidence using a plus-minus balance at each 
topic. 
 

● The sign (positive or non-positive) represents the prediction of whether the student 
knows the topic. 
 

● The magnitude of the balance represents the degree of confidence in the prediction. 
 
Each answer is associated with a weight that represents its contribution to the plus-minus 
balance of the corresponding topic. By default, an answer’s weight is equal to one. However, if a 
student submits a correct answer but takes an excessively long time relative to the expected time 
for a student who has mastered the topic, the answer weight is diminished. The answer still 
gives the student positive credit, but the slower the student is to solve the problem (beyond a 
reasonable time threshold), the smaller the amount of credit. 
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Once the weight of an answer is determined, it propagates throughout the knowledge graph 
updating plus-minus balances of topics as appropriate: 
 

● A correct answer increases the plus-minus balances of the answered topic and its 
prerequisites (and their prerequisites, and so on), while 
 

● an incorrect answer decreases the plus-minus balances of the answered topic and its 
post-requisites (and their post-requisites, and so on). 

 
After all diagnostic questions have been processed, any topics with positive plus-minus weights 
are credited with a number of repetitions equal to their plus-minus balance. 
 

Conservative vs. Aggressive Edge of Mastery 

There have been times when a student completed a course, took a placement diagnostic for the 
same course, and was surprised that the placement told them their knowledge frontier was 
lower in the course. But this is actually an expected result, especially for students who are 
weaker. 
 
Just because a student successfully completes all the homework for a course, doesn't mean that 
they're going to ace a comprehensive final exam over the course. This is especially true for the 
placement exam, which is even harder than a normal exam: unlike a normal exam, 
 

● a placement exam has to cover every topic (including all of the hardest topics), and 
 

● it has to cover the most advanced question type from each of those topics (we can't place 
a student out of a topic if they only know how to do the simpler cases). 

 
Additionally, although we often talk about a student's "edge of mastery" as though it were a 
single line across the student's knowledge profile, a student really has a "zone of mastery" that is 
bounded below by a conservative edge of mastery and above by an aggressive edge of mastery. A 
placement exam measures the conservative edge of mastery, while mastery-based learning with 
layering operates on the aggressive edge of mastery. 
 
When a student successfully completes a lesson, they've mastered the topic well enough to 
continue layering on top of what they've learned, but they probably haven't reached the point of 
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automaticity with the topic yet. By way of analogy, whenever a gymnast learns a new skill at 
practice, it takes some more time and practice before they are ready to showcase that skill in 
competition, but that doesn't stop them from continuing to work on more advanced skills 
during practice in the meantime. 
 

Supplemental Diagnostics 

As topics are added and connectivity is revised in the knowledge graph, the knowledge profile 
inferred from a student’s initial placement diagnostic can get a little out of date. When this 
happens, we assign tiny diagnostics called supplemental diagnostics to bring the student’s 
knowledge profile back up to date. 
 
The topics on a supplemental diagnostic are those that were not directly assessed on the original 
diagnostic and have plus-minus balances of zero when considering all the assessment answers 
since (and including) the original diagnostic. The same form of highly efficient inference is used 
on supplemental diagnostics, which means supplemental diagnostics are generally quite small, 
consisting of at most a handful of questions. 
 

Selecting Good Diagnostic Questions 

There’s a lot of nuance that goes into selecting a good diagnostic question for a given topic. 
 

● On one hand, diagnostic questions can’t be too easy. Each diagnostic question should be 
difficult enough that if a student were to answer it correctly, then an expert tutor or 
teacher would infer that they have fully mastered the corresponding topic. 
 

● Additionally, a diagnostic question should exercise all of the prerequisites of the 
corresponding topic. Otherwise, if there’s a prerequisite that the question doesn’t 
exercise, then a student who doesn’t know the prerequisite could still answer the 
question correctly and erroneously receive credit for the prerequisite. 
 

● That said, a diagnostic question should generally not be the most difficult question in its 
corresponding topic. The more complicated a question, the higher the likelihood that a 
student might make a silly mistake. 
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So, each diagnostic question should be chosen as the simplest question that 
 

1. would convince an expert tutor or teacher that the student has mastered the 
corresponding topic, and 
 

2. exercises all of the topic’s prerequisites. 
 
In practice, due to the level of nuance required, we select diagnostic questions manually. 
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Chapter 28. Technical Deep Dive on 
Learning Efficiency 

Note: this chapter elaborates on concepts introduced in chapter 17 and chapter 21. 
 

Summary: We introduce the concept of theoretical maximum learning efficiency, analogous to 
the physical phenomenon that nothing can travel faster than the speed of light. The maximum 
learning efficiency for a given knowledge graph depends on its encompassing density – however, a 
knowledge graph does not have to be fully encompassed, or even nearly fully encompassed, for its 
maximum learning efficiency to approach the theoretical limit. Math Academy’s mathematical 
knowledge graph contains enough encompassings that its maximum learning efficiency is close to 
the theoretical limit. In practice, the actual learning efficiency attained by an individual student 
depends primarily on the student’s quality of performance, and to a lesser extent on their pace (the 
average amount of work completed each day). 

 

What is Learning Efficiency? 

| Theoretical Maximum Learning Efficiency 

In physics, nothing can travel faster than the speed of light. It is the theoretical maximum speed 
that any physical object can attain. A universal constant. 
 
In the context of spaced repetition, there is an analogous concept: theoretical maximum 
learning efficiency. In theory, given a sufficiently encompassed body of knowledge, it is 
possible to complete all your spaced repetitions without ever having to explicitly review 
previously-learned material. 
 
As a simple demonstration, consider a sequence of topics where the first topic is fully 
encompassed by the second, which is fully encompassed by the third, which is fully 
encompassed by the fourth, and so on. 
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Each time you learn the next topic, all the topics below receive full implicit repetitions. 
Assuming that you never run out of new topics to learn, the only reason you would ever need to 
do an explicit repetition is if you get stuck repeatedly attempting and failing to learn the next 
topic. 
 
It’s important to realize that a graph does not have to be fully encompassed, or even nearly fully 
encompassed, for its maximum learning efficiency to approach the theoretical limit. Even if most 
relationships between topics are non-encompassing, a considerable minority of encompassings 
goes a long way. 
 
For instance, Math Academy’s mathematical knowledge graph contains enough encompassings 
that its maximum learning efficiency is close to the theoretical limit. We have empirically 
observed that, in practice, most mathematical courses can be learned with roughly only one 
explicit review per topic on average. In theory, a perfect student who aced every single learning 
task would need even fewer explicit reviews. 
 

| Theoretical Minimum Learning Efficiency 

By contrast, there is also a concept of theoretical minimum learning efficiency. This is 
precisely the setting of independent flashcards – or equivalently, a set of topics without any 
encompassings. 
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In this setting, no topic can receive implicit repetitions from any other topic. Every single 
review must be done explicitly. 
 

 
 
It’s worth emphasizing that, unlike Math Academy, other spaced repetition systems do not 
leverage the power of encompassings and therefore implement theoretical minimum learning 
efficiency. 
 

Factors that Impact Learning Efficiency 

Remember that to achieve maximum learning efficiency, Math Academy uses a process that we 
call repetition compression. We gather all topics that have due repetitions, and then compress 
this set into a much smaller set of tasks that 
 

1. covers all of the due repetitions, and 
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2. will lead to the greatest overall gain in spaced repetitions across your entire knowledge 
profile. 

 
You can think of Math Academy as a turbo-boosted educational engine, where repetition 
compression is our combustion mechanism. 
 
But remember that an engine can’t actually move a car unless it is supplied with gas and oil. The 
gas is needed to produce the energy that moves the car, and the oil is needed to prevent friction 
from locking up the engine. 
 
The same applies to Math Academy. In order to experience the turbo-boosting, 
 

1. you have to put in a sufficient amount of work that can be converted into educational 
progress, and 
 

2. the quality of your work has to be high enough to avoid excessive friction during the 
learning process. 

 

| Performance 

By looking at your performance (pass rate and accuracy) across various types of learning tasks, 
we are able to calculate a learning efficiency percentage that estimates how close you are to the 
maximum possible efficiency for your course. 
 
If you maintain a high learning efficiency, then you can make a lot of progress in your course by 
doing a relatively small amount of work. But if you have a low learning efficiency, then you will 
have to do significantly more work to make the same amount of progress. 
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Learning Efficiency How Much Work to Complete a Course 

1.00 1x 

0.80 1.25x 

0.67 1.5x 

0.50 2x 

0.25 4x 

 

| Pace 

In Math Academy, work is measured in eXperience Points (XP). One XP represents one minute 
of fully-focused, fully-productive work for an average serious (but imperfect) student. The 
amount of XP that you complete per weekday (on average) is called your pace.  
 

> Learning Efficiency vs Pace 

Although the quality of your work is the single greatest factor that affects your learning 
efficiency, your pace can affect your learning efficiency as well. The faster you push your 
knowledge frontier forward, the further your knowledge frontier is ahead of your due reviews, 
and the more likely it is that we can find good topics to “knock out” a large number of your due 
reviews. 
 
We empirically determined the following relationship: 
 

 
 

This means that if you double your pace, your learning efficiency increases by about 20.1 = 7%. 
Likewise, if you cut your pace in half, your learning efficiency decreases by about 7%. 
 

 

https://www.codecogs.com/eqnedit.php?latex=%5Ctextrm%7Blearning%20efficiency%7D%20%5Cpropto%20%5Ctextrm%7Bpace%7D%5E%7B0.1%7D#0
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> Pace vs Time to Completion 

In a normal class period during a school day, it’s reasonable to expect at least 40 minutes of 
fully-focused, fully-productive work. This corresponds to a baseline pace of 40 XP per weekday.  
 
When we benchmark the amount of XP in our courses, we simulate an average student who is 
serious but imperfect and works at a pace of 40 XP per weekday. On average, courses contain 
about 3000 XP assuming that a student knows all the necessary prerequisites (though this can 
vary a lot depending on the amount of material that must be covered, e.g. prealgebra is ~2000 XP 
but precalculus is ~4000 XP). 
 
Below is a table that shows how long it would take you to complete a 3000 XP course, depending 
on your pace. Note that learning efficiencies are computed relative to the baseline pace of 40 
XP/weekday (so a pace of 40 XP/weekday corresponds to an efficiency of 1, and higher paces 
correspond to efficiencies greater than 1). 
 

Pace 
 

(XP/weekday) 

Efficiency Multiplier 
 

(pace/40)0.1 

How Long To Complete a Course 
Benchmarked at 3000 XP 

 

weekdays = 3000/(pace*multiplier) 

160 1.15 3 weeks 

80 1.07 7 weeks 

40 1.00 15 weeks 

20 0.93 32 weeks 

10 0.87 69 weeks (~1.3 years) 

5 0.81 148 weeks (~3 years) 

 
To put this in perspective: in a traditional classroom, each weekday involves 50 minutes of class 
plus the same duration of homework after school. On this schedule, it takes students a full 
school year (36 weeks) to complete a course. 
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But if you spent the same amount of time working on Math Academy (100 XP/weekday), you 
could finish in just 5-6 weeks! That’s more than a 6x speedup – and you don’t have to be a genius 
to achieve it. Remember, we’re talking about an average student who is serious but imperfect. 
 
Even for a massive course like AP Calculus BC (which is benchmarked at about 6000 XP, twice 
as big as an average course), the speedup is still over 3x. And if you factor in all the extra time 
you’d spend studying for quizzes, midterms, finals, and the AP test itself in a traditional class, 
which is already included in Math Academy’s 6000 XP benchmark, it’s a 4x speedup. 
 
On the flipside, if you tried to use Math Academy like a phone game and only did a couple of 
minutes per day, it could take you nearly a decade to learn a traditional school year’s worth of 
math. 
 
For this reason, we highly recommend that you maintain a pace of at least 15 XP per weekday if 
you want to experience the benefits of Math Academy. But really, the higher your pace, the 
better. 
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Chapter 29. Technical Deep Dive on 
Prioritizing Core Topics 

Note: this chapter elaborates on concepts introduced in chapter 4. 
 

Summary: Math Academy prioritizes core topics that are most relevant in the “big picture” of 
mathematics. No topics are skipped, but because all topics are continually reviewed, covering core 
topics first allows students to get more practice and therefore develop a greater degree of 
automaticity on the core topics by the end of the course. This is advantageous because the core 
topics are the ones that appear more frequently as prerequisites of other topics in mathematics. 
We also observed that roughly a third of 4th grade through AP Calculus BC topics, while 
necessary to meet standards, were not actually prerequisites for university math, so we created a 
streamlined Mathematical Foundations (MF) course sequence that cuts out those topics and 
consists of mostly core topics. The MF sequence is geared towards adult learners who want to 
pursue advanced university courses as soon as possible but lack the necessary foundational 
knowledge. 

 

Core and Supplemental Topics 

When a student progresses through a course, Math Academy prioritizes core topics first, that is, 
the topics that are most relevant in the “big picture” of mathematics. For instance, in calculus, 
the product rule would be a core topic, while the intermediate value theorem would be a 
supplemental topic. 
 
Of course, a student taking the calculus course will of course cover both core and supplemental 
topics. No topics are skipped; it’s just a matter of the order in which they are covered. Because 
students cover core topics first and continue practicing them throughout the course, they get 
more practice and therefore develop a greater degree of automaticity on the core topics by the 
end of the course. This is advantageous because the core topics are the ones that appear more 
frequently as prerequisites of other topics in mathematics. 
 
Math Academy employs a proprietary intelligent algorithm to automatically identify core topics 
in its knowledge graph. At a high level, the idea is to satisfy two competing conditions: 
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1. If a topic is core, then all of its ancestor topics (i.e. its prerequisites, their prerequisites, 
and so on) must also be core. 
 

2. However, in each standard course in the knowledge graph, there must be some balance 
between core and supplemental topics – for instance, we should not label all topics as 
core, or all topics as supplemental, even though both of those cases would technically 
satisfy the preceding condition. The specific balance may vary depending on the 
connectivity of topics in the course and their relationship to topics in other courses. 

 

The Mathematical Foundations Sequence 

After developing a comprehensive curriculum that covers all the standards for 4th grade 
through AP Calculus BC, as well as plenty of advanced university courses, we found that roughly 
a third of 4th grade through AP Calculus BC topics were not actually prerequisites for university 
math. So, we created a streamlined Mathematical Foundations (MF) course sequence that cuts 
out those topics and consists of mostly core topics. 
 
The MF sequence is geared towards adult learners who want to pursue advanced university 
courses as soon as possible but lack the necessary foundational knowledge. Whether an adult is 
starting off again with the basics or just needs to brush up on calculus, our Mathematical 
Foundations sequence is the fastest and most efficient way to get up to speed with the 
mathematical concepts and tools that are necessary to excel in university-level mathematics. 
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VI. FREQUENTLY ASKED QUESTIONS  
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FAQ: The Practice Experience 
 

Summary: (in progress) 
 

Active Learning, Scaffolding, and Automaticity 

> How does a lesson work? 

At the most fundamental level, a lesson is a sequence of slides with instructional text, 
interspersed with active problem-solving. 
 
Each lesson starts out with an introduction, and then moves to a worked example, followed by 
2-5 practice questions on the same type of problem as the worked example. The worked example 
and active problem-solving we collectively refer to as a "knowledge point" or KP. 
 
The number of practice questions in a KP adapts to the student’s performance: practice 
questions continue until the student demonstrates sufficient mastery of the KP to continue 
building more advanced learning on top of that understanding. 
 
After completing a KP, the student moves on to the next KP. A typical lesson has about 3 or 4 
KPs increasing in difficulty. The first KP covers the simplest case to introduce a new 
concept/skill, and the following KPs build on this concept/skill, extending it to progressively 
more advanced cases. 
 
(If a student is unable to demonstrate mastery of a KP within 2-5 questions, then they "fail" the 
lesson and spend some time working on other lessons before coming back to re-attempt the 
originally failed lesson. On average, students pass lessons on the first attempt 95% of the time 
and within two tries 99% of the time.) 
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> Solving problems breaks my flow of learning. Is it really necessary? 

Active problem-solving is where the learning happens. It may feel like learning when you're 
following along while reading/skimming a book, but that comfortable fluency is completely 
artificial. It arises from the fact that the surrounding context is already on your mind, and you're 
not actually being made to pull it from memory. 
 
If you define learning as a positive change in long-term memory, then you haven’t learned unless 
you’re able to consistently reproduce the information you consumed and use it to solve 
problems. This doesn’t happen when you just “follow along,” even if you understand perfectly. 
It’s the act of retrieving information from memory that transfers the information to long-term 
memory. If you don’t practice retrieval, then the information quickly dissipates. It stays with you 
only briefly – just long enough to trick you into thinking it’ll stick with you, when it’s really on 
the way out the door. 
 
The most effective way to avoid this problem and maximize your learning – not just the 
perception of learning – is to switch over to active problem-solving immediately after 
consuming a minimum effective dose of information. While this may initially feel a bit jarring, it 
isn't slowing down your learning – it's only exposing the fact that your perception of learning 
does not accurately reflect actual learning. In reality, it's speeding up your actual learning, and 
the only thing it's slowing down is your perception of learning. 
 
You might say "but I had learned so much, and I had it down pat, and then I forgot it all when I 
focused my effort on solving a problem." But the thing is, if you can't retrieve that information 
from memory at the snap of a finger, after thinking about other things or zooming in to focus on 
a specific problem, it means you didn't really have it down pat. You just felt like you did because 
you weren't being made to attempt to regenerate the information from scratch, from memory. 
What you're really saying is "I was juggling a lot of information in my working memory (WM), 
and I thought it was in my long-term memory (LTM), and then I cleared a lot of it out from my 
WM when I focused my effort on transferring some of that WM into LTM." 
 

> Don’t students need to struggle for long periods of time, without too much 
guidance, to train their general problem-solving ability? 

For students (not experts), empirical results point in the opposite direction. One key empirical 
result is the expertise reversal effect, a well-replicated phenomenon that instructional 
techniques that promote the most learning in experts, promote the least learning in beginners, 

 

https://en.wikipedia.org/wiki/Expertise_reversal_effect
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and vice versa. It’s true that many highly skilled professionals spend a lot of time solving 
open-ended problems, and in the process, discovering new knowledge as opposed to obtaining it 
through direct instruction. But that doesn’t mean beginners should do the same. The expertise 
reversal effect suggests the opposite – that beginners (i.e., students) learn most effectively 
through direct instruction. 
 
Additionally (and relatedly), as discussed in chapter 8: there’s a mountain of empirical evidence 
that you can increase the number of examples & problem-solving experiences in a student’s 
knowledge base – but a lack of evidence that you can increase the student’s ability to generalize 
from those examples (by doing things other than equipping them with progressively more 
advanced examples & problem-solving experiences). In other words, research indicates that the 
most effective way to improve a student’s problem-solving ability in any domain is simply to 
equip them with more foundational skills in that domain. The way to increase a student’s ability 
to make mental leaps is not by having them jump further, but by having them build bridges from 
which to jump. 
 
There does not seem to be any tangible, empirically-supported reason for a student to struggle 
with a problem for a long period of time as opposed to using that time to learn more content. 
For instance, in an hour-long training session, a student will make a lot more progress by 
solving numerous “deliberate practice” problems that each take a small amount of time given 
their current level of knowledge, than by attempting a single problem that they struggle with for 
a long period of time. (To be clear: the deliberate practice problems must be grouped into 
minimal effective doses, well-scaffolded & increasing in difficulty, across a variety of topics at 
the edge of the student’s knowledge.) 
 
As Sweller, Clark, and Kirschner sum it up in their 2010 article Teaching General Problem-Solving 
Skills Is Not a Substitute for, or a Viable Addition to, Teaching Mathematics: 
 

"Although some mathematicians, in the absence of adequate instruction, may have learned to 
solve mathematics problems by discovering solutions without explicit guidance, this approach was 
never the most effective or efficient way to learn mathematics. 
… 
In short, the research suggests that we can teach aspiring mathematicians to be effective problem 
solvers only by providing them with a large store of domain-specific schemas. Mathematical 
problem-solving skill is acquired through a large number of specific mathematical problem-solving 
strategies relevant to particular problems. There are no separate, general problem-solving 
strategies that can be learned." 

 
Another good reference is Putting Students on the Path to Learning: The Case for Fully Guided 
Instruction by the same authors (Clark, Kirschner, & Sweller, 2012). It's an expanded version of 
the 2010 article. 

 

https://www.ams.org/notices/201010/rtx101001303p.pdf
https://www.ams.org/notices/201010/rtx101001303p.pdf
https://research.ou.nl/ws/portalfiles/portal/1027501/Putting+students+on+the+path+-+American+Educator+-+Clark-Kirschner-Sweller.pdf
https://research.ou.nl/ws/portalfiles/portal/1027501/Putting+students+on+the+path+-+American+Educator+-+Clark-Kirschner-Sweller.pdf
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> Is automaticity really required to move up to the next level? Doesn't it just 
come with time? 

While we emphasize the importance of building automaticity over time (see Chapter 14), we do 
not mean to suggest that students have to learn skills to the point of automaticity before moving 
forward.  
 
Before moving forward, students must reach a “baseline mastery” performance threshold 
indicating that they have learned the material well enough to solve problems successfully (and 
do this consistently). This level of baseline mastery is necessary for students to continue layering 
on additional knowledge where baseline-mastered skills are exercised as component sub-skills 
within more complex skills. However, the performance threshold for baseline mastery is not as 
high as the performance level for automaticity, which is realized over a longer period of time. 
 
As discussed in Chapter 15, layering more advanced skills is one of the most efficient ways to 
achieve automaticity: as students learn progressively more advanced material, they reinforce and 
deepen their foundational knowledge. However, the efficiency of layering is conditional on 
students being able to successfully execute the foundational skills, which requires a baseline 
level of mastery. 
 
Furthermore, while one may hope to naturally develop automaticity on lower-level skills by 
layering on more advanced skills, it is still necessary to check that this is happening and take 
swift action if it's not. This is one reason why Math Academy leverages frequent timed 
assessments and immediately follows up with remedial support on any questions a student 
misses. 
 
Checking for automaticity will continue to grow as a centerpiece of the Math Academy system, 
especially in the context of teaching “math facts” like addition and multiplication tables, since it 
is easier for a lack of automaticity to fly under the radar in those areas (due to how simple and 
quick the problems are). To provide a concrete example: sometimes a student will default to 
recalculating (or even finger-counting) every single fact instead of first trying to retrieve it from 
memory. At first their speed and accuracy will increase because they're getting better at 
recalculating, but these gains will asymptote off before the student reaches anywhere near the 
range of automaticity. This kind of student will never develop the necessary automaticity unless 
somebody intervenes to break them out of their habit and support them with flashcard-style 
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practice. As Math Academy develops a “math facts” curriculum, these automaticity 
interventions will be built directly into the system. 
 

> If worked examples are necessary to maximize learning efficiency, then why am 
I able to solve problems just fine without them? 

When students start out learning math, it sometimes feels easy to the point that they can solve 
problems reasonably quickly without having to see worked examples. But this phase is 
temporary: as the level of math rises, solving problems without worked examples quickly 
becomes overwhelming and inefficient. Without worked examples, learners reach a point where 
unguided problem-solving overwhelms their working memory and puts them in a state of 
cognitive overload where they feel frustrated, confused, and are unable to solve the problem. 
They flat-out stop making progress, and no more learning happens. 
 
Even before a lack of worked examples becomes a complete roadblock to successful 
problem-solving, it will inflate the amount of time needed for a student to successfully solve 
problems, thereby throttling the volume of deliberate practice cycles that can be achieved in any 
given amount of time. This is problematic because (as discussed in chapter 12) the accumulated 
volume of action-feedback-improvement cycles is the single biggest factor responsible for 
individual differences in performance among elite performers across a wide variety of talent 
domains. 
 
In summary: math gets hard for different students at different levels – it can be as early as high 
school algebra or as late as graduate-level Algebraic Topology – but everyone eventually reaches 
a level where things no longer feel obvious and they can’t figure things out as quickly on the fly. 
That’s where worked examples and instructional scaffolding come in to keep students making 
fast progress. If you don’t have worked examples and instructional scaffolding to help carry you 
through once math becomes hard for you, then every problem basically blows up into a 
“research project” for you. That’s okay if you’re a research mathematician at the edge of your 
field, but if you’re a student who still has a ways to go before reaching the edge of human 
mathematical knowledge, then it’s far less efficient (even if you have fun with it). 
 
Of course, if you really want to solve problems without referring to worked examples, nobody is 
stopping you from skipping worked examples and trying your hand at solving the corresponding 
problems without guidance. It can be a fun challenge! You just need to make sure that you’re 
still solving the problems quickly and accurately – if you start slowing down and/or becoming 
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less accurate (or, more subtly, if you start to doubt yourself and lose interest), then that’s an 
indication you need to start leveraging those worked examples. 
 

> Why aren’t Math Academy’s university courses structured like typical higher 
math textbooks with minimal scaffolding? 

Higher math textbooks and classes are typically not aligned with (and are often in direct 
opposition to) decades of research into the cognitive science of learning. Higher math is heavily 
g-loaded, which creates a cognitive barrier for many students. The goal of guided and scaffolded 
instruction is to help boost students over that barrier. (To be clear, we do not mean to imply that 
higher math would be “easy” if taught properly – just that many more people would be able to 
learn it, than are currently able to learn it.) 
 
Why do higher math textbooks lack such scaffolding? For one, the amount of work it takes to 
create a textbook explodes with the level of guidance and scaffolding, so in practice there is a 
limit to the amount of boosting that is feasible, especially if the textbook is written entirely by a 
single author. 
 
That said, most higher math textbooks don’t even come close to the theoretical limit for a single 
author, much less the theoretical limit for a team of content writers. Why is that? First, consider 
the following problem that has affected anyone who has ever tried to learn math from a 
textbook: a worked example demonstrates a special case, but a practice problem requires a 
logical leap that wasn’t explicitly covered. A number of textbooks seemingly attempt to solve 
this problem by side-stepping the need for a large amount of scaffolding (worked examples and 
practice problems increasing in difficulty), and instead focus the effort on trying to teach 
general problem-solving skills with challenging problems that require large mental leaps. 
 
However, as discussed in Chapter 8, there is a mountain of evidence in the cognitive science 
literature that you can increase the number of examples and problem-solving experiences in a 
student’s knowledge base, but a lack of evidence that you can increase the student’s ability to 
generalize from those examples. In other words, research indicates that the best way to improve 
one’s problem-solving ability in any domain is simply to acquire more foundational skills in that 
domain. The way you increase your ability to make mental leaps is not actually by jumping 
farther, but rather, by building bridges that reduce the distance you need to jump. 
 
Higher math textbooks and courses often focus on trying to train jumping distance instead of 
bridge-building – especially once a student gets into serious math-major courses like Real 
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Analysis and Abstract Algebra. However, what actually works in practice is simply creating 
more worked examples, organizing them well, and giving students practice with problems like 
each worked example before moving them onto the next worked example covering a slightly 
more challenging case. Students can successfully climb to higher-than-expected levels of math 
with this approach, but many educational resources shy away from it because it takes so much 
work to create all the necessary content. 
 

> I expected the quiz to cover topics that I learned since the previous quiz, but it 
asked me about lots of topics that I learned even before that. I would have done 
better on the quiz if I knew what was going to be on it or if it just limited the 
questions to what I’ve learned recently. Is this a bug? It feels weird and unfair. 

Quizzes cover all topics a student has learned on the system, not just new topics between 
quizzes. The goal of quizzes is to measure a student’s level of automaticity on material that 
they’ve previously learned and practiced enough to expect a reasonable degree of automaticity to 
have developed. Quiz performance helps the system understand whether it's moving at the right 
pace for a student or if it needs to slow down and provide more frequent practice on previously 
learned material to help the student retain it and develop proper automaticity. 
 
If quizzes were limited to topics covered since the previous quiz, that would telegraph what's 
going to be on the quiz (causing it to be artificially easy) and exclude older topics where it's most 
important to be measuring automaticity. This would dilute the efficacy of the quizzes in 
adapting the pace of learning and promoting retention & automaticity. 
 
We realize that in a typical classroom, quizzes tend to be less frequent, students are told what's 
going to be on it, it only covers topics they’ve learned very recently leading up to the quiz, and 
extensive time is permitted to solve each question. But those conditions make quizzes 
artificially easy, a biased signal for adapting the pace of learning, a poor measurement of 
retention & automaticity, and an inferior tool for promoting retention & automaticity. It's like 
playing a game of football where the opposing team asks what plays you've been practicing in 
the past week, and then selects their own plays so that the appropriate counter-plays are the 
ones you recently practiced, and then tells you what plays they're going to run. It's not a real 
game. It's completely artificial. 
 
We also realize that this can be a rude awakening for many students who are accustomed to less 
effective techniques leveraged in more typical educational offerings. We can definitely improve 
on helping learners understand the rationale behind these sorts of decisions made by our 
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system, and it’s on our roadmap. But at the end of the day, the purpose of Math Academy is to 
ascertain the truth about what a learner knows and how well they know it, and leverage said 
truth to maximize learning efficiency, even if this process can lead to some initial unfamiliarity 
and discomfort. 
 

Spaced Repetition and Interleaving 

> Why can’t I just learn one unit at a time? Interleaving feels disorienting. 

We realize it may feel easier to learn one unit at a time without interleaving. However, that 
feeling is completely artificial: students measurably learn better when they vary up their practice 
after a minimum effective dose of initial learning. 
 
As discussed in Chapter 18, a common finding in the research is that when students do not 
interleave, learning tasks are made artificially easy because the surrounding context is already 
on one’s mind – one does not have to pull the context from memory again. This produces a 
comfortable sense of fluency, but that feeling is completely artificial. 
 
Think about it this way: maybe you go through a lesson on limits and you're feeling really good, 
and then we change things up on you and give you a lesson on derivatives, and then integrals, 
and then sequences & series. And after that we go back to limits. You might say "You messed up 
my learning! I had limits down pat and now you made me forget it by making me think about other stuff." 
But the thing is, if you can't retrieve that information from memory instantaneously, after 
thinking about other things, it means you didn't really have it down pat. You just felt like you 
did because you weren't being made to attempt to regenerate the information from scratch, 
unassisted, from memory. And the only way to get better at regenerating the information from 
scratch, unassisted, from memory, is by having to practice doing that – which only happens 
when you interleave. 
 

> Is the spaced repetition happening? I started recently and all I have is lessons. 
Where are the reviews? 

A lot of the review happens implicitly by having you learn new topics that encompass previously 
learned topics as subskills. At the beginning, when you have a small body of knowledge to 
review, we're able to pick new lessons that knock out all your reviews without you having to 
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explicitly do any review tasks. However, as you build up a larger body of knowledge to review, 
you'll start to see explicit review tasks on topics that we are not able to knock out explicitly. 
 
So, basically: the spaced repetition has already started kicking in, but we do a lot of optimization 
to make that happen simultaneously while having you learn new material. The only time you'll 
get an explicit review is when we're not able to knock it out implicitly while having you learn 
something new. (Though, after a quiz, you'll also get explicit reviews immediately on any 
questions you miss.) 
 

> I’ve been having more review tasks lately than I’m used to. What’s going on? 

It’s normal to sometimes have strings of many consecutive lessons, and other times have plenty 
of review tasks with lessons interleaved every several reviews. Likely, you have gotten used to 
having the balance shifted more towards lessons, which is what happens when we are able to 
implicitly knock out more reviews, just because there happen to be more encompassings in that 
area of the knowledge graph. Now, we have a backlog of review from those lessons, and we just 
happen to be in an area of the knowledge graph where there are less encompassings that we can 
use to knock out reviews implicitly. 
 
By way of analogy: we are a really fast car (top speed 1000 mph) and we're traveling across a 
varied terrain. Sometimes the terrain permits traveling at 1000 mph. Sometimes we have to slow 
down to 500 mph just because the terrain has turns, potholes, etc. We're still moving as fast as 
we can. But, of course, if a passenger doesn't understand the terrain, then they might take issue 
when the car slows down from 1000 mph to 500 mph. 
 

> Math Academy reviews feel challenging. Aren’t reviews supposed to be easy if I 
learned the material properly? 

If you’re actually trying to maximize learning efficiency, then reviews should feel tough. Why? 
Because recalling tricky information improves memory, while recalling easy information 
doesn’t. 
 
That’s the whole idea behind spaced repetition: your memory has to get a bit fuzzy before the 
next repetition, otherwise the desired effect – slowing the rate of forgetting and remembering 
longer next time – doesn’t happen (or at least not nearly as much). It’s the act of successfully 
retrieving fuzzy memory, not clear memory, that extends the memory duration. 
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If review problems are easy, not actually extending your memory duration, then what’s the 
point? It’s better to learn something new. A maximum-efficiency teacher will intentionally let 
your memory fade a bit before review so that the act of refreshing your memory actually deepens 
your long-term encoding, and they’ll use the extra time to cover more new material. 
 
Reviews should feel as mentally taxing as initial lessons. You’re getting better, but the bar for 
success also is getting higher. Your brain has to hold the memory for a longer period of time – 
just like a muscle holding a weight. 
 
The analogy to weightlifting runs deep. In the context of spaced repetition, the way you increase 
the weight is by waiting longer before retrieving the knowledge again. But you also don’t want 
to wait too long to retrieve the knowledge, because then you won’t be able to successfully 
retrieve it. This is just like how in weightlifting, you need to increase the weight to the point 
where you struggle to lift it, but you are able to overcome the struggle. That’s how you build 
muscle, and that’s also how you build long-term memory. Spaced repetition = “wait”lifting. 
 

> Does Math Academy’s spaced repetition system provide enough practice? I 
learned some new information on Math Academy but I am not confident in my 
ability to retrieve it from memory unassisted. 

Math Academy's spaced repetition system should be sufficient for remembering everything: 
concepts, procedures, definitions, theorems, formulas, etc. However, it can take several weeks of 
consistent practice before you really feel confident in retrieving recently learned information. 
During their first several weeks on Math Academy, it is not uncommon for students feel unsure 
whether the information they are learning is going to stick in their brain long-term – but after a 
month or so of consistent usage, they notice something has changed and they’re able to pull a lot 
of this information from memory without much effort (it feels kind of like magic). 
 
This phenomenon can be explained by the following dynamics within the spaced repetition 
process: 
 

● Early on, forgetting happens so rapidly that the spaced repetition process is unforgiving 
to imprecision: if you are slightly late to the next repetition, your memory may have 
decayed enough since the ideal repetition time that you need a retrieval cue or reminder 
during the next repetition (and on the flipside, if you are slightly early, then the 
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repetition may lose a lot of its effectiveness in slowing your rate of forgetting). 
 

● However, by the time you get through a handful of repetitions, your rate of forgetting has 
slowed enough to make the spaced repetition process more robust to imprecision: even if 
you are slightly late to the repetition, this lateness is small relative to the repetition 
interval which is now large, so your memory hasn’t decayed much more than desired and 
you’re still able to recall successfully without reference material. (Likewise, if you are 
slightly early, the repetition still retains most of its effectiveness.) 

 
Note, however, that even with consistent practice, this “magical transition” depends on properly 
engaging in retrieval practice, trying your best to recall from memory instead of automatically 
going back to reference material whenever you feel your memory is a bit fuzzy. Successfully 
retrieving a fuzzy memory is the very thing that slows future forgetting and extends the 
memory's duration. If you just load up the information into your brain by looking at a reference, 
then you may refresh the information, but you don't actually slow the rate of forgetting, so you 
end up stuck in a vicious cycle of constant forgetting and reliance on reference material. 
 

> I know reviews are happening, but sometimes I’m waiting weeks for the first 
review and months for the second, even when I’m sure those topics aren’t getting 
any implicit review credit from other tasks I’m doing. I’m not struggling to solve 
the problems, though sometimes I need to look back at the reference topic for a 
formula that I’ve forgotten. But shouldn’t the reviews be coming sooner? 

When a student demonstrates a high degree of performance on the system, the system adapts to 
move at a high pace of learning. One component of this adaptation is that the student’s reviews 
are spread out further over time. Of course, if the student were to start struggling, the pace of 
learning would slow down and they would receive more frequent reviews. 
 
Keep in mind that the spaced repetition system is not trying to keep a student’s knowledge 100% 
fresh. It's trying to minimize the amount of review necessary to keep the forgetting from getting 
so bad that the student hits a wall in the future and/or has to re-learn the topic from scratch. If a 
student wanted to get their knowledge up to being 100% fresh on some course (e.g., for an 
external exam), they would enter test-prep mode and get pummeled with early reviews for a few 
weeks. 
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All this said, there is room for us to more precisely calibrate our spaced repetition system in the 
future, and it's on our to-do list – though, currently, the spaced repetition system seems to 
function well enough to serve its purpose, and there are weaker links in the chain that we need 
to focus our efforts on improving. 
 

> After I complete a course and move to the next course, won’t I forget what I’ve 
learned in the first course unless I keep on reviewing it? 

The spaced review system operates across a student’s entire knowledge profile in general, not 
just the specific course they’re in. Every topic a student learns on Math Academy will 
automatically be reviewed into the future, even if they switch to a different course. (Note that 
these reviews will be implicitly “knocked out” by material in the new course when possible, so 
students may not see very many reviews that are explicitly on topics from past courses, even 
though those lower-course topics are indeed continually being reviewed into the future in 
accordance with the usual spaced repetition procedure.) 
 

> It feels like most of my reviews are on topics I did recently. Shouldn’t most of 
my reviews be on things that I learned a long time ago? 

This is a natural consequence of how spaced repetition works. It's expected that reviews will 
tend to be on recent topics more often than older topics. Recent topics need to be reviewed more 
frequently and there's less knowledge built upon them (so, less opportunity to find and leverage 
encompassing to knock the reviews out implicitly). Older topics have already accumulated 
plenty of review (much of which might be implicit), so they're not going to need to be reviewed 
as often, and when review is due, there's a much greater chance we'll be able to find 
encompassings to knock them out implicitly. 
 
Additionally, whenever a due review on an older topic can be knocked out implicitly by a review 
on a newer topic that is not yet due, we will still serve the newer topic, because doing so not only 
knocks out the due review on the older topic but also has the added benefit of moving the newer 
topic a partial repetition forwards along the spaced repetition process. (The repetition on the 
newer topic is discounted because it is early, but the partial repetition credit still pushes future 
review off to a later date than was originally scheduled.) 
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> I know the system intends to review material from older courses, but there are 
some older topics where I’m not getting any more reviews. Why not? 

If it seems like something is not getting reviewed anymore, then one of the following things is 
happening: 
 

1. It's getting implicit review credit from more advanced work that you're doing. For 
instance, you'll probably never see an explicit review on ax=b equations because you're 
constantly practicing this subskill as you climb up through more advanced math, and 
this starts happening as early as ax+b=c equations. 
 

2. The spaced repetitions are being massively spaced out. Spaced repetition intervals can 
grow arbitrarily long, even a year or more (i.e., you might reach a point where you 
reasonably wait a year or more until the next review). This will happen if you've done 
many reviews on a topic, but it can also happen if the topic is intrinsically easy and you 
aced it. For any given topic, your spaced repetition schedule is calibrated based on how 
well you performed on that topic, and how hard the topic is overall (based on its average 
quiz performance across all students). If there's a topic that pretty much everyone 
answers correctly on quizzes, and you ace the lesson, then your repetition 1 interval for 
this topic might be the same length as, say, a repetition 5 interval for a challenging topic 
where you just barely passed the lesson and people tend to miss it more often on quizzes 
in general. 
 

3. This is rare, but it's technically possible we might have an overly aggressive 
encompassing set, i.e., the model thinks a subskill is encompassed by a more advanced 
topic when this isn't really true. Again, this is very uncommon, but it's on our to-do list 
to automatically double-check encompassing weights. However, the spaced repetition 
system is one of the stronger components of the system at the moment, so this has not 
been a priority as there are more impactful things to work on. 
 

4. If the topic is in a much lower course, more than just a few courses back, then the 
"mastery floor" will pave over it and consider the topic completely mastered to the point 
that you no longer need any practice with it in the future. Right now, having a mastery 
floor is necessary to prevent the diagnostic algorithm from assessing and potentially 
over-reacting to a student's errors in much lower-level material. For instance, if a student 
is placing into calculus, we wouldn't want to ask them diagnostic questions on "division 
using box models" from the 4th grade course – they might know how to do long division 
just fine but not be familiar with the "box model" approach which is often used to 
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scaffold students into long division. The "quick-and-almost-always-works-fine" solution 
right now is to limit our collection of missing prerequisites to a few courses back, and 
assume the student is 100% rock-solid on material lower than that. This works out just 
fine in the vast majority of cases. It's on the to-do list to make the diagnostic algorithm 
more sophisticated to remove the mastery floor, and we've figured out how to do this, but 
it's a pretty complicated and extensive update under the hood (and again, the spaced 
repetition system is one of the stronger components of the system at the moment, so it 
has not been a priority as there are more impactful things to work on). 

 
Remember that the spaced repetition system is not trying to keep your knowledge 100% fresh. 
It's trying to minimize the amount of review necessary to keep your forgetting from getting so 
bad that you hit a wall in the future and/or have to re-learn a topic completely from scratch. (If 
you wanted to get your knowledge up to being 100% fresh on some course, e.g., for an external 
exam, you would enter test-prep mode and get pummeled with early reviews for a few weeks.) 
 
The system is intentionally trying to wait for you to get fuzzy on a topic before bringing it back 
for review, because recalling a fuzzy memory is what really improves retention. Recalling a 
memory that's already pretty clear will refresh the memory, but it won't actually improve 
retention that much in the sense of slowing your rate of forgetting. Spaced repetition is like 
weightlifting where the wait is the weight. (Note that retention is also improved by layering on 
new knowledge that connects to and more deeply ingrains old knowledge – so, when you learn 
ax+b=c equations immediately after x+a=b and ax=b equations, that's still extending your 
retention of x+a=b and ax=b even though you might not be fuzzy on x+a=b and ax=b equations.) 
 
The overall takeaway: while there is room for us to more precisely calibrate our spaced 
repetition system in the future, don't worry too much about a small number of topics that you 
think you've forgotten and haven't been getting reviews on. You're good as long as you're able to 
keep making progress through new material without having to spend a bunch of time 
re-learning prerequisite material. (If you're having to quickly peek back at reference material for 
prerequisites once in a while, that's fine – that's very different from spending a bunch of time 
re-learning prerequisite material.) 
 
Note that, overall, it is uncommon for adult students to experience excessive friction due to 
forgetting previously learned material on Math Academy. Interestingly, over the years, we have 
had one-on-one conversations with a handful of students who did experience excessive friction 
due to forgetting, and in every single instance, the core of the issue turned out not to be the 
spaced repetition schedule, but rather the student’s behavior when solving review problems. 
They weren’t actually engaging in retrieval practice. Instead of trying to recall information from 
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memory, they’d default to looking up information from a reference, sometimes even solving 
problems alongside the reference. 
 
(Remember that spaced repetition doesn't work if you're just re-consuming information – you 
have to be reproducing it from memory in order to really extend your memory duration, peeking 
back at the reference as sparingly as possible, and then closing the reference and re-pulling the 
information from memory after peeking. The point of the reference is to, only when absolutely 
necessary, give you a little help getting over the hump of retrieving information from memory, 
kind of like a spotter in the gym. The spotter shouldn't be lifting the weight for you – they 
should only get involved if you can't lift it yourself despite trying your best, and even then, they 
should only provide just enough assistance for you to just barely get the weight up.) 
 
Avoiding proper retrieval practice is more common in kids, and especially adversarial students, 
but even well-intentioned and responsible adults can sometimes fall into this trap without 
realizing it. Along these lines, behavioral coaching – making sure learners are engaging in 
proper retrieval practice, using reference material appropriately, and not falling into any other 
traps with unproductive micro-behaviors when completing their Math Academy work – is 
currently going to be more impactful than further calibrating the spaced repetition system. 
 

> Sometimes I have some reviews in my task queue, but then I do a lesson or two, 
and the reviews disappear from the queue. Don’t I need to do them? 

This is expected behavior because tasks are selected dynamically. Sometimes a student might 
have a lot of due reviews, but after a student completes some of those reviews it's a better use of 
time to complete some new lessons and make a bit of forward progress before going back to the 
due reviews. And sometimes making a bit of forward progress will open up new lessons that 
knock out previous reviews. It's always a balancing act, we're always trying to serve tasks that 
are optimal for the student to work on at this specific moment in time, so the options available 
are always subject to change. The way to think of the dashboard is not a task queue, but rather 
an ever-changing menu at a math buffet. The menu is always constructed to try to nourish 
students in the ways that they're most in need of at that moment in time. 
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> Given that lessons can “knock out” reviews, should students always give 
preference to lessons over reviews if both activity types are available? 

It doesn't really matter. If a review is on a student's dashboard it means we weren't able to 
knock it out by having the student do a lesson instead. Whenever it is possible for a due review 
to be knocked out by a lesson, we will only offer the student the lesson. We will not offer them a 
review that is made redundant by a lesson already on their dashboard. 
 

> Why are there multiple questions in reviews? Why not just one question? 

There are several reasons why reviews contain multiple questions: 
 

1. Reviews need to provide interleaved (mixed) practice across multiple knowledge points 
in the original topic. 

2. Reviews need to assess the student’s level of mastery. Mastery means consistently solving 
problems correctly – not just once. 

3. Assessing multiple questions helps make passing the task robust against guessing. 
 
Additionally, providing several review problems feels in line with what a human expert tutor 
would do. 
 

> I got three questions correct and only two questions incorrect. Shouldn’t I have 
passed the review? 

The order of correct versus incorrect is very significant when it comes to measuring learning. 
Underlying factors need to be considered too, not just surface-level aggregate counts. 
 
For example, the two scenarios below both entail getting three of five questions correct but have 
very different interpretations: 
 

● ✔✖✔✖✔✔ is interpreted that the student was initially a bit confused, but then 
learning occurred and then they started really “getting” it. 
 

● ✔✔✖✔✖ is interpreted that, despite getting some initial questions correct, the student 
started struggling afterwards, indicating that they were not really “getting” it initially (at 
least, not as much as the first two answers would have suggested). 

 



The Math Academy Way – Working Draft  |  385 

 

> Math Academy maximizes learning efficiency if a student is willing to engage 
in forms of training that are highly effortful. What about for students who don’t 
have as much energy and motivation? 

Math Academy teaches math as though we were training a professional athlete or musician, or 
anyone looking to acquire a skill to the highest degree possible. When a student signs up for 
Math Academy, it's like going to a gym where one of the personal trainers was a former Olympic 
sprinter, and telling them “I'm going to show up 40 minutes per day, 5 days per week, and I want 
you to use whatever methods of training are going to make the most improvements on my 
100-meter dash time. I don't care how exhausting they are; I am willing to work hard.” 
 
Many students do not want to devote this much effort to their learning, just like many people 
who sign up for the gym do not want to do an Olympic-intensity workout most days of the week. 
While it’s true that willingness to work hard is a bottleneck for many students, such students are 
not part of our target market. If a student is not willing to put forth a high degree of effort 
engaging in the most effective training techniques, which are taxing, then the Math Academy 
system is not a good fit for them. 
 

Remediation 

> If a student fails a task, why does the system ask them to re-attempt the task 
later? Why doesn’t it just peel back their knowledge profile immediately? 

How quickly the system peels back a student’s knowledge profile in response to a failed task 
depends on how much evidence the student has demonstrated for knowing the prerequisite 
topics. If a student has demonstrated strong evidence for knowing the prerequisites, then the 
system will be very slow in peeling back the student’s knowledge profile. If they fail a lesson 
twice in a row without making additional progress, the system will provide support in the form 
of remedial reviews on the key prerequisite material implicated in the student’s point of 
struggle, and if the student fail those remedial reviews, then they will be given the 
corresponding lessons, and so on. 
 
This is a slow process because it has to be resistant to adversarial students "gaming the system." 
If we peeled back a student’s knowledge profile quickly in response to failing a task, even when 
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there is strong evidence that a student knows the prerequisite content, then it would create an 
exploit: whenever tasks begin to feel challenging, an adversarial student could intentionally fail 
a number of tasks to peel back their knowledge profile until they reach the point where they 
have days of super easy work ahead of them that they already know how to do. 
 
That said, if a student supplied evidence for knowing material, but the amount of evidence is 
very low, then the system will be faster to adapt. This process is explained in more detail in the 
answer to the FAQ entry “After the diagnostic, why did failing a single task bring my progress down 
multiple percent?”. 
 

> If a student fails a task, why does the system have them try the same task again 
after a delay? Shouldn’t it try to explain things differently, immediately? 

Some people think that students need a million different explanations of the same topic until 
one "clicks" for them. But really, if you have to explain something a ton of different ways to a 
student before it they can follow that explanation well enough to successfully engage in active 
problem-solving, then either 
 

1. your original explanations were not good in a pedagogical sense, or 
 

2. the student was lacking prerequisite knowledge and the explanation that "clicked" 
managed to circumvent that prerequisite knowledge (which often indicates that it's 
reducing the topic to a simpler case that doesn't involve the prerequisite -- which means 
the curriculum is watered down and the student will only be able to solve cherry-picked 
problems). 

 
When you have 
 

● highly scaffolded, carefully curated content, 
● that has been battle-tested over a large number of students, 
● and continually analyzed to detect and further scaffold any areas where more than a 

sliver of students fall off the rails, 
● and has gotten to a point that 95% of students pass lessons on the first try (and 99% 

within two tries), 
 
if you give a lesson to a new student who has mastered all the prerequisite material, then there's 
really no excuse for them not to be able to learn it. 
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For lessons that have undergone this much data-driven refining, on the rare occasion that a 
student does struggle with it, it doesn't mean that the lesson needs to explain things in a 
different way. Usually, all it takes to rebound is a bit of rest and a fresh pair of eyes. And then 
the same exact content will "click" the next time around. 
 

> If a student passes a lesson but doesn’t get full XP, is extra remediation needed? 

We only let a student pass a lesson if they evidence a sufficient level of mastery to continue 
building on the information they learned. If a student passes a lesson, then no remedial support 
is needed. Of course, this “baseline level” mastery is not synonymous with maximum 
understanding (i.e., "completely intuits everything covered in the lesson to the point of full 
automaticity"), and different students will be at different levels between baseline mastery and 
maximum understanding after completing a lesson. However, as they continue reviewing and 
layering more advanced knowledge on top of that topic, their understanding will become further 
solidified and they will move closer and closer to the point of maximum understanding. 
 

> I passed a lesson, but I don’t feel like I have the deepest level of understanding. 
Is this normal?  

Any lesson you do, it might not feel perfectly intuitive right away, and you might not notice all 
the connections there are to see. But if you stick with the process and continue periodically 
reviewing and layering more knowledge on top of that topic, you'll continually increase your 
intuition for it, all the way up to a deep level of understanding. The more knowledge you build 
on top of that topic, the more connections you make, the more deeply ingrained it becomes, the 
greater your level of automaticity, the more intuitive it feels, the more easily you're able to see 
connections to other topics. 
 
Building knowledge is like working out. Like physical transformations, intellectual 
transformations are produced by accumulating a massive volume of incremental improvements. 
Our system will imbue you with a deep level of understanding if you're willing to start at a level 
where you're able to solve problems correctly, comfortably, and consistently, and then stick with 
the process consistently for a long enough time horizon that you could reasonably expect a body 
transformation if you were physically working out at the gym. 
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> Does Math Academy work for every student? What about students who are 
below grade level? 

A student does not need to be advanced or even at grade level to be successful with Math 
Academy. The effectiveness of Math Academy does not depend on a student's level of 
knowledge relative to their grade level, but rather on whether the student's behavior aligns (or 
can be made to align) with the learning process. Math Academy will work, spectacularly well, for 
students who are willing to put in a consistent effort. 
 
When a math learner struggles, the root cause of struggle can typically be traced back to 
instructional leaps and/or knowledge gaps: 

● the student may be presented with too much new information at once (an “instructional 
leap”), or 

● the new information may depend on lower-level material they either missed, never fully 
mastered, or have forgotten (a “knowledge gap”). 

 
Math Academy resolves these pedagogical shortcomings by automatically detecting and filling 
knowledge gaps and scaffolding new information into bite-sized pieces: 
 

● Every student starts with an adaptive diagnostic that not only identifies their level of 
knowledge within their course, but also checks for any missing prerequisite knowledge – 
and if any knowledge gaps are found, they are automatically added to the student’s 
learning plan so that they can be repaired. In this way, Math Academy creates a custom 
math course for every individual student. 
 

● In addition to filling existing knowledge gaps, Math Academy also prevents new 
knowledge gaps from occurring by leveraging mastery learning and spaced review. 
Students are provided with as much practice as needed to reach mastery, they are only 
asked to learn new topics for which they have mastered the prerequisites, and they 
periodically review previously learned material so as not to forget it. 
 

● We make the steps of our “learning staircase” incredibly small and leverage analytics to 
continually refine our content, adding extra scaffolding where needed to ensure that on 
every lesson, the vast majority of learners who attempt it reach a sufficient level of 
baseline mastery on the first try. On the rare occasion that a student fails a lesson twice 
in the same place, we provide additional practice on the prerequisite material most 
relevant to the student’s specific area of struggle before asking them to reattempt the 
lesson. 
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That said, there are a few caveats to keep in mind: 
 

● If a student is not aligned with the learning process, then simply resolving pedagogical 
shortcomings will not be enough to produce successful learning. For this reason, we 
strongly recommend that parents sit with their children in the early stages to ensure 
they're studying effectively and aren't guessing or rushing. Once kids have built up 
effective study habits, they can work independently -- and if they're serious about 
learning math, they will make incredible progress. 
 

● While Math Academy does avoid instructional leaps, individual differences in cognitive 
ability (e.g., working memory capacity) do affect the level of scaffolding required, and 
there is a level of cognitive disadvantage at which a student may require the assistance of 
a human math learning specialist to help break things down further. 
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FAQ: Student Behavior 
 

Summary: (in progress) 
 

Usage of Paper and Pencil 

> Should Math Academy students take notes during lessons? 

Note-taking should not be necessary. Our spaced repetition system takes care of review, and on 
the rare occasion that you do happen to forget something, you can always look back at 
prerequisite lessons in "reference mode" to brush up on whatever you may have forgotten. 
 
Even further, we would actively recommend against taking notes. To transfer information into 
long-term memory, you need to practice retrieving it without assistance – but when you take 
great notes, you're tempted to refer back to those notes all the time instead of trying to pull 
information from memory. As a result, notes can turn into a crutch that spirals you into a 
vicious cycle of forgetting. The same reasoning applies to any sort of reference material. 
 
Of course, if you can’t recall something after trying your hardest, it’s okay to check reference 
material, but only as a last resort. Even then, do not solve the problem alongside the reference 
material – peek once, and then try to solve the problem without looking again. 
 
That said, we wish to make a distinction between “note-taking” and “listening on paper.” While 
we do not recommend transcribing information for later use, we see no issue with jotting down 
key bits of information to maintain focus and draw connections while being presented with new 
material. “Listening on paper” is not necessary or even helpful for all students, but some find 
that it helps them engage in “active listening” and deepen their processing of the material being 
learned. 
 
Again, however, a student who practices “listening on paper” must always take care to avoid the 
following pitfalls: 
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● Pitfall 1: Transcribing, or, more generally, slowing down the rate of ingesting new 
information without actually deepening the processing of that information. 
 

● Pitfall 2: Solving problems alongside notes, or, more generally, using a reference as a 
crutch to avoid or reduce effort towards proper retrieval practice. 

 

> When should a student solve a problem in their head vs writing it out on paper? 

We would suggest that the most technically correct general rule is this: Do a problem (or 
sub-component of that problem) in your head when 
 

1. you're able to do it in your head reliably, with very little effort, and 
 

2. it feels like you're only holding one thing in your head – like, you're working with a solid, 
cohesive "chunk" of information as opposed to having to "juggle" multiple components 
of that information to keep it in your brain. 

 
Here’s the science behind that. 
 
It’s well established in cognitive science, specifically under the umbrella of “cognitive load 
theory,” that your working memory has a limited capacity to hold new information – and when 
you push your working memory close to that limit, you become more likely to make mistakes 
and less likely to complete the training task, which impedes your learning. 
 
Reducing cognitive load is the goal – not just “a” goal, but in fact “the” goal, the whole point – of 
structured education. The more instructional scaffolding is provided, the lower the student’s 
cognitive load, and the less cognitive “friction” there is to slow the student’s acquisition of the 
knowledge covered in the curriculum. 
 
It’s the same way with solving problems on paper: the goal is to lower your cognitive load. By 
writing down intermediate steps on paper, you can temporarily remove information from your 
working memory to make room for new information, and then quickly load up the original 
information by looking back at the paper when needed. 
 
(In a sense, the paper functions as an artificial long-term memory bank where you can store new 
information that you don’t already have encoded in your brain’s long-term memory. It takes a lot 
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of time and effort for your brain to encode information to its own long term memory, but 
writing information on paper enables you to sidestep these biological limits.) 
 
The Asymmetric Tradeoff 
 
To be clear, there is a hidden tradeoff. If you overdo the scaffolding, or you write down more 
than you need to on paper, then it’s going to inflate the amount of time that it takes you to 
complete the curriculum or solve the problem, respectively. If your cognitive load is already low, 
there is no benefit to lowering it further – all that does is create more mechanical work for you 
that burns your time. 
 
However, the tradeoff is asymmetric: 
 

● If you undershoot the scaffolding or don't write down enough work on paper, and you 
blow your working memory capacity, then you hit a brick wall. You're simply unable to 
complete the task. Your learning progress grinds to a halt, full-stop. Even if you just 
"come close" to full capacity, your error rate skyrockets, impeding your learning. 
 

● On the other hand, if you overshoot the scaffolding or write down more than you needed 
to on paper, then sure, it will technically be suboptimal, but typically not by much. You 
wrote down an extra line or two on paper than you really needed to? Big whoop, it took 
you an extra couple seconds to solve the problem. You could have saved a couple seconds 
by not writing those steps down, but that would also have put you dangerously close to 
holding too much in your head and making a mistake. Just like in your bank account, 
having a little buffer is not a bad thing. 

 
Because the tradeoff is so asymmetric, it’s best to err on the side of caution, writing down 
potentially a bit more than you need to. When in doubt, write it out. 
 
Building Good Habits 
 
In addition to guarding yourself against being on the wrong side of the asymmetric tradeoff, 
another reason why you should err on the side of caution (i.e., writing down too much as 
opposed to too little) is that you need to build good habits for the future. 
 
As you climb up the levels of mathematics, the level of technical sophistication increases, and 
consequently, so does the level of cognitive effort. Even if you are able to do problems entirely in 
your head at lower levels of math, you will not be able to do so indefinitely into the future. You 
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will eventually get to a point where you are unable to do problems in your head without blowing 
your working memory capacity, and at that point, the only way to continue making progress will 
be to use paper and pencil as a tool to reduce your cognitive load. 
 
However, the longer you go without using paper and pencil, the more solidified that habit will 
be, and the harder it will be to get yourself to change it. So, even if it’s not strictly necessary, it’s 
a good idea to get in the habit of writing at least some work out. If you don’t, then you may cling 
to the habit of doing all the work in your head for too long, well past the point when you really 
need to start writing work down on paper – which will gradually eat away at your performance 
and progress, eventually bringing you face to face with a “day of reckoning” where your entire 
mathematical future is on the line. 
 
We have seen many bright students breeze through basic math refusing to write down any work, 
only to struggle in intermediate or advanced math simply because they stubbornly continue 
refusing to write down their work. 
 

Reliance on Reference Material 

> During a quiz, if I can’t remember a “fact” (e.g., a definition or theorem) but I 
remember the process for using it to solve problems, should I look it up? 

We would recommend not to rely on any external material during the quiz, as it will cause the 
system to make decisions as if you got the question right without relying on any reference 
material. In the case described, you would benefit from getting a refresher on those topics via 
follow-up reviews after the quiz – but you won't get that support if the system thinks you were 
able to answer the question without looking at a reference. 
 
That said, we would recommend taking your best guess even if you are not confident about your 
answer. If you're fuzzy on information, then it's possible to retrieve the information successfully 
despite having a low degree of confidence. (That said: even if you manage to get it right, 
definitely look at the solution afterwards to further refresh your memory.) 
 
More generally, we (people in general) are often not good at judging how well we know 
something, especially if it's something that we learned recently and are not super confident 
about. The Math Academy system has been designed around the idea that the student should 
just take their best attempt at whatever they're doing, and the system will take corrective action 
after any attempt that turns out to be unsuccessful. 
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> What should a student do if they are unsure how to solve a problem despite 
trying their best to refer back to the supporting instructional content? 

This situation should almost never happen if a student reads the supporting instructional 
content carefully and attempts to solve the problem step-by-step, writing every step down on 
paper, and referring back to the worked example at each step when stuck. 
 
However, if this situation does still arise, and the student spends 5 minutes stuck at a particular 
step without making further headway on it (despite reviewing the key prerequisites and 
checking earlier parts of the lesson for information they may have missed), then the most 
productive use of time is to submit a “best guess” and then study the solution carefully after the 
question is graded (regardless of whether the best guess was correct or incorrect). The student 
should not move forward to the next question until they have worked out the original question 
themselves, on paper, following along with the solution and ensuring that they understand the 
rationale behind each step. 
 
If a student ever finds something that could have been explained better in the supporting 
instructional content, they are encouraged to submit a flag explaining the improvements that 
they think should be made. We continually refine our content based on student feedback, and 
while the content is very solid by now after years of refinement, we are always on the lookout for 
ways to continue improving it. 
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FAQ: XP and Practice Schedules 
 

Summary: (in progress) 
 

XP System 

> If I pass a lesson but don’t get full XP, does that mean I only understood part of 
the material? If so, how does Math Academy fill in the rest of my understanding? 

Math Academy only allows a student to pass a lesson if they evidence sufficient mastery to 
continue building on the knowledge covered during the lesson. So, if a student passes a lesson, 
then no remedial support is needed. 
 
Of course, mastery is not synonymous with maximum understanding (i.e., "completely intuits 
everything covered in the lesson to the point of full automaticity"), and students will be at 
varying degrees between mastery and maximum understanding after completing a lesson. 
However, as students continue reviewing and layering more advanced knowledge on top of that 
topic, their understanding will become further solidified and they will move closer and closer to 
the point of maximum understanding. 
 

> I can do way more than 1 XP per minute! 

The XP is calibrated to 1 XP = 1 minute for an average Math Academy student at that level of 
math. A student may be able to move significantly faster if they are particularly mathematically 
inclined relative to other students at that level, especially if they are already halfway familiar 
with some of the material. 
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> As I progress through Math Academy’s curriculum, it is gradually taking me 
longer to earn XP. Why does this happen, and can anything be done about it? 

As a student progresses into more advanced content, the amount of time it takes to earn XP will 
increase gradually, even though the average is staying at 1 XP = 1 minute for students at that 
level of math. 
 
This happens because, as the math gets more advanced, students who take longer to earn XP are 
more likely to drop out, which effectively raises the bar for being an "average" student at the 
next level of math. In general, the further you go in any skill domain, the higher levels you reach, 
the more talented the other people at that level, and the harder you have to work to get to the 
next level. 
 
That said, if a student is taking a long time to earn XP, then it is always worth checking for an 
unnecessary time sink that forms a bottleneck in their learning process. 
 

● For instance, a student might skip over the lesson and then spend a long time getting 
through each problem because they didn’t read carefully and are trying to solve the 
problem without relying on any scaffolding. 
 

● Alternatively, a student may spend an excessively long time studying a worked example, 
hung up on a minor detail or phrase that they feel they are not fully confident in 
understanding, when it would be more productive to move on to active problem-solving. 
(Often, actively working through a problem in a slightly different context can clear up 
minor confusions that may arise when passively viewing a worked example.) 

 
Another possibility: 
 

● A student might make a lot of silly mistakes due to rushing and doing all the work in 
their head, causing them to have to do many more problems than if they just worked 
problems out more carefully and accurately on paper. 
 

● On the flipside, a student might spend too much time unnecessarily double and 
triple-checking against the worked example to make sure they solved the problem 
correctly. (While it's good to be diligent and work problems out carefully, it's also 
possible for a student to go overboard and move too slowly because they spend too much 
time minimizing the risk of getting something wrong.) 
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Yet another possible cause of taking a long time to earn XP is when a student over-relies on 
reference material, solving problems alongside worked examples. After a student has read the 
worked example and moved on to solving problems, the student should refer back to the worked 
example only as a last resort when they have tried their hardest and failed to remember the next 
step in the problem-solving process. And even then, whenever a student refers back to the 
worked example, they should only peek at the part they’re stuck on before trying to solve the rest 
of the problem unassisted. 
 
There are many possible bottlenecks that may occur – too many to list exhaustively. However, in 
general, it is often possible to increase one’s XP per unit time by tracking where the big time 
sinks are and trying out strategies to speed up those parts of the learning pipeline. 
 

> I don’t think XP is a perfect measurement of effort. 

The “1 XP = 1 minute of focused effort” metric is an average: when we take a large number of 
serious students and a large number of tasks and compute the XP per time, it comes out to 
about 1 XP per minute. While we do our best to assign each learning task an XP that accurately 
represents the amount of work needed to complete it, the observed XP-to-time ratio may vary 
for any particular student doing any particular task. 
 
Additionally, we recognize that some components of effort are not currently taken into account 
when assigning XP, and it is on our roadmap to make XP grading even more granular to 
incentivize those components of effort. For instance, one thing that we’d like to factor into the 
XP grading is how often a student refers back to the worked example. Getting questions right 
with minimal reliance on the worked example is more effortful and will move the needle on a 
student’s learning more than if they refer back to the worked example all the time, by default, 
instead of trying their best to pull information from memory. This would be part of a larger push 
on "in-task coaching," that is, encouraging students to engage in micro-behaviors that enhance 
learning but aren't yet incentivized through our XP system. 
 

> I feel like a particular answer choice letter has been coming up more frequently 
than the others! What’s going on? 

We have a validation tool that we run against our database to ensure that correct answers are 
distributed randomly across the choices. Once in a while, we receive a message from a student 
who thinks that they have detected a trend, but these messages tend to disagree on the trend 
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(some students may think that “A” is more frequent, others “B”, others “C”, etc.), so it seems 
unlikely there has ever been a trend at all. Sometimes it does happen even with proper 
randomization that a short-term trend may appear – kind of like, if you flip a coin enough times, 
you’ll eventually get a string of arbitrarily many heads in a row. 
 

Practice Schedules 

> If I have a limited amount of time to devote to Math Academy each week, 
should I allocate that time into longer, less-frequent sessions or shorter, 
more-frequent sessions? 

When learning math, it’s best for study sessions to be short and frequent (as opposed to long and 
sparse). For instance, suppose you’re budgeting 3 hours per week to learn math. It would be 
better to study 30 minutes six days per week, as opposed to 90 minutes twice a week. There are a 
handful of reasons why. 
 

1. You want to form a habit. The more consistently you study math, the more it will become 
a habit that you naturally do each day without thinking, just like (hopefully!) taking a 
shower and brushing your teeth. 
 

2. You want to operate at peak productivity during your session. During a short 30-minute 
session, it’s easy to maintain a high level of focus and intensity – whereas, during the 
second half of a long 90-minute session, fatigue will set in and make you significantly 
less productive. 
 

3. You want to minimize the amount you forget between sessions. When you have 
multi-day gaps between study sessions, you’ll have to spend more time revisiting 
previously covered material.  (Just ask any teacher how much their students forget over 
weekends, and how much valuable class time they have to spend on Monday re-teaching 
the things that they covered on Thursday and Friday.) 

 
However, there are some caveats to consider.  
 

● Whenever you switch to a different activity, it takes a few minutes for your brain to catch 
up and enter a state of flow in the new context. This is called “context switching cost,” 
and if you make your sessions too short (less than 20 minutes or so), then the proportion 
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of study time that is wasted on context switching will outweigh the other benefits of 
daily practice. Consequently, it’s best to spread out your practice as much as possible 
subject to the constraint that each session is sufficiently long for the context-switching cost to be 
proportionally negligible. 
 

● Additionally, if you have a hectic schedule and “six days per week” in theory ends up 
being just “three days per week” in practice, then you’ll need longer sessions just to 
achieve the same volume of practice. 

 

> If a student completes a Math Academy course very rapidly, working several 
hours per day for several weeks, will they still learn the material properly? 

Yes, the student will still properly learn and master the material. The only catch is that if they 
were to flat-out stop doing math afterwards, they would forget the material sooner than if they 
spread it out over a longer period of time (this is simply a consequence of the spacing effect and 
the mechanics of spaced repetition, discussed in chapter 18). However, if the student continues 
working on Math Academy afterwards, continuing to learn more math, then they will layer on 
top of their knowledge and receive any additional reviews that are necessary to maintain their 
knowledge, so they won’t forget what they’ve learned. 
 

> What’s a reasonable XP pace for a typical Math Academy student? 

Think of it like exercise. If you want to level up your abilities, then you should probably aim to 
get at least half an hour of exercise every other day. And if you’re really serious about it, then 
you’d probably shoot for a 40-minute workout most days per week. (Note that 40 minutes every 
weekday will have you moving nearly twice as fast as a half hour every other day, since 40 × 5 is 
about twice of 30 × 3.5.) 
 

> Can Math Academy be used for very casual learning, an hour or two per month? 

Math Academy focuses on students who are trying to acquire math skills to the highest degree 
possible. We teach math as if we were training a professional athlete or musician. We maximize 
learning efficiency in the sense that we minimize the amount of work required to learn math to 
the fullest extent. Learning math to the fullest extent requires a dedicated effort of at least a 
couple hours per week. 
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We realize that there are many learners who only want to devote an hour or two per month, but, 
at least right now, such learners would be better served elsewhere. It's a totally different 
optimization problem – maximize surface-level coverage subject to some fixed, miniscule 
amount of work – and as a result it would require a different curriculum and possibly different 
training techniques (or at least, differently calibrated techniques). 
 

> Why did my estimated completion date change? 

The completion date is calculated by first estimating how many XP remain in the course based 
on your recent performance. (The amount of XP remaining depends on the pace of learning, 
which adapts to your performance – e.g., if your accuracy decreases, reviews will come more 
frequently and the amount of XP in the course will increase.) Then, we estimate your recent 
XP/day pace, and finally divide XP remaining by XP/day. 
 
Any fluctuations in performance or pace will affect the completion date, especially at the 
beginning when you first start out, because the system has to take a "best guess" and then 
gradually refine the estimates as you build up more history on the system. 
 
Likewise, if you lose credit for any “conditionally completed” topics, that would also push the 
completion date back. Topics are “conditionally completed” if you just barely received credit for 
them based on the diagnostic. Retaining this credit is conditional on maintaining a high level of 
performance on these topics, since the system will adapt more quickly to your performance in 
these areas of low confidence as you complete more learning tasks. Missing questions on these 
topics (or their prerequisites) can lead the system to prune back your knowledge profile in those 
areas to provide more practice. 
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FAQ: Diagnostics and Curriculum 
 

Summary: (in progress) 
 

Diagnostics 

> There were way more questions than I expected on the diagnostic! 

As discussed in Chapter 26, diagnostics require a larger-than-expected number of questions 
because 

1. our curriculum is hyper-scaffolded, and 
2. we assess students not only on the course content, but also on any lower-level 

foundations they might be missing. 
 
For higher-level math courses, diagnostics may need to assess your knowledge of over 1,000 
math topics! Even if it feels like there are many questions on the diagnostic, each individual 
question provides decisive information about your knowledge of about 10 different topics on 
average. 
 
Think of it like going to a serious gym where you start with a body composition analysis and 
strength/flexibility tests at every muscle/joint in your body. In order to get you progressing 
towards your mathematical goals as efficiently as possible, we need to figure out exactly where 
your strengths and weaknesses are so that we can perfectly calibrate your workouts to your 
personal needs. 
 
Of course, if you just want to go to the gym on weekends and walk around the track a few times, 
then this is probably not a great fit! But if you want to come for a serious workout most days 
each week and reach a serious level of fitness as quickly as possible, then this is the way to do it. 
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> Can’t you improve the diagnostic algorithm to cut down on the number of 
questions? 

We have spent a lot of time optimizing our diagnostic algorithm to be as quick and efficient as 
possible. There are some hard limits in the physics of how small we can reduce the number of 
diagnostic questions subject to additional constraints on the precision and robustness of the 
overall conclusions drawn from that information. Our diagnostics are optimized to the point 
that if we forcibly cut the number of questions in half, your placement wouldn't match up well 
enough with your true knowledge frontier, and you'd get frustrated doing tasks that are too easy 
(or worse, too hard). 
 
Yes, people quit if the diagnostic is too long, but they also quit if they're not placed accurately. 
Math Academy's approach to that tradeoff caters to students who are serious about putting in a 
large amount of work to learn an even larger amount of math. For such users, an hour or two on 
the diagnostic is proportionally negligible compared to the amount of work that they plan to 
commit to learning math. Such users typically find it worthwhile to spend a proportionally tiny 
amount of extra time at the beginning to ensure a smooth mathematical journey indefinitely 
into the future. 
 

> I am being served lower-grade lessons that feel irrelevant to my course, and it’s 
taking too long to make progress in my course. What can I do to fix this? 

The only time you'd be assigned a lower-course topic is when it's a prerequisite of a topic in the 
course that you're taking and you got it (or one of its prerequisites) incorrect on the diagnostic. 
In order to place out of these topics, you would need to provide evidence of being able to solve 
them (or post-requisite topics) on the diagnostic. 
 
Sometimes, students think that topics are irrelevant to their current course when in fact they are 
necessary prerequisites. For example, integration might not seem relevant to linear algebra but 
it's actually necessary to solve problems in inner product spaces. Likewise, the rational roots 
theorem, synthetic division, and polynomial factoring might not seem relevant but it's actually 
necessary to compute eigenvalues of 3x3 matrices. 
 
If you think you could have done better on the diagnostic, it would be worth retaking it very 
carefully. Keep in mind that all the system's decisions are based on your demonstrated ability to 
solve problems, and it is not uncommon for students to take courses elsewhere yet still not have 
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mastered the content well enough to solve problems correctly, consistently, and in a timely 
manner. 
 

> I missed some questions on the diagnostic, but I know those topics, I swear! 
Can’t you just give me credit for them? 

You are welcome to take another diagnostic and attempt to demonstrate your knowledge by 
solving problems correctly! Math Academy is a mastery learning system, so the only way to 
receive credit for topics is to provide evidence of mastery, i.e., to demonstrate your ability to 
solve the problems correctly. If you miss questions on the diagnostic, the system is going to infer 
that you don't know those topics (and any topics that depend on them), regardless of how well 
you think you know them. 
 

> There is a topic that I know how to do, but the diagnostic didn’t ask me about it 
and I didn’t get credit for it. 

The diagnostic is fully comprehensive; it continues asking questions until it has evidence of 
knowledge (or lack of knowledge) for every single topic in the student’s course and foundations. 
Whatever topics the student is not given credit for, it’s because the student submitted incorrect 
answers on those topics or their prerequisites. While it is sometimes possible to solve questions 
from a topic despite not fully grasping a prerequisite, this indicates the presence of “holes” in 
the student’s mathematical knowledge, and the diagnostic intentionally places students at the 
bottom of their lowest knowledge holes so that these holes can be filled in. 
 
Placing students at the bottom of their lowest knowledge holes is absolutely critical to ensure 
student success. If the diagnostic did the opposite, placing students at the top of their highest 
knowledge holes, then students might initially feel like they are closer to their goals as a result 
of receiving more credit, but these knowledge holes would sooner or later (and likely sooner) 
derail the student by causing them to become “stuck” while learning new topics that make 
deeper use of the prerequisite knowledge. 
 
That said, it is not uncommon for adult students to be extremely rusty on their math while 
taking the initial diagnostic, and then have an outsized portion of their memory come rushing 
back afterwards as they complete learning tasks. When this happens, it is sometimes possible 
for a student to place significantly further by retaking the diagnostic. 
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Additionally, we are working on a button where students can say “I already know this” on any 
lesson that they receive and evidence their knowledge by answering a couple advanced 
questions on the topic. That way, it will be fast and easy for a student to continue fine-tuning 
their knowledge profile after the diagnostic. 
 

> After the diagnostic, what if I am asked to complete a lesson for which I have 
not learned a prerequisite? 

Math Academy’s diagnostic exam is highly accurate, but not necessarily 100% perfect, as 
guaranteeing a 100% perfect placement would require an infeasibly large number of diagnostic 
questions to be answered. To drastically cut down on the number of questions, our diagnostic 
exam leverages some loose forms of inference that – rarely, but occasionally – may place a 
student slightly behind or ahead (but more likely behind) their true knowledge frontier along 
some learning path. 
 
(For instance, if a student answers a question correctly on a “leaf topic” in some module, then we 
treat that question as a “representative” for the module and award some credit to other leaf 
nodes in the same module. Otherwise the diagnostic would have to explicitly assess every single 
leaf topic, which would make the number of questions blow up. The idea is that if a student 
knows a maximally advanced technique within some cohesive group of topics, then they 
probably know any other advanced techniques within that group, or they should have enough 
prior knowledge to brush up on the fly.) 
 
In practice, on the rare occasion that a student’s level of knowledge is overestimated and they 
receive a lesson for which they have not learned a prerequisite, the degree of overestimation is 
small enough that the student is able to learn the prerequisite by clicking on the prerequisite 
and viewing its lesson in reference mode. To the best of our knowledge, there has never been an 
instance where a student was unable to do so, provided that they took the diagnostic properly 
and submitted answers reflective of their true knowledge. (In the small number of instances 
where a student was placed too far beyond their true knowledge to make progress on the system, 
it has always turned out that the student used an external resource for help during the 
diagnostic.) 
 
Additionally, even on the rare occasion that a student may have to learn a prerequisite by 
viewing its lesson in reference mode, this issue will quickly disappear as the student completes 
more work on the system: the student will quickly reach a point where, for all their available 
lessons, they have explicitly completed lessons on all the prerequisites. 
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> After the diagnostic, why did failing a single task bring my progress down 
multiple percent? 

After the diagnostic, there may be pockets of math where the system infers student knowledge 
but has low confidence in that inference. As the student completes learning tasks, the system 
will adapt more quickly to the student’s performance in these areas of low confidence. As 
discussed in Chapter 26, these topics are called “conditionally completed” because while the 
student (just barely) received credit for them based on the diagnostic, retaining this credit is 
conditional on the student passing tasks that assume knowledge of these topics. 
 
If a student fails a task on a conditionally completed topic, then the system reasons as follows: 
 

Wait, we thought they knew that topic and some more advanced topics that build on it – but they 
just barely placed out of those topics on the diagnostic, so the fact that they're struggling indicates 
that they probably don't actually know it. Time to revise our earlier decision and remove the 
credit we originally awarded. 

 
This mechanism may be subtle in tasks like multisteps and quizzes, where every question is 
linked to a different topic, because a student may lose credit for a particular topic (from 
incorrectly answering a question linked to that topic) while gaining credit for other topics (from 
correctly answering questions linked to other topics) and passing the task overall. 
 

Curriculum 

> With short lessons, is the curriculum really comprehensive? 

Yes, our curriculum is fully comprehensive – in fact, we perform curriculum comparisons 
against all the major textbooks to ensure that we're covering a superset of the material. 
 
How do we cover all the necessary material if the lessons are so limited in scope? By breaking up 
each course into many, many lessons. A typical course ranges from 150-300 lessons, each lesson 
containing about 3-4 “knowledge points” of increasing difficulty, each knowledge point 
consisting of a worked example followed by 2-5 questions of active problem-solving where the 
number of questions adapts to the student’s performance. 
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Basically, the "learning staircase" is being chopped up into a massive number of tiny stairs. It 
still reaches all the way to the top, but the individual stairs are small enough that students don't 
get stuck unable to climb a stair that's too big for them. 
 

> Will taking a Math Academy course for a standardized exam (e.g., AP Calculus 
BC) fully prepare a student for the actual exam? 

Math Academy courses cover the content knowledge that a student needs to be successful on a 
standardized test. While this constitutes the vast majority of the work necessary to prepare for a 
standardized test, it is not fully sufficient. After finishing their Math Academy course, a student 
must also take a number of practice exams for the specific exam that they are planning to take. 
 
The reason why it’s so important to take practice exams is that – in addition to being timed – 
standardized exams will “package” the content knowledge within various question framings, 
phrasings, and general contexts that may initially be unfamiliar to the student. While nobody 
can predict the exact problems that will appear on the exam, students can train themselves on 
the same statistical distribution that the exam problems are going to come from. This is 
accomplished by working through as many practice exams as possible – ideally real exams from 
the past, or at least practice exams that come directly from the organization who creates the 
exam. (If such resources are unavailable, it is critical to acquire practice exams from another 
organization that has a good reputation for matching up its problem types up accurately against 
the real exam.) 
 
Whenever a student misses a question on a practice exam (or answers the question with a low 
degree of confidence), they should refer to the solution, identify their mistake, and immediately 
work it out again correctly. The next day, they should try working out the same problem 
unassisted. If they solve it correctly, they should wait another several days before attempting the 
problem again; otherwise, if their attempt is unsuccessful, they should go back to the beginning 
of this process (refer to the solution, identify their mistake, immediately work it out again 
correctly, and re-attempt the next day). This is essentially performing spaced repetition on the 
student’s areas of weakness. This process should continue for multiple rounds through all the 
practice exams, continuing all the way up until the day before the actual exam. 
 
At the same time, the student should also enable “Test Prep Mode” in their Math Academy 
course so that they continue receiving reviews on course content instead of being promoted to 
the next course. It is necessary to continue completing these reviews on Math Academy so that 
the student does not get rusty on any of the course content. At the time the student takes the 
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exam, they need to be 100% solid and 100% fresh on all their Math Academy course content as 
well as all the problem types covered in the practice exams. 
 
As a rule of thumb, we recommend that at a minimum, students finish their Math Academy 
course at least 6 weeks prior to their exam, and go through at least 6 practice tests leading up to 
the exam. During this time, we recommend about 1.5 hours of prep per day: 30-45 XP of review 
on Math Academy, and 45-60 minutes taking and re-attempting problems from practice tests 
(the time it takes to grade the practice test should not be counted towards this time). In the week 
before the exam, we would recommend increasing the test prep sessions to 2-2.5 hours per day, 
spending the extra time on practice tests. 
 
The practice tests need to be timed, but they can be broken up into smaller increments. For 
instance, if an entire test is 2 hours long, then a 30-minute segment can be constructed by doing 
every problem number that is a multiple of 4. It is important to slice the exam longitudinally like 
this, as opposed to just taking the first fourth of the exam, because exam problems are often 
arranged from easy to hard, with hard questions expected to take more time. 
 
Lastly, note that when a student is solid on their course content knowledge and starts taking 
actual practice exams, they will probably be surprised at how low their score is initially. This is 
normal and it just takes a bit of exposure to get used to the time limit, question types, and 
phrasing of the exam questions. Math Academy has extensive hands-on experience preparing 
students for the AP Calculus BC exam, which is graded on a 1-5 scale (5 being the best), and in 
our experience, even students who end up getting a 5 often start out getting a 2 or maybe a 3 on 
their first practice exam. By their second exam, they may get a 3 or 4, and then a solid 4 or 
maybe just barely a 5 on their third exam, and then a more solid 5 on their fourth exam, and then 
deeper and deeper into 5 territory on their fifth and sixth practice exams. 
 

> Does Math Academy explain the “why” behind procedures? Are all the 
concepts taught first? 

Math Academy explains the “why” behind procedures all throughout the curriculum. Just to 
name a particular instance: 
 

● In algebra, when we teach how to solve equations, the very first thing we do is introduce 
the idea of a solution of an equation: it's just a number that can be substituted for the 
variable to make the equation come out true. If you have the equation 2x=6, that's just 
saying "2 times something makes 6," and you don't even need algebra to know that the 
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solution is x=3 (since 2 times 3 makes 6). 
 

● We first give students some practice solving simple equations like that, without algebra, 
and only afterwards do we start talking about algebraic manipulations like "start with 
2x=6, divide both sides of the equation by 2, get x=3." That way, students see algebraic 
manipulations as an extension of the intuitive reasoning that they were using to begin 
with. 

 
However, concepts and procedures are intermingled throughout our curriculum. We do not 
teach “all the concepts first” and then “all the procedures after” because it’s not possible to do 
one in proper depth without the other. Concepts and procedures have a bidirectional, mutually 
reinforcing relationship. In other words, they build on each other: 
 

● low-level concepts support low-level procedures, 
● low-level procedures support higher-level concepts, and 
● higher-level concepts support higher-level procedures. 

 
To provide a concrete example: 
 

● a student must be able to count to understand the concept of a number, 
● a student must understand the concept of a number to carry out arithmetic procedures, 

and 
● a student must be able to carry out arithmetic procedures to understand the concept of a 

variable or an algebraic equation. 
 

> Do your university courses have exercises with proofs or is it just computation? 

Our Methods of Proof course is proof-based. As of the time of writing (November 2024), our 
other university courses are computation-based, but that's just because they represent the first 
course in each subject, whereas a proof-based course would come second. We will eventually be 
building out those additional proof-based courses, but our current computation-based courses 
will be prerequisites. 
 
There is sometimes confusion about people thinking Math Academy is stopping at its current 
level of depth/difficulty, when in reality, we are still building out the curriculum. It is nowhere 
near finished. 
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● Does our Methods of Proof course cover epsilon-delta proofs? Yes. Does it cover Papa 
Rudin? No, because that’s well out of scope. Does that mean we’re stopping short of Papa 
Rudin? No, it just means we haven’t built up to that yet. 
 

● Another example: we have a computation-based Linear Algebra course that will be a 
prerequisite for a proof-based Abstract Linear Algebra course later down the road. That 
second Linear Algebra course will go deeper into the theory and proofs that one might 
encounter while taking a linear algebra course at an elite university that uses, say, Axler’s 
book. 
 
Unfortunately, people sometimes move the goalposts and say “your [first] Linear Algebra 
course is not as intense as Axler,” when this isn’t even an apples-to-apples comparison. 
That’s like pointing at a high school calculus class and complaining that it’s not as 
intense as a real analysis course – of course it’s not! It’s a completely different course; in 
fact, a prerequisite course; and it’s not meant to cover the same material. 
 
Axler is really a second course in linear algebra, even if some universities throw students 
into it as their first course (which ends up causing a lot of unnecessary struggle). We 
often joke that Axler’s book Linear Algebra Done Right should really be called Linear 
Algebra Done a Second Time. 

 
In general, we are building our curriculum from the ground up, we are scaffolding everything to 
the max, and it's mastery-based (students are only asked to learn things after having mastered 
the prerequisites) – so, naturally, we are going to be doing computation-based versions of 
courses before proof-based versions. 
 
But that doesn’t mean we’re not going to be getting the proof-based versions eventually! The 
proof-based courses are ultimately just different courses, and we are getting the prerequisite 
courses in place to build up to them. The proof-based courses are well on our roadmap. 
 

> It's hard to believe that 5 hours a week for a year starting from basic 
multiplication tables will have me completely prepared for university courses. I'd 
prefer an explanation for people who are not familiar with the XP system. 

We realize that this can be a bit shocking! For this to feel more realistic, it’s important to first 
understand that not all the math that children cover in school is necessary for university math. 
As described in Chapter 28, we developed a Mathematical Foundations course sequence 
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specifically for the purpose of getting adults up to speed as quickly and efficiently as possible 
with all the prerequisites that they would need to know (fractions through calculus) for 
university-level math courses. Roughly a third of topics in our Traditional sequence are required 
by school standards but do not actually come up as prerequisite material in university-level 
math. Those topics have been stripped out of the Foundations sequence. 
 
Now, knowing that the Foundations sequence covers about two-thirds the content in the 
Traditional sequence, the rest of the argument follows from the success of our original in-school 
program in Pasadena where 6th graders started at various places in Prealgebra, did about 40-50 
minutes of fully-focused work per school day for the next 3 years, and covered all of Prealgebra, 
Algebra 1, Geometry, Algebra 2, Precalculus, and AP Calculus BC, passing the AP exam by the 
end of 8th grade. While this may also seem shocking, Math Academy has the AP scores to prove 
it, and there has been plenty of news coverage over the past decade. 
 
Now, look at the numbers: 40-50 fully focused minutes per school day × 180 school days year × 3 
years comes out to about 24000 minutes or 400 hours, and our Foundations series is about 
two-thirds the size of that (since roughly a third of topics are not actually prerequisites for 
university math), which comes out to about 267 hours. Divide by 52 weeks in a year, and you're at 
about 5 hours per week. 
 

> Why is “holistic mode” (in which students also fill in any missing knowledge in 
lower-grade topics that are not prerequisites of their enrolled course) disabled for 
university courses? 

Students are most likely to succeed when they break up long-term goals into short-term goals, 
maintain momentum, and experience plenty of small wins along the way. Suppose an expert 
tutor works with a Linear Algebra student who makes the following request: 
 

In addition to helping me out with Linear Algebra and any missing prerequisites, can you fill in all 
my knowledge gaps in all the math I would be expected to know by now? 

 
In this situation, the expert tutor should try to dissuade the student: 
 

Are you sure you want to do this? It's possible, but I wouldn't recommend it. I will have to assess 
you on 4 years' worth of math and then teach you whatever you're missing, which will probably be 
the equivalent of 1 or more full years of math. This is not just an extra 15 minutes on top of each 
tutoring session. It's going to at least double your workload. And that extra work is not going to 
get you through Linear Algebra any faster. 
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Instead of trying to eat the whole elephant in one bite, why don't we just focus on Linear Algebra 
right now (and whatever math you're missing that's necessary for Linear Algebra) and then fill in 
the rest of your math background as you move on to other university-level courses that require it. 
   
For instance, I know you're shaky on your calculus, but most of that isn't necessary for Linear 
Algebra, so instead of trying to build that up now let's wait until you get to Multivariable Calculus 
and build it up then. It will feel more relevant that way. We can do the same thing with your 
probability/stats knowledge when you take Probability & Statistics after Multivariable Calculus. 
   
It will be more motivating this way. You'll learn linear algebra in 8 months, multivariable calculus 
in another 8 months, and probability & statistics in another 8 months, and you'll be filling in your 
math background all throughout that time. But if we front-load it and fill in all of your math 
background right now, it will take 14 months just to get through linear algebra. You'll get through 
multivariable calculus in 5 months after that, and probability & statistics in another 5 months 
after that, assuming that you don't quit in those initial 14 months. 
   
Either way, you'll be at the same point 2 years from now. But it's going to be way more motivating 
if your wins are spaced 8 months apart, compared to if your first win doesn't happen for an entire 
14 months. 

 
If a student gets as far as university level math but has missing background knowledge, it would 
be a mistake to front-load that missing knowledge and fill it all in while they complete their first 
university course. It would reduce friction and increase motivation to instead spread out the 
work, which is what will happen naturally as the student takes more university courses in 
non-holistic mode. 
 

> When you introduce additional scaffolding to increase pass rates of lessons, 
how do you know the increase in pass rate actually represents learning? Couldn’t 
the pass rates increase simply due to greater priming? 

It’s something to watch out for – but we do watch out for it. We also track review and quiz 
performance. There is less priming for review tasks, and no priming for quizzes. If students 
were to bomb those questions on quizzes, that would signal that the learning was superficial or 
temporary. 
 
Additionally, most topics in our system have many post-requisites, so students are continually 
made to layer more advanced skills upon what they’ve learned. If they didn’t actually learn a 
prerequisite, they wouldn’t be able to continue executing progressively more advanced skills on 
top of it – just like if a basketball player can’t dribble the ball, they won’t be able to successfully 
complete any plays that involve running across the court with the ball. 
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FAQ: Miscellaneous 
 

Summary: (in progress) 
 

Math Academy Itself 

> Why use Math Academy instead of self-studying a textbook or free online 
resource? 

Math Academy’s key value proposition is that it maximizes every student’s learning efficiency. 
While it is possible for sufficiently motivated students to learn math by self-studying a textbook 
or free online resource, there are many sources of inefficiency: 
 

● Not hyper-scaffolded. Students will periodically run into situations where they are 
confused about a logical leap that has taken place. It often takes a long time to resolve 
the confusion and figure out the logical rationale (if the student figures it out at all). 
 

● Doesn’t track student knowledge and implement mastery learning (i.e., does not ensure that the 
student has mastered the prerequisites before moving on to new material). Students will feel a 
large gap between their level of knowledge and the new material, which leads to more 
confusion and time wasted trying to figure out what prerequisite knowledge they are 
missing and how to learn it. Often, students will be unable to pinpoint all their missing 
prerequisite knowledge and will consequently be unable to fully grasp new material, 
even if they grasp it partially. 
 

● No spaced review. Students will quickly become rusty on the material that they learn. Not 
only will students come out of their course of study having forgotten much of the 
content, but even during the course, they will constantly be forgetting the prerequisites 
for new material that they attempt to learn. 
 

● Doesn’t adapt to the student’s level of performance. Students waste a lot of time doing the 
wrong amount of work. Sometimes a student will grasp a topic quickly and do far more 
practice than is necessary; other times they will struggle with a topic and not get enough 
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practice to reach mastery. 
 

● Leaves the definition of mastery open to interpretation by the learner. It is difficult for a 
student to know when they have mastered a topic well enough to continue moving 
forward. Even in good faith, students often think that they have learned a topic well 
enough when they actually haven’t – and they will not realize this unless their mastery is 
being evaluated by an expert. On the flipside, students can also take things too far in the 
way of perfectionism, spinning their wheels on the same topic for days or when there is a 
minor point that doesn’t make perfect intuitive sense, when it would be more productive 
to keep moving forward and solidify their understanding by building on top of it.  

 
This list could be continued endlessly with other items discussed earlier in the body of this 
book, but the point is that all of these sources of inefficiency introduce unproductive friction 
into the learning process, lowering a student’s educational progress per unit time and effort that 
they put towards learning. 
 
Math Academy removes as much of this learning friction as possible, maximizing student 
learning efficiency. That is our main proposition: sure, it’s possible to learn math elsewhere, but 
it’s way more efficient with Math Academy. 
 
It’s worth noting that efficiency is important not only because students make faster progress, 
but also because they are less likely to quit. Typically, people get off the train and stop learning 
math once it begins to feel too inefficient relative to other opportunities in life. In anything one 
does, once the progress-to-work ratio becomes too low, one will lose interest and focus on other 
endeavors where their progress-to-work ratio is higher. Efficiency keeps that progress-to-work 
ratio as high as possible, keeping students on the math learning train as long as possible. 
 

> Why isn’t Math Academy free? 

Math Academy requires payment because it takes so much time & effort to build. Additionally, it 
must be priced in a way that the company’s solvency is not dependent on a massive user base. 
 
Math Academy is intent on using the most effective training techniques, but most people are 
not that serious about their learning. Maximum-efficiency learning feels like a sweaty, 
exhausting workout with a personal trainer, for at least several hours spread across several 
sessions each week. 
 

 



The Math Academy Way – Working Draft  |  417 

When an education company depends on a massive base of learners, most of whom are not 
serious enough to engage in that level of intensity and frequency in their training, it requires the 
company to employ ineffective learning strategies that do not repel unserious students. The 
company must convince their students that they’ve managed to learn things despite putting in 
little to no work. (This can be accomplished, for instance, by cherry-picking the simplest cases 
of each topic and letting students move on despite poor performance on prerequisite material.) 
Unlike such companies, Math Academy is in the business of optimizing real learning – not just 
the perception of it – for students who are willing to put in serious work. 
 
At the same time, of course, we do want to make mathematical talent development accessible to 
more and more people. As discussed in Chapter 1: before Math Academy, if a student wanted to 
replace their traditional schooling with the equivalent duration of 1-on-1 coaching from a 
personal trainer who develops their mathematical talent using a personalized training program 
that is tailored and constantly adapting to their individual needs, they would have to obtain it 
from a private tutor for a typical price of at least $50/hour. Year-round talent development, with 
a daily work time that is in line with the amount of time that students would be working anyway 
during the school year (conservatively, 1 hour per weekday) would cost $50 × 5 days/week × 52 
weeks/year = $13,000/year. 
 
Bringing that figure down to $499/year (26x cheaper) via Math Academy makes mathematical 
talent development accessible to many, many more people. That's not everyone, and there are 
still people who are priced out, but providing a 26x cheaper option is a good starting point 
towards a goal of making mathematical talent development accessible to more and more people. 
 

> Where do the exercises and content on Math Academy come from? Are they all 
made in-house or pulled from other materials? 

All of our content and exercises are created in-house, carefully crafted over many years by a 
team of math experts. We perform curriculum comparisons to ensure that our content is 
comprehensive, but everything on Math Academy has been carefully crafted by an expert 
human. 
 
Why generate questions manually instead of algorithmically? Beyond simple arithmetic, there is 
so much dimensionality and nuance in math questions that generating questions algorithmically 
would require a custom algorithm for each question type, which would take far longer to build 
than just biting the bullet and manually generating a sufficiently large pool of questions. 
Furthermore, a sufficiently large pool of questions does not have to be that large: because Math 
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Academy students work hyper-efficiently, engaging in minimum effective doses of practice 
across a highly segmented curriculum, we don't actually need that many questions within each 
question type to ensure that students are not seeing the same questions over again. About 20 
questions per knowledge point is more than sufficient. (A typical course consists of about 
500-1,000 knowledge points, requiring a pool of about 10,000-20,000 questions.) 
 
Additionally, all of the information in our knowledge graph – tens of thousands of prerequisite 
links, estimates for the time it takes to work out questions, and encompassing relations (i.e., how 
much "credit" should a simpler topic get for doing an advanced topic where the simpler topic is 
a component skill), have also been carefully crafted by expert humans. 
 
If that sounds like a ridiculous amount of work, then, well... that's about right and it gives you 
an idea of why this kind of system is so difficult to build. Even without all the fancy tech, the 
amount of content that's needed is enough to form the basis of a full-fledged publishing 
company. You could say the same about the software: even without the core base of content, the 
amount of software that's needed is enough to form the basis of a full-fledged tech company. 
Even individual components of the software – the content management system, the student 
interface, the expert system (i.e. AI system) that makes all the complicated behind-the-scenes 
decisions regarding what the student needs to work on – could each on their own form the basis 
of a full-fledged company. 
 

Features that Do Not Exist for a Good Reason 

> I don’t really want to do any of the learning tasks that Math Academy presents 
to me. There are other topics I would rather learn. Why can’t I choose my own 
tasks? 

Math Academy’s main value proposition is maximizing student learning efficiency. That is our 
top priority. When a student signs up for Math Academy, we are making a promise to them that 
their learning experience is going to be as efficient as possible. The student is going to learn the 
most math possible in the time that they're devoting to study. 
 
In order to keep good on that promise, we have to use a lot of sophisticated algorithms to 
analyze the student’s knowledge profile and select their tasks. The whole system has been built 
around that concept. 
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We do have some ideas for features that will give students more agency over what they're 
learning, but it's going to take some work because we have to be careful not to allow students to 
make decisions that throttle their learning efficiency. The approach that we've been thinking 
about is less like "select whatever topic you want at any time" and more like "tell us what your 
specific goal is and we'll put you on the most efficient path to that goal." Of course, none of that 
is fully-baked yet, but it's something that's on our mind and that we're working on. 
 

> Why can’t I edit my knowledge profile? 

Learners have a tendency to massively overestimate self-reported knowledge, and then fault the 
resulting instruction for moving too quickly, not explaining enough, or otherwise being too 
challenging, when the issue is really that they lack sufficient mastery of prerequisites. To 
construct an accurate knowledge profile, the system must infer it from a student’s demonstrated 
ability to solve problems. 
 

> Why don’t you provide information about what topics are going to be on a quiz? 
Surely students would do better if they knew what was going to be on it. 

The point is to get an honest signal of whether a student is able to solve problems without 
priming beforehand. Students will of course do better with priming, but that would no longer be 
a true assessment of their ability to solve problems unassisted. 
 
If a student can only solve a problem after being reminded how to do it, then they don't actually 
know how to do it independently. (It's like they're lifting weights at the gym but they can only 
lift the weight with the help of a spotter.) 
 
And if they can solve a problem without a reminder, then being given a reminder robs them of 
the practice that would otherwise improve their retention of the material. (It's like a spotter 
unnecessarily stepping in to assist a lifter, and reducing the weight even further below what the 
lifter could successfully lift on their own.) 
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> The problems feel tedious and I keep making silly mistakes. Maybe you could 
have a setting that differentiates between students that need practice to take tests 
and those who just want to learn concepts? 

We teach math as if we were training an aspiring professional athlete or musician, or anyone 
looking to acquire a skill to the highest degree possible. This isn't edutainment, this isn't 
enrichment, this isn't a “math appreciation” course. We expect our students to actually master 
the material and develop as strong a command over math as a musician's command over their 
instrument. If that's not what you want to get out of your math learning, then Math Academy 
probably isn't a good fit for you. 
 
But if mastery is what you want to get out of your math learning, then it's important to realize 
that climbing a skill hierarchy like math is not just about conceptual understanding. It's also 
about reliable execution – and a high frequency of silly mistakes indicates that you need more 
practice with the material. 
 
Why? Because if you don't clean up your silly mistakes on low-level skills, then you eventually 
hit a wall where no matter how hard you try, you're unable to reliably perform advanced skills 
due to the compounding probability of silly mistakes in the component skills. Think about 
gymnastics: if you’re “almost” able to land a backflip, then that’s great… but at the same time, 
you’re not ready to try any combo moves of which a backflip is a component. Even if it’s a silly 
mistake keeping you from landing the backflip, you still have to rectify it. (And this is the most 
optimistic scenario – other times, silly mistakes indicate a deeper conceptual misunderstanding 
that you don't even know you have until you are held accountable for rectifying those mistakes.) 
 

> Why isn’t there an “I don’t know” button on questions during tasks other than 
the diagnostic? 

If a student ever gets stuck during a lesson, then they always can and should go back to the 
preceding worked example and follow along carefully to identify what they missed when they 
read it the first time. If a student ever gets stuck during a review or multistep, then they always 
can and should go back to the corresponding lesson in reference mode. The information that a 
student needs to solve the problem should always be there. 
 
For instance, review questions are pulled from the same exact pool of questions that a student 
might see during the lesson. So, any review question that a student receives will line up with one 
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of the question types covered in a worked example in the lesson. (To be clear: the review 
question will be chosen as a different question within that pool – the student will not be given a 
review question that is exactly the same as one they already answered during the lesson.) 
 
A student should never be in a position where they are being asked to perform a skill that's not 
covered in the supporting lesson, so we do not wish to communicate otherwise (which is what 
an “I don’t know” button would do). 
 
That said, it is true that students should not refer to reference material during quizzes, so why 
isn’t there an “I don’t know” button on quizzes? This is something we considered when first 
implementing quizzes – but, working with a large number of students, we've experienced that 
many students will abuse an "I don't know" button if it's provided. 
 

● This can be intentional, e.g., adversarial students (especially kids who are using the 
system for school and have a mentality that is not fully aligned with the learning process) 
will click "I don't know" simply to avoid doing work. When we first deployed the 
automated system in school classes, there was a period of time where the system was 
getting attacked left and right by adversarial students trying to game the system (or 
otherwise create chaos that they could leverage to confuse their parents and get out of 
doing work). It took a lot of effort to patch up exploits, and whenever we make 
adjustments to the system, we're always on the lookout for any ways that it can be 
exploited (because if it can, then it will, and the behavior will spread). 

 
● Or it can be unintentional, e.g., underconfident learners may underestimate their ability 

and give up too early. When a tutor is working with a student on a problem, it is not 
uncommon that a student will claim not to know how to do the problem, but when the 
tutor asks the student to make their best guess, the “guess” is correct – and when the 
tutor asks the student about their thought process afterwards, it turns out that the 
student knew how to solve the problem, but they weren't confident about it and they 
didn't want to risk getting it wrong. 

 
While it may be subtle, removing the “I don’t know” button is a crucial safeguard to protect 
many students against self-destructive behavior. In theory, no such safeguards should be 
necessary, but in practice, a vital component of a functioning learning system is that it must be 
robust to all sorts of unexpected behavior arising from the various human emotional experiences 
associated with learning and intense training. Often, these emotional experiences can be intense 
and (if the option is provided) lead people to make short-sighted decisions that ultimately hinder 
their educational progress. 
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> Why doesn’t Math Academy use large language models (LLMs) to engage 
students in conversational dialogue? 

Many people who have (unsuccessfully) attempted to apply AI to education have focused too 
much on the “explanation” part and not enough on scaffolding, navigating, and managing the 
entire learning process. 
 
It’s easy to go on a wild goose chase building an explanation AI. You fall in love with the idea of 
AI having conversational dialogue with students, and then you get lost in the weeds of 
complexity. You solve just enough of the problem to produce a cool demo, yet you’re still 
hopelessly far away from self-service learning in real life. 
 
Dialogue isn’t even necessary. We simply hardcode explanations into bite-size pieces, served at 
just the right moment. And we close the feedback loop by having students solve problems, 
which they need to do anyway. (Their “response” is whether they got it correct.) 
 
Sure, hard-coding explanations feels tedious, takes a lot of work, and doesn’t have produce the 
same “wow” factor as an AI that generates responses from scratch – but it’s a practical solution 
that lets us move on to other components of the AI that are just as important (i.e., the entirety of 
this book). Just to name a few such components: 
 

● After a minimum effective dose of explanation, the AI needs to switch over to active 
problem-solving. Students should begin with simple cases and then climb up the ladder 
of difficulty, covering all cases that they could reasonably be expected to solve on a 
future assessment. 
 

● Assessments should be frequent and broad in coverage, and students should be assigned 
personalized remedial reviews based on what they answered incorrectly.  
 

● Students should progress through the curriculum in a personalized mastery-based 
manner, only being presented with new topics when they have (as individuals, not just as 
a group) demonstrated mastery of the prerequisite material. 
 

● Students should progress through the curriculum in a personalized mastery-based 
manner, only being presented with new topics when they have (as individuals, not just as 
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a group) demonstrated mastery of the prerequisite material. 
 

● After a student has learned a topic, they should periodically review it using spaced 
repetition, a systematic way of reviewing previously-learned material to retain it 
indefinitely into the future. 
 

● If a student ever struggles, the system should not lower the bar for success on the 
learning task (e.g., by giving away hints). Rather, it should strengthen a student’s area of 
weakness so that they can clear the bar fully and independently on their next attempt. 

 

> If I get stuck, is there somewhere that I can ask for help or a further 
explanation? 

We don't offer human tutoring services. However, we've been quantitatively analyzing and 
refining our content for years, smoothing out sections where anyone has struggled. Thousands 
of learners have successfully made it through our courses, and on average, students pass lessons 
95% of the time on the first try and 99% of the time on the second try. 
 
Furthermore, on the rare occasion that a learner does happen to get stuck and fail a lesson twice 
in the same place, the system will automatically have them review the prerequisite knowledge 
that is most relevant to their area of struggle before having the student re-attempt the lesson.
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Glossary 
 
abstraction – the ability to see “the forest for the trees” by learning underlying rules as opposed 
to memorizing example-specific details. Abstracting underlying rules improves one’s ability to 
extrapolate knowledge to new contexts. Abstraction ability is known to vary among individuals 
and depends on working memory capacity. 
 
abstraction ceiling – a practical limitation on the amount of math that one can learn, resulting 
from the phenomena that people have limited abstraction abilities and that higher levels of 
math become increasingly abstract and technical. The abstraction ceiling is not a “hard” 
threshold, a level at which one is suddenly incapable of learning math, but rather a “soft” 
threshold, a level at which the amount of time and effort required to learn math begins to 
skyrocket until learning more advanced math is effectively no longer a productive use of one’s 
time. That level is different for everyone. 
 
academic acceleration – the practice of allowing students to learn academic material at a 
younger age and/or faster rate than is typical. 
 
active learning – learning in which students are actively performing learning exercises as 
opposed to passively consuming educational content. The most effective active learning 
technique is deliberate practice. 
 
automaticity – the ability to execute low-level skills without having to devote conscious effort 
towards them. Automaticity is necessary because it frees up limited working memory to execute 
multiple lower-level skills in parallel and perform higher-level reasoning about the lower-level 
skills. When you develop automaticity on a skill or piece of information, it is stored in your 
long-term memory, where indefinitely many things can be held for indefinitely long without 
requiring cognitive effort. 
 
blocked practice (blocking or massed practice) – a type of practice in which a single skill is 
practiced many times consecutively. While some initial amount of blocking is useful when first 
learning a skill, blocking is very inefficient for building long-term memory afterwards during the 
review stage. See also: interleaving. 
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category induction learning – recognizing general features that distinguish problems requiring 
different solution techniques. See also: discrimination learning. 
 
chunk – a coherent, meaningful group of related pieces of information. 
 
cognitive control – see executive function. 
 
cognitive load – the amount of working memory required to complete a task. 
 
cognitive overload – when the cognitive load of a task exceeds one’s working memory, they are 
not able to complete the task. 
 
conditional completion –  if the evidence balances out to “just barely” place a student out of 
some topics, the system will consider those topics conditionally completed: the student will 
initially be given tasks under the assumption that they know those topics, but if the student 
struggles, then the system will immediately begin “falling backwards” along the appropriate 
learning paths. 
 
consolidation – the process of storing new information in long-term memory. 
 
core topics – topics that are most relevant in the “big picture” of mathematics. For instance, in 
calculus, the product rule would be a core topic, while the intermediate value theorem would be 
a supplemental topic. Core topics are the ones that appear more frequently as prerequisites of 
other topics in mathematics. 
 
course graph – a highly-compressed version of a knowledge graph where a single entity 
represents hundreds of topics. It is important to realize that each course is ultimately just a set 
of topics in the knowledge graph. The knowledge graph is the ultimate source of truth; a course 
graph simply summarizes and communicates information about the high-level structure of a 
knowledge graph so that humans can understand it. 
 
deliberate practice – individualized training activities that are specially chosen to improve 
specific aspects of one’s performance through repetition and successive refinement. Deliberate 
practice is the opposite of mindless repetition, and it has been shown to be one of the most 
prominent underlying factors responsible for individual differences in performance, even among 
highly talented elite performers. 
 

 

https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
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desirable difficulty – a practice condition that makes the task harder, slowing down the 
learning process yet improving recall and transfer. Desirable difficulties make practice more 
representative of true assessment conditions. 
 
diagnostic – an adaptive exam that leverages the knowledge graph to quickly identify a 
student’s knowledge frontier. 
 
direct instruction – instruction that teaches knowledge to students explicitly as opposed to 
attempting to have students “construct their own knowledge” through unguided activities. 
 
discrimination learning – matching problems with the appropriate solution techniques. For 
instance, the equations x2 + 3x + 2 = 0 and x + 3x + 2 = 0 look similar but require wildly different 
solution techniques. See also: category induction learning. 
 
distributed practice – see spaced repetition. 
 
dual-coding theory – a theory of cognition in which the mind processes information along two 
different channels: verbal and visual. Instructional materials can help students avoid cognitive 
overload by distributing cognitive load more evenly between these two channels. 
 
Ebbinghaus – known for discovering the spacing effect. 
 
edge of mastery – see knowledge frontier. 
 
effect size – when a group of students undergoes an intervention that is intended to improve 
learning, the effect size measures the degree of improvement relative to a control group, a group 
of students who did not receive the intervention. Specifically, effect size is calculated as the 
number of standard deviations (also called sigmas) by which the mean performance increases. 
For instance, if an intervention increases the average exam score by 20%, and the standard 
deviation of exam scores is 10%, then the effect size is 20% / 10% = 2 sigmas. Effect sizes can also 
be reported in percentiles: an effect size of 2 sigmas indicates that the average student who 
experienced the intervention learned more than 98% of students in the control group. (For 1 
sigma, the corresponding percentile is 84%.) 
 
encoding – the interpretation of the brain’s information-processing pipeline that emphasizes 
that the pipeline converts or “encodes” information from the outside world into a representation 
that can be stored in long-term memory and later recalled. 
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encompassing – advanced mathematical problems implicitly practice or “encompass” many 
simpler skills. Using sophisticated algorithms that capitalize on these encompassings, we enable 
students to spend most of their time learning new material while simultaneously making sure 
they keep getting practice on things they’ve previously learned. This results in turbo-boosted 
learning speed. 
 
equivalent topic – to comply with course standards, it is sometimes necessary to have 
equivalent topics spread out across multiple courses, with the equivalent topics in higher 
courses covering a more advanced treatment of the same skills taught in lower courses. 
 
executive function (cognitive control) – the interpretation of the brain’s 
information-processing pipeline that emphasizes that the pipeline is centered around working 
memory, which pulls relevant information from sensory and long-term memory into an area 
where it can be combined, transformed, and used to guide behavior to achieve goals. 
 
eXperience Points – see XP. 
 
expertise reversal effect – the instructional techniques that promote the most learning in 
beginners, promote the least learning in experts, and vice versa. 
 
facilitation – when a new task exercises knowledge learned in a prior task, learning can be 
facilitated in two ways: 

● (Retroactive Facilitation) The new task can restore memory of prior knowledge to the same 
extent as identical repetition of the prior task, leading to long-lasting retention (Ausubel, 
Robbins, & Blake, 1957; Arzi, Ben-Zvi, & Ganiel, 1985). 

● (Proactive Facilitation) Knowledge acquired during the prior task can improve the 
acquisition of knowledge that is specific to the new task (Arzi, Ben-Zvi, & Ganiel, 1985). 

 
forgetting curve – a graph of memory versus time that shows memory decaying over time. 
 
foundations (foundational knowledge) – lower-grade topics that students need to know in 
order to succeed in their enrolled course (i.e. foundations are prerequisites for the course). 
 
Fractional Implicit Repetition (FIRe) – Math Academy’s novel spaced repetition model that 
generalizes spaced repetition from independent flashcard-like tasks to highly connected bodies 
of knowledge where repetitions on advanced topics should “trickle down” to update the 
repetition schedules of simpler topics that are implicitly practiced. 
 

 

https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
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frontier – see knowledge frontier. 
 
gamification – when game-like elements (such as points and leaderboards) are integrated into 
student learning environments in ways that are aligned with the goals of the course, the 
motivations of the students, and the context of the educational setting, students typically not 
only learn more and engage more with the content, but also enjoy it more. However, these 
gamified elements need to be resistant to “hacking” behaviors that attempt to bypass learning 
by exploiting loopholes in the rules of the game. 
 
growth mindset – the belief that one’s current level of knowledge is not “fixed” or set in stone, 
but rather, can be increased through practice. To maximize student growth, it is necessary to 
give each student enough practice to achieve mastery and allow them to move on to more 
advanced skills immediately after mastering the prerequisites. The necessary amount of practice 
to achieve mastery will vary depending on the particular student and the particular skill. 
 
illusion of competence / comprehension –  it is easy for students (and their teachers) to vastly 
overestimate their knowledge if they do not leverage desirable difficulties during practice. 
 
induction learning – see category induction learning. 
 
interference – see non-interference. 
 
interleaving (varied practice, mixed practice) – the effectiveness of practice is diminished 
when a single skill is practiced many times consecutively beyond a minimum effective dose. 
Review problems should be spread out or interleaved over multiple review assignments that each 
cover a broad mix of previously-learned topics. In addition to being more efficient, this also 
helps students match problems with the appropriate solution techniques (discrimination 
learning) and recognize general features that distinguish problems requiring different solution 
techniques (category induction learning). 
 
key prerequisite – each knowledge point is linked to one or more key prerequisite topics that 
represent the prerequisite knowledge that is most directly being used in that knowledge point. 
If a student ever fails a lesson twice at the same knowledge point, we automatically provide 
remedial reviews on the key prerequisites. This helps the student strengthen their foundations 
in the areas where they are most in need of additional practice, so that they are better prepared 
to pass the lesson the next time around. 
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knowledge frontier (edge of mastery) – the boundary between what a student knows and does 
not know, which indicates what topics they are ready to learn. Following a student’s initial 
diagnostic, whenever a student is served new lessons, those lessons always cover topics that are 
on the student’s knowledge frontier. See also: zone of proximal development. 
 
knowledge graph – organizes our curriculum in a way that enables algorithmic 
decision-making. Contains multiple thousands of interlinked topics, with each linkage between 
topics indicating a relationship between them (such as one topic being a prerequisite for 
another topic). Knowledge graphs can encode a lot of complicated information that would 
otherwise be hard to describe and reason about. 
 
knowledge point – each topic involves a lesson that is broken down into several key pieces of 
learning called knowledge points. Each knowledge point contains a worked example and asks 
questions similar to the worked example. Knowledge points build on each other to help scaffold 
students through the lesson: the first knowledge point covers the most basic idea or skill of the 
lesson, and later knowledge points gently introduce more advanced cases. To demonstrate 
mastery of a topic, a student must answer sufficiently many questions correctly (with sufficiently 
few mistakes) in each successive knowledge point in the lesson. Once this is accomplished, more 
advanced topics become available for the student to work on. 
 
knowledge profile – measures a student’s knowledge at every topic in a knowledge graph. 
Loosely speaking, a student’s knowledge profile represents how “developed” their mathematical 
brain is. Every time they learn a new math topic, it’s as if they grow a new brain cell and connect 
it to existing brain cells. Initially, this new brain cell is weak and requires frequent nurturing, 
but over time it becomes strong and requires less frequent care. See also: knowledge frontier. 
 
layering – learning is about making connections: the more connections there are to a piece of 
knowledge, the more ingrained, organized, and deeply understood it is, and the easier it is to 
recall. The most efficient way to increase the number of connections to existing knowledge is to 
continue layering on top of it – that is, continually acquiring new knowledge that exercises 
prerequisite or component knowledge. 
 
league – to incentivize students to put forth a sufficient quantity of work, we implemented 
(optional) competitive weekly leaderboards where students are grouped into smaller leagues 
with other students of similar competitive ability. If a student earns enough XP to end the week 
near the top of their league, they promote to a higher league. But if they end the week near the 
bottom of their league, they demote to a lower league. 
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learning – a positive change in long-term memory. At a physiological level, learning involves 
the creation of strategic electrical wiring between neurons (“brain cells”) that improves the 
brain’s ability to perform a task. 
 
learning efficiency – the amount of progress that a student makes in their course, relative to the 
amount of time that they spend working. 
 
learning rate – rate at which one’s ability to perform a task improves over the course of 
exposure, instruction, and practice on the task. Learning rate is known to vary among 
individuals and depend on working memory capacity (WMC). 
 
long-term memory – effortlessly holds indefinitely many facts, experiences, concepts, and 
procedures, for indefinitely long, in the form of strategic electrical wiring between neurons. 
Wiring induces a “domino effect” by which entire patterns of neurons are automatically 
activated as a result of initially activating a much smaller number of neurons in the pattern. See 
also: consolidation. 
 
massed practice – see blocked practice. 
 
mastery – to demonstrate mastery of a topic, a student must answer sufficiently many questions 
correctly (with sufficiently few mistakes) in each successive knowledge point in the lesson. 
Once this is accomplished, more advanced topics become available for the student to work on. 
 
mastery floor – lower-course topics that are automatically considered mastered by any student 
taking the course. 
 
mastery learning – each individual student needs to demonstrate proficiency on prerequisite 
topics before moving on to more advanced topics. True mastery learning at a fully granular level 
requires fully individualized instruction, which is only attainable through one-on-one tutoring. 
 
Mathematical Foundations (MF) sequence – a streamlined sequence of courses that covers 
elementary mathematics through calculus but cuts out roughly a third of topics that are not 
actually prerequisites for university math. 
 
mixed practice – see interleaving. 
 
narrow limits of change principle – The severe limitation of the working memory when 
processing novel information. Most people can only hold about 7 digits (or more generally 4 
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chunks of coherently grouped items) simultaneously and only for about 20 seconds. And that 
assumes they aren’t needing to perform any mental manipulation of those items – if they do, 
then fewer items can be held due to competition for limited processing resources. 
 
neuromyth – a common yet scientifically inaccurate misunderstanding about the brain. 
Neuromyths can often be characterized as the oversimplification, misinterpretation, and/or 
misapplication of a nuanced complex scientific finding. One of the most widespread – and most 
widely debunked – neuromyths is that people learn better when they receive information in their 
preferred “learning style.” 
 
neuron – a cell that transmits information through electrical activity. The brain is a gigantic 
network of roughly 100 billion neurons that are “wired up” with over 100 trillion connections 
between them. 
 
non-ancestor encompassing – even though simple equivalent topics would not be ancestors of 
advanced equivalent topics via direct prerequisite or key prerequisite paths, we can still set 
full-encompassing edge weights between them so that a student who completes an advanced 
topic will implicitly receive credit for any simpler equivalent topics as well. These are called 
non-ancestor encompassings. See also: encompassing. 
 
non-interference – conceptually related pieces of knowledge should be spaced out over time so 
that they are less likely to interfere with each other’s recall. New concepts should be taught 
alongside dissimilar material. 
 
pace – the amount of XP that a student completes per weekday (on average). 
 
partial encompassing – an encompassing where only some part of the simpler topic is 
practiced implicitly in the more advanced topic. Partial encompassings occurs more frequently 
in higher-level math. 
 
placement – see diagnostic. 
 
proactive facilitation – see facilitation. 
 
radical constructivism – a philosophy in which knowledge does not reflect an “objective” 
ontological reality, but exclusively an ordering and organization of a world constituted by our 
experience. 
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reconsolidation – the process of updating information that has already been consolidated into 
long-term memory. 
 
rehearsal – the process of activating neural patterns and persistently maintaining their 
simultaneous activation, by which the brain holds information in working memory. 
 
repetition – see spaced repetition. 
 
repetition compression – whenever a student has due reviews, Math Academy is able to 
compress them into a much smaller set of learning tasks that implicitly covers (i.e. provides 
repetitions on) all of the due reviews. This is accomplished by choosing reviews whose implicit 
repetitions “knock out” other due reviews (like dominos). 
 
retrieval practice – see the testing effect. 
 
retroactive facilitation – see facilitation. 
 
scaffolding – support given to a student to reduce the cognitive load of a learning task. 
 
schema – the underlying structure or framework of one’s knowledge. 
 
sensory memory – temporarily holds a large amount of raw data observed through the senses 
(sight, hearing, taste, smell, and touch), only for several seconds at most, while relevant data is 
transferred to short-term memory for more sophisticated processing. 
 
short-term memory – has a much lower capacity than sensory memory, but can store 
information about ten times longer. 
 
sigma – see effect size. 
 
standard deviation – see effect size. 
 
spacing effect – when reviews are spaced out or distributed over multiple sessions (as opposed to 
being crammed or massed into a single session), memory is not only restored, but also further 
consolidated into long-term storage, which slows its decay. A profound consequence of the 
spacing effect is that the more reviews are completed (with appropriate spacing), the longer the 
memory will be retained, and the longer one can wait until the next review is needed. This 

 

https://en.wikipedia.org/wiki/Memory_consolidation
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observation gives rise to a systematic method for reviewing previously-learned material called 
spaced repetition (or distributed practice).  
 
spaced repetition (distributed practice) – reviews should be spaced out or distributed over 
multiple sessions (as opposed to being crammed or massed into a single session) so that memory 
is not only restored, but also further consolidated into long-term storage, which slows its decay. 
A repetition is a successful review at the appropriate time. 
 
spaced retrieval practice – an especially potent learning strategy that combines spaced 
repetition with retrieval practice by testing (instead of simply re-studying a reference) during 
reviews. 
 
speed of learning – see learning rate. 
 
spreading activation – a method by which connections between information can be used to 
recall information in response to a stimulus. The stimulus activates some piece(s) of 
information, and the activity flows through connections to other pieces of information. 
 
spiral curriculum – a curriculum in which material is naturally revisited and further built upon 
in later textbook chapters and/or grades. 
 
subgoal labeling – the act of grouping steps into meaningful units with labels. Subgoal labeling 
can help students grasp the structure of the problem, thereby enabling the learning to transfer 
to other problems in the same category, and minimize the number of chunks of information that 
they need to store in their working memory, thereby reducing cognitive load. 
 
supplemental diagnostic – as topics are added and connectivity is revised in the knowledge 
graph, the knowledge profile inferred from a student’s initial placement diagnostic can get a 
little out of date. When this happens, we assign tiny diagnostics called supplemental 
diagnostics to bring the student’s knowledge profile back up to date. See also: diagnostic. 
 
supplemental topic – see core topic. 
 
targeted remediation – in the academic literature, the term targeted remediation usually 
describes identifying individual students in need of broad remedial intervention such as 
tutoring, remedial courses, academic advisor meetings, etc. But in the context of Math Academy, 
targeted remediation refers to fully-automated support mechanisms that are targeted to 
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individual students on individual topics – and often even more precisely to the individual 
component skills that are causing a student to struggle on a topic. 
 
testing effect (retrieval practice) – to maximize the amount by which your memory is extended 
when solving review problems, it’s necessary to avoid looking back at reference material unless 
you are totally stuck and cannot remember how to proceed. For this reason, it’s necessary to test 
frequently as a part of the learning process itself. 
 
topic – see knowledge graph and knowledge point. 
 
tragedy of the commons – in the absence of accountability and incentives that promote 
collective interests, people will focus on behaviors that benefit themselves as individuals, and 
pay less attention to how their actions affect the group as a whole. As a result, when a group is 
given responsibility for the maintenance and improvement of a shared resource, the resource 
will typically deteriorate. While some individuals may care for the resource properly, they are 
typically unable or unwilling to pick up the slack of those who do not. 
 
two-sigma problem – In 1984, educational psychologist Benjamin Bloom published a landmark 
study comparing the effectiveness of one-on-one tutoring and traditional classroom teaching. 
The difference was monumental: the average tutored student performed better than 98% of the 
students in a traditional class. This finding led to a challenge widely known as Bloom’s two-sigma 
problem: can we develop methods of group instruction that are as effective as one-on-one 
tutoring? (The terminology “two-sigma” comes from statistics, where the effects of 
interventions are often measured in standard deviations or sigmas. An effect size of 98% is 
slightly more than two sigmas.) 
 
varied practice – see interleaving. 
 
worked example – a problem along with a step-by-step-demonstration of how to solve it. See 
also: knowledge point. 
 
working memory – consists of short-term memory along with capabilities for organizing, 
manipulating, and generally “working” with the information stored in short-term memory. See 
also: cognitive load, cognitive overload, narrow limits of change principle, and rehearsal. 
 
working memory capacity (WMC) – the maximum amount of information that one can hold and 
manipulate in working memory. Working memory capacity is known to vary between 
individuals and is known to influence perceived effort, cognitive control, mind-wandering, 

 

http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
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abstraction ability, learning outcomes, and learning rate. See also: narrow limits of change 
principle. 
 
XP (eXperience Points) – the currency of Math Academy’s gamified reward system. Students 
earn XP upon successful completion of learning tasks, and XP is calibrated so that 1 XP 
represents 1 minute of fully-focused, fully-productive work for an average serious (but 
imperfect) student. 
 
zone of proximal development – the range of tasks that a student is able to perform while 
supported, but cannot do on their own. Students maximize their learning when they are 
completing tasks within this range. 
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Notes for Future Additions 
 
While this working draft contains a lot of information, it’s not even halfway done. I am still building out 
this book and there is still lots of key information that remains unaddressed. Below are my working notes 
on items that I need to incorporate into the main body of the book. 
 

Parental Support / Coaching 

● What a Coach can Teach a Teacher, 1975-2004: Reflections and Reanalysis of John 
Wooden's Teaching Practices (Gallimore & Tharp, 2004) 
Lots of John Wooden quotes that align with MA Way 

○ "The 4 laws are explanation, demonstration, imitation, and repetition. The goal is 
to create a correct habit that can be produced instinctively under great pressure. 
To make sure this goal was achieved, I created eight laws of learning, namely, 
explanation, demonstration, imitation, repetition, repetition, repetition, 
[repetition], and repetition." 

○ "I could track the practice routines of every single player for every single practice 
session he participated in while I was coaching him" 

○ "When you improve a little each day, eventually big things occur. ... Not 
tomorrow, not the next day, but eventually a big gain is made. Don’t look for the 
big, quick improvement. Seek the small improvement one day at a time. That’s 
the only way it happens—and when it happens, it lasts." 

○ "I learned to be concise and quick and didn’t string things out. ... I never had a lot 
of meetings and things of that sort. I wanted short things during the practice 
session." 

○ "You just don’t throw material out for someone to get, as I’ve heard some college 
professors say. I had a discussion with an English professor at UCLA. ... When we 
began to discuss teaching, [the professor] indicated that he was there to dispense 
material and students were to get it. And I said 'I thought you were there to teach 
them.' He said, 'No, no, college students should be getting it themselves. Maybe 
in the lower levels they’re taught [but not when they get to university].' And I 
said, 'Well I think you’re always teaching.'" 
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● Parent needs to make sure kid is focused, not multitasking 
Problems with multitasking: 
Problem 1: can’t learn new things. you can DO while simultaneously watching TV. You 
can do things you’ve already learned, provided that they’re really low-effort tasks. You 
can’t learn new things while multitasking like that. Multitasking basically reduces your 
working memory. Learning generally requires a lot of working memory. Learning 
requires focused attention 
Problem 2: takes way longer to multitask 

○ The myths of the digital native and the multitasker (Kirschner & Bruyckere) 
 
"Human beings, due to their cognitive architecture (Sweller, Ayres, & Kalyuga, 
2011) are capable of doing more than one thing at any one time only if all of the 
activities that they are carrying out are fully automated (i.e., require no cognitive 
processing) save the one requiring processing (e.g., walking and talking at the 
same time, though even this has been found to lead to falls and other accidents; 
Herman, Mirelman, Giladi, Schweiger, & Hausdorff, 2010). 
… 
In general, research has shown that when thinking or any other form of 
conscious information processing is involved in carrying out a task, people are 
not capable of multitasking and can, at best, switch quickly and apparently 
seamlessly from one activity to another. The key word here is again ‘apparently’. 
 
Thus, what we are actually talking about is task-switching. When task-switching, 
a person first shifts the goal and thus makes a ‘decision’ to divert attention away 
from the task being carried out to another task, and then activating a rule so that 
the instructions and procedures for carrying out that task are switched off, and 
those for executing the other task are switched on. This task-switching involves 
dividing one's attention between tasks, and because each of the tasks competes 
with all of the others for a limited number of cognitive resources available, 
performing one of the tasks interferes with that of the other/others. 
… 
In the learning setting, Fox, Rosen, and Crawford (2009) demonstrated that in 
order to comprehend a text to ‘mastery’, students who text messaged while 
reading needed to invest significantly more time in reading the text than those 
who were not text messaging; approximately 1.66 times as long. In other words, 
equal comprehension can be achieved if significantly more time is invested. 
Though the time difference is negligible for short texts such as those used in the 
experiment (5.53 min versus 3.33 min), think of what the time difference would 

 



The Math Academy Way – Working Draft  |  457 

become if the assignment was a normal university reading assignment e.g., a 
chapter in a text book or an article in a scientific journal? 
Kirschner & Karpinski (2010), however, found that high-intensity users of social 
media (in their study Author et al. studied Facebook® use) studied just as long as 
low-intensity users. In other words, high-intensity Facebook-users did not make 
the extra time investment needed to master the content. What was then found 
was that the grade point averages (GPAs) of the high-intensity users were also 
significantly lower. This was especially the case for U.S. students who did this 
‘disruptively’; that is stopped their studying each time a new message popped up 
to deal with that message." 
 

○ Efficient, helpful, or distracting? A literature review of media multitasking in 
relation to academic performance (May & Elder) 
“The research indicates that media multitasking interferes with attention and 
working memory, negatively affecting GPA, test performance, recall, reading 
comprehension, note-taking, self-regulation, and efficiency. These effects have 
been demonstrated during in- class activities (largely lectures) and while students 
are studying. In addition, students struggle to accurately assess the impact media 
multitasking will have on their academic performance.“ 

● Why Does Parents’ Involvement Enhance Children’s Achievement? The Role of 
Parent-Oriented Motivation 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8a7a096cf1d1ad9e783b
3d26f32110a4ddf049f9 

○ Parental involvement is not just about keeping kids on the rails with deliberate 
practice, it’s also about being someone that the kid respects and trusts and wants 
to impress or at least meet their standards. Not just drill sergeant forcing them to 
meet standards, but also mentor / role model of whom the kid wants to gain the 
approval. 

○ “Children’s motivation in school is parent oriented when it is driven by a concern 
with meeting parents’ expectations in the academic arena so as to gain their 
approval.” 

○ “Over time, the more involved parents were in children’s learning, the more 
motivated children were to do well in school for parent-oriented reasons, which 
contributed to children’s enhanced self-regulated learning and thereby grades. 
Although children’s parent-oriented motivation was associated with their 
controlled and autonomous motivation in school, it uniquely explained the 
positive effect of parents’ involvement on children’s grades.” 
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● Beyond Bloom: Revisiting Environmental Factors That Enhance or Impede Talent 
Development  
https://oncourt.ca/wp-content/uploads/2011/03/beyond-bloom.pdf  

○ In addition to enabling the mechanics of talent development, parents also need to 
promote the value of talent development, that the outcome (high level of talent) is 
worth the work. The child is going to imitate parental values and dispositions 
(e.g., coping with setbacks or failures) and it’s the parent’s responsibility to make 
sure what they’re (intentionally or unintentionally) modeling is aligned with the 
talent development process. And parents also need to integrate kids into social 
networks that support such values. 

○ “Families clearly play a very important role in the realization of promise and 
potential (Bloom, 1985). At the most fundamental level, parents provide two 
critical resources: money and time. Parental financial support for lessons, 
instruments, equipment, and outside-of-school educational opportunities is as 
essential as their role in arranging lessons, searching out programs, driving to 
and monitoring practices. 
 
Parents, overtly or covertly, espouse values conducive to talent development 
(Olszewski, Kulieke, & Buescher, 1987). These may include the importance of 
finding and developing one’s abilities; aspiring to achievement at the highest 
levels possible; independence of thought and expression; and favoring 
active-recreational, cultural, and intellectual pursuits (Olszewski et aL, 1987). 
Csikszentmihalyi and Beattie (1979) assert that families have systems of cognitive 
coding as well as patterns of explanations for events or circumstances that 
determine values and attitudes. Parents can model a love of work and learning, 
including learning outside of structured or traditional activities and settings. 
Parents also model personality dispositions that are essential to talent 
development, such as risk taking and coping with setbacks and failures. They 
demonstrate that success requires a great deal of hard work and sustained effort 
over long periods of time (Olszewski et al., 1987). Another very important role for 
parents is helping their talented child build supportive social networks (Subotnik 
& Olszewski-Kubilius, 1997). Although the social world of the child begins with 
the family, over time, as higher levels of performance are achieved, that world 
expands to include teachers, coaches, mentors, and talented peers. Social 
networks evolve naturally, but parents can help children build connections that 
support not only general social and emotional development, but talent 
development as well.” 

● The Influence of the Family in the Development of Talent in Sport (Jean Côté) 
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○ More on the importance of role-modeling 
■ “several studies have shown that parents of committed individuals in 

various domains tend to espouse values related to the importance of 
achievement, hard work, success, and being active and persistent 
(Csikszentmihalyi et al., 1993; Monsaas, 1985; Sloboda & Howe, 1991; 
Sloan, 1985; Sosniak, 1985).“ 

○ Domain-specificdeliberate practice pre-adolescence doesn’t seem to increase 
expected long-term talent development. Even elite performers tend to focus on 
less-guided play pre-adolescence (the play setting is structured, kind of like a 
game with rules, but the kid is not engaging in guided training to acquire 
skills/expertise in the game, it’s more like discovery learning). This makes sense 
as a wide-range sampling over domains to find the one where the student 
experiences the most enjoyment that will fuel them through later deliberate 
practice when things get harder. (Also, I anticipate a kid’s enjoyment of play will 
probably correlate with the rate at which they’re able to pick up cool skills 
without guidance, which would correlate with talent. So even if the sampling is 
filtering primarily for enjoyment I’m pretty sure it would also be filtering for 
talent implicitly, though as a secondary concern.) 

■ “A greater focus on play and enjoyment during the sampling years is in 
line with results of studies that investigate the motives for children’s 
participation in sport (Gill, Gross, & Huddleston, 1983; Gould & 
Petlichkoff, 1988) and the early activities of elite performers (Bloom, 1985; 
Carlson, 1988, 1997; Csikszentmihalyi et al., 1993; Stevenson, 1990). 
… 
Carlson (1988, 1997) indicated that early specialization and 
“professional-like training” in tennis did not favor the development of 
elite players. An all-around sport engagement was more important before 
adolescence. Results of the present study reinforce that even for those 
who go on to be elite performers, the sampling years was an important 
stage of development.” 

○ As summarized in Talent Development in Elite Junior Tennis: Perceptions of 
Players, Parents, and Coaches (Wolfenden & Holt) 

■ “… Cˆot´e and Hay (2002) explained that it is important for athletes’ to play 
games during their early development, and they termed this type of play 
‘deliberate play.’ Deliberate play differs from the free play of childhood, 
the structured practice of organized sport, and deliberate practice 
activities. Deliberate play activities are “regulated by rules adapted from 
standardized sports rules, and they are set up and monitored by the 
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children or by an adult involved in the activity” (Cˆot´e&Hay, 2002, p. 95). 
The goal of deliberate play is enjoyment, but deliberate play involves 
some structure which differentiates it from free play. It has been shown 
that elite athletes engage in deliberate play in the sampling years, but 
through the specializing and investment years deliberate play decreases 
while involvement in deliberate practice increases (Soberlak & Cˆot´e, 
2003).” 

● It’s about properly calibrating everything (praise, aspirations, etc.) so that the kid feels it 
accurately reflects reality. You can always set aspirations higher but it has to be 
calibrated to where the student’s at. Kind of like desirable difficulty. Also you gotta keep 
it specific, not vague. Specific, grounded in evidence, to be believable. 

○ Understanding When Parental Praise Leads to Optimal Child Outcomes: Role of 
Perceived Praise Accuracy (Lee et al.) 

■ “Our results showed that parents’ perceptions of over- or underpraising 
(vs. accurately praising) their children’s schoolwork predicted poorer 
school performance and higher depression in children. From children’s 
perspectives, perceived under- and overpraise by parents predicted poorer 
school performance and higher depression. However, when children felt 
that their parents’ praise was slightly (but not majorly) overstated, this 
had at least as beneficial effects as when they felt the praise accurately 
reflected reality. For parents and educators, these results underline the 
importance of basing praise of children on actual performance and the 
need to pay careful attention to how praise is perceived by the child.” 

■ “Brummelman, Thomaes, de Castro, Overbeek, and Bushman (2014) found 
that children with low self-esteem were less likely to take on challenges 
upon receiving inflated praise. Similarly, Murayama, Pekrun, Suzuki, 
Marsh, and Lichtenfeld (2016) showed that unrealistically high parental 
aspirations for their children’s academic achievement, called ‘‘parental 
overaspiration,’’ was associated with poorer academic performance over 
time” 

■ “Prior research provides suggestive evidence that when there is a 
discrepancy between people’s subjective assessment of performance and 
the feedback they receive, people respond to this discrepancy with 
increased emotional distress and self-destructive behaviors. … These 
findings suggest that feedback incongruent with actual performance is 
detrimental to both performance and emotional well-being of the 
recipient.” 
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■ “We demonstrated that when parents perceived that they over- or 
underpraised their children for schoolwork, children performed worse in 
school and experienced depression to a greater extent, as compared with 
children whose parents thought their praise accurately reflected reality. 
How much the children perceived their parents to over- or underpraise 
them had analogous effects, with the exception that children’s 
perceptions of slightly overstated praise were as beneficial as accurate 
praise. … these findings underscore the benefits of giving praise to 
children that closely reflects their actual performance, and of delivering it 
in a way they perceive to be accurate.” 

● Carol Dweck Revisits the 'Growth Mindset' (Dweck, 2015, Education Week) 
Carol Dweck is the researcher who introduced growth mindset and she’s railing on what 
it’s become 

○ “A growth mindset isn’t just about effort. Perhaps the most common 
misconception is simply equating the growth mindset with effort. Certainly, 
effort is key for students’ achievement, but it’s not the only thing. …  effort is a 
means to an end to the goal of learning and improving. Too often nowadays, 
praise is given to students who are putting forth effort, but not learning, in order 
to make them feel good in the moment 
… 
Recently, someone asked what keeps me up at night. It’s the fear that the mindset 
concepts, which grew up to counter the failed self-esteem movement, will be used 
to perpetuate that movement. In other words, if you want to make students feel 
good, even if they’re not learning, just praise their effort! Want to hide learning 
gaps from them? Just tell them, “Everyone is smart!” The growth mindset was 
intended to help close achievement gaps, not hide them. It is about telling the 
truth about a student’s current achievement and then, together, doing something 
about it, helping him or her become smarter. 
… 
Don’t accept less than optimal performance from your students.” 

● The Effects of Praise on Children’s Intrinsic Motivation: A Review and Synthesis 
(Henderlong & Lepper) 

○ “Provided that praise is perceived as sincere, it is particularly beneficial to 
motivation when it encourages performance attributions to controllable causes, 
promotes autonomy, enhances competence without an overreliance on social 
comparisons, and conveys attainable standards and expectations.” 

○ “research on expert human tutors has suggested that it is the least effective tutors 
who use the most effusive and direct statements of praise (Lepper, Drake, & 
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O’DonnellJohnson, 1997; Lepper & Woolverton, 2002; Lepper, Woolverton, 
Mumme, & Gurtner, 1993).” 

○ “Five common organizing themes emerged from the literature that seemed to 
capture the factors underlying the positive versus negative effects of praise: 
perceived sincerity, performance attributions, autonomy, competence and 
self-efficacy, and standards and expectations. These conceptual variables are not 
meant to represent an exhaustive list, but we do believe that they capture the 
majority of what research to date has uncovered about the effects of praise on 
children’s intrinsic motivation and perseverance.” 

○ Sincerity 
■ “In general, praise that is not given spontaneously but rather to reinforce 

or manipulate behavior may appear contrived to the recipient and will 
therefore be ineffective.” 

■ “praise may be perceived as insincere—and would therefore be likely to 
have negative motivational consequences—when it is overly general, 
highly effusive, or contradicted by other words or behaviors.” 

○ performance attributions 
■ “attributing successful performance to ability, as opposed to effort or 

other more process-oriented factors, may have long-term costs when 
children later experience failure in the praised domain. In addition, when 
children are praised for accomplishments that are achieved easily by 
others, they may view praise as an indication of their low ability.“ 

○ Autonomy 
■ “praise can promote autonomy and therefore enhance intrinsic 

motivation when it is informational or endogenous to the task. Praise may 
encourage an external causal locus and therefore undermine intrinsic 
motivation to the extent that it highlights a means–end contingency, 
includes heavily controlling statements, or is exogenous to the task. Thus, 
when praise acts as a superfluous and controlling reward, intrinsic 
motivation suffers.“ 

○ Competence and self-efficacy 
■ “praise is motivating to the extent that it leads the recipient to feel 

competent and efficacious. Praise that enhances competence primarily by 
making social comparisons, however, may result in an overdependence on 
normative comparisons and less perseverance when faced with setbacks.” 

○ standards and expectations 
■ “praise enhances intrinsic motivation when it provides useful information 

about task-specific standards of excellence or conveys reasonable 
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expectations of the praising adult. It may undermine intrinsic motivation, 
however, when it invokes unrealistic standards of excellence or highlights 
self-focused attention during the execution of skilled behavior.“ 

○  
● The Effects of Praise on Children’s Intrinsic Motivation Revisited (Corpus & Good) 

○ “praise enhances motivation and perseverance when it (a) implies that success is 
the result of controllable, malleable forces (e.g., strategy, effort), (b) minimizes 
perceptions of external control and promotes autonomy, (c) builds a resilient 
sense of competence, and (d) provides specific, accurate information about the 
quality of performance.“ 

○ “person praise is detrimental and/or process praise is beneficial across a broad 
set of outcomes including enjoyment, challenge-seeking, error vigilance, 
cheating, and shame following failure (e.g., Brummelman et al., 2014b; Haimovitz 
& Corpus, 2011; Zhao, Heyman, Chen, & Lee, 2017). However, not all forms of 
process praise are equally beneficial. Effort praise has the potential to be seen as 
a consolation prize or signal of low ability, especially among adolescents 
(Amemiya & Wang, 2018), and it appears to be effective primarily among students 
who believe effort and ability to be positively, rather than inversely, related (Lam, 
Yim, & Ng, 2008). The most effective praise, therefore, is that which focuses on 
other process-oriented factors, such as strategy use.“ 

● Pay, Intrinsic Motivation, Extrinsic Motivation, Performance, and Creativity in the 
Workplace: Revisiting Long-Held Beliefs (Gerhart & Fang) 

 



464  |  The Math Academy Way – Working Draft 

Intrinsic motivation is not a proxy for performance. Sometimes extrinsic rewards 
decrease intrinsic motivation but increase extrinsic motivation so much as to come out 
ahead with a substantial increase in performance.  

○ “Studying the effect of PFP only on intrinsic motivation is not sufficient, given 
that performance is typically of great interest and in turn is likely a function of 
both intrinsic and extrinsic motivation (Cerasoli et al. 2014, Fang 1997, Gerhart & 
Milkovich 1992, Ledford et al. 2013, Locke & Latham 1990).” 

○ “Wiersma (1992, table 2) provides a compelling look at the difference between 
focusing only on intrinsic motivation (the free-time measure) and looking at 
performance as an outcome of both intrinsic and extrinsic incentives. In 17 
studies using a combined sample size of 865 subjects, he found a negative (i.e., 
detrimental). 
However, Wiersma also found 11 studies (N = 729) that examined the influence of 
extrinsic rewards on performance. The effect was positive (d = +0.34). As such, 
either the positive effects of extrinsic rewards on performance via higher 
extrinsic motivation dominated the negative effects via intrinsic motivation or 
the free-time measure of intrinsic motivation was simply not relevant to 
performance (which is what happens during work time, not free time). We also 
computed the sample size weighted d for the subset of five studies (N = 300) from 
Wiersma (1992, table 2) that reported both intrinsic motivation and performance 
effect sizes. The effect on intrinsic motivation was negative, d = -0.71; whereas 
the effect on performance was positive, d = +0.49.” 

○ “In her influential work on creativity, Amabile (1983b, p. 366; see also Amabile 
1996, p. 15) stated that “a primarily intrinsic motivation to engage in an activity 
will enhance creativity, and a primarily extrinsic motivation will undermine it.” 
Further, Hennessey & Amabile (1998, p. 675) wrote that Amabile (1996, p. 15) 
similarly stated in her influential book that a “general principle” is that “intrinsic 
motivation is conducive to creativity, but extrinsic motivation is detrimental.”In 
their commentary on Eisenberger & Cameron (1996) in American Psychologist, 
Hennessey & Amabile (1998, p. 675) acknowledged that there were “very specific 
situations under which [extrinsic] reward can have either no impact or even a 
positive impact on intrinsic motivation and creativity,” but they closed by saying 
“working for [extrinsic] reward...can be damaging to both intrinsic motivation 
and creativity.” 
… 
Yet, this negative view of the role of extrinsic motivation in creativity has begun 
to be revisited by Amabile herself, as well as by other creativity scholars. For 
example, in their article for the Annual Review of Psychology, Hennessey & 
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Amabile (2010, p. 581) state that 
‘When investigations of...extrinsic constraints began about 30 years ago... .High 
levels of extrinsic motivation were thought to preclude high levels of intrinsic 
motivation; as extrinsic motivators and constraints were imposed, intrinsic 
motivation (and creativity) would necessarily decrease. Now...hundreds of 
investigations later, most researchers...have come to appreciate the many 
complexities of both motivational orientation and extrinsic motivators, 
particularly expected reward... .Rewards can actually enhance intrinsic 
motivation and creativity when they confirm competence, provide useful 
information in a supportive way, or enable people to do something that they were 
already intrinsically motivated to do. These boosting effects are most likely when 
initial levels of intrinsic motivation are already strong (Amabile 1993).’ 
Hennessey & Amabile make three key points: Extrinsic rewards do not 
necessarily undermine creativity and may actually enhance it, their positive 
effects are most likely when intrinsic motivation is already high, and a positive 
effect of PFP may come via positive effects on perceived competence.” 

○ “What does the evidence say about the effect of using creativity-contingent 
rewards? A recent meta-analysis by Byron & Khazanchi (2012) found that in 34 
experimental studies, the use of extrinsic incentives contingent on creative 
performance resulted in a sizeable positive (not negative) effect on creative 
performance (g = 0.62).” 

● Intrinsic Motivation and Extrinsic Incentives Jointly Predict Performance: A 40-Year 
Meta-Analysis (Cerasoli & Nicklin) 
https://hillkm.com/EDUC_712/Cerasoli_Nicklin_Ford_2014.pdf 

○ “at least two meta-analyses have found thatcproviding financial incentives is 
associated with higher performance (Condly, Clark, & Stolovitch, 2003; Jenkins et 
al., 1998),cdepending on the type of performance and incentive contingency.“ 

○ “nine meta-analyses (Cameron, Banko, & Pierce, 2001; Cameron & Pierce, 1994; 
Eisenberger & Cameron, 1996; Deci et al., 1999, 2001; Eisenberger, Pierce, & 
Cameron, 1999; Rummel & Feinberg, 1988; S. H. Tang & Hall, 1995; Wiersma, 
1992) spanning three decades have focused elsewhere on a specific issue, called 
the undermining effect. The undermining effect refers to the idea that the 
presentation of incentives on an initially enjoyable task reduces subsequent 
intrinsic motivation for the task. 
It is time to move beyond the undermining effect body of research because it 
obfuscates the importance of intrinsic motivation to performance (Reiss, 2005) 
and hinges on several assumptions unlikely to hold in many nonlaboratory 
contexts (Locke & Latham, 1990; Lust, 2004). On a fundamental level, the debate 
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fails to recognize that performance is not simply determined by one or the other: 
To some degree, both intrinsic and extrinsic motivation are functional in 
performance contexts. Given that most research supporting the undermining 
argument is derived from tasks that are intrinsically enjoyable from the outset, it 
is important to expand this line of research because many tasks in field settings, 
such as organizations and schools, are not necessarily “fun” from the outset. 
Similarly, it is not clear whether enjoyable or interesting tasks always take 
precedence over incentives. On the one hand, a survey of 550 individuals across 
multiple industries asked employees to rank the top five factors that motivate 
them in their jobs. Results indicated that the top motivational factor employees 
cared about was “good wages,” with “interesting work” coming in at fifth place 
(Wiley, 1997).” 

○ “A more practical reason for the lack of research on intrinsic motivation, 
incentives, and performance pertains to logical issues. Specifically, there has 
been an inability to reconcile three seemingly true, but incompatible premises: (a) 
incentives boost performance, (b) intrinsic motivation boosts performance, and 
(c) incentives reduce intrinsic motivation.“ 

○ “Considering the research surrounding these moderators, we suggest (see also 
Dalal & Hulin, 2008) that the type of criteria will drive whether incentives or 
intrinsic motivation are more important to performance. For quantity criteria, 
theory suggests that incentives should be the deciding (i.e., dominant) predictor. 
Quantity-type criteria are likely to be noncomplex, repetitive, and require chiefly 
focus and drive for their completion. As an extensive body of research shows, 
incentives are excellent for these types of tasks because the prospect of 
instrumental gain sharply focuses one’s attention and directs one’s behavior. 
Provided the incentive is contingent upon gaining the outcome of interest, 
incentives will be powerful. Combined with the fact that incentives are an 
excellent predictor of quantity performance (Jenkins et al., 1998), it is reasonable 
to assume they will be maximally predictive here.“ 

○ “The purpose of the current metaanalysis was to provide an empirical response to 
the general view that incentives and intrinsic motivation are incompatible. Such 
a response is necessary because the joint role of both intrinsic and extrinsic 
incentives in performance contexts simply cannot be ignored (Deci, 1976). Thus, 
our findings demonstrate the joint and relative contribution of intrinsic 
motivation and extrinsic incentives to performance. 

○ “The third primary goal of this article, accomplished through meta-analytic 
regression, was to determine which mattered more to performance: intrinsic 
motivation or extrinsic incentives. As expected, intrinsic motivation mattered 
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more for quality than extrinsic incentives and extrinsic incentives explained more 
of the variance in quantity performance criteria than did intrinsic motivation. 
This pattern of findings confirms that motivation should be considered by what 
it is supposed to predict (Dalal & Hulin, 2008). 

○ Our findings also nicely complement existing meta-analytic work on extrinsic 
incentives by showing that extrinsic incentives are better predictors of quantity 
than of quality performance (Jenkins et al., 1998). In fact, most moderators we 
explored showed similar complementary patterns in the extant literature: When 
intrinsic motivation matters more to performance (i.e., quality vs. quantity, work 
and physical vs. school, and to a lesser degree field vs. lab), extrinsic motivation 
seems to matter less (cf. Condly et al., 2003; M. Gagné & Deci, 2005; Koestner & 
Losier, 2002). An unexpected finding was that intrinsic motivation also emerged 
as a moderately strong predictor of quantity criteria. Although not as strong as 
that for incentives, this finding highlights the importance of intrinsic motivation 
in performance contexts.“ 

○ “even when incentives substantially erode intrinsic motivation, if the incentive is 
powerful enough, there will still be an increase in net motivation and by 
extension, performance. For example, teachers promise incentives such as pizza 
parties or cash to boost motivation and thus performance. Those arguing against 
these types of incentive programs do not question their effectiveness: in fact, 
many note that the incentives are almost too effective (G. P. Baker, 1993). Instead, 
the concern is that once the incentives are gone, motivation will disappear with it 
because the remaining intrinsic drive dried up earlier as a result of the extrinsic 
incentives being used.“ 

○ “Using a novel approach, we have shown that incentives can influence the 
predictive validity of intrinsic motivation; but more importantly, intrinsic 
motivation remains a moderate to strong predictor of performance regardless of 
whether incentives are present. In general, our most important theoretical and 
empirical contribution is that incentives and intrinsic motivation are not of 
necessity antagonistic: We found that incentives coexist with intrinsic 
motivation, depending on the type of performance and the contingency of the 
incentive. The types of desirable and undesirable performance behaviors should 
first be considered, because they will drive the appropriate degree of incentive 
salience. Counter to claims otherwise, our research demonstrates the joint 
impact of incentives and intrinsic motivation is critical to performance.” 

● A qualitative investigation of the motivational climate in elite sport (Keegan et al. 2014) 
https://www.sciencedirect.com/science/article/pii/S1469029213001143#bib29  
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○ “Most notably, these studies and others like them (e.g., Holt, Tamminen, Black, 
Mandingo, & Fox, 2009) reported difficulty in attempting to consistently associate 
specific behaviours of coaches, parents or peers with specific motivational 
outcomes. For example, a single criticism from the coach could either undermine 
motivation or lead to an ‘I'll show you!’ response (e.g., Keegan, Harwood, et al., 
2010).” 

○ ““You can't coach everyone the same way, like you've got to look at what you've 
got and what kind of person your player is… shouting at one person might be the 
only way to get through to them but another person might not like 
that”[F-21-TENNIS]” 

○ “‘Autonomy support’ was generally reported as having a positive influence on 
motivation, whereas ‘controlling style’ was often reported in relation to feelings 
of frustration, anger, undermining motivation and even damaging relationships. 
An autonomy supportive style included allowing the athletes to make choices, 
collaborating over decisions, ‘empowering’ the athletes with knowledge, an open 
questioning style, and being responsive to athlete input (also identified by 
Conroy and Coatsworth, 2007, Kimball, 2007). A controlling style included a 
prescriptive decision style and denying the athletes choices. The category of 
‘coach accountability’ was built around: (a) being rational and predictable (e.g., 
“He was quite predictable, like he didn't make irrational decisions, he was like 
good with that”[M-19-RUGBY]); (b) explaining selection decisions; (c) outlining 
the relevance of advice given; (d) fully explaining key ideas and plans; and (e) 
ensuring that feedback and analysis clearly influence subsequent ‘game-plans’. 
Transparency regarding key decisions seemed to be highly valued by athletes, 
who disliked being “kept in the dark” by coaches (also noted by Kimball, 2007). 
 
Explaining selection decisions: [Coach] was good… at highlighting why you've 
been picked. Or if you hadn't been picked, why you hadn't… maybe we're playing 
a different sort of game or different sort of team; he would pick players to suit 
that team, and he wouldn't just say “You've been dropped” he would say why 
you're not playing this week, and what you need to work on [M-20-RUGBY]. 
 
Players in this study felt it was important for their coach to be either very 
knowledgeable, highly experienced, or both. Players also spoke favourably of 
coaches who could behave differently depending on the context or situation, and 
this was reflected in a theme of ‘reflexivity–adaptability’. In contrast, players were 
generally unimpressed when members of a coaching team displayed different 
values or affective styles, or even obvious conflict; for example: “I think the 
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players then realised that actually it's not as great as we all thought. You know. 
[Coach 1] is very professional whereas [Coach 2] is a bit off-the-cuff at 
times”[M-20-RUGBY]. Athletes also reported that coaches could support 
relatedness and team-ship amongst their team/squad.” 

○ “Players also discussed the ‘emotional range’ of their coach as facilitating 
successful interactions in a wide variety of situations, and also ‘perceived 
sincerity of emotion’ – denoting that they much preferred coaches' emotions to 
be genuine (e.g., “[Coach] wears his heart on his sleeve, and shows that kind of 
emotion. And to me it's quite inspiring cos he obviously does 
care…”[M-21-RUGBY]).” 

○ “A central finding in the current study was that specific behaviours and themes 
were rarely associated with a specific motivational impact. For example, 
depending on the respondent, the source and the context, criticism was 
associated with reduced motivation, anger/frustration, avoidance-based 
motivation, improvement/mastery, and thwarted autonomy. Praise could lead to 
improved motivation and mood, it could be seen as disingenuous and be ignored, 
or it could even be questioned as mollycoddling or reflecting a lack of coach 
expertise. The relationship between the behaviours of social agents and their 
impact on motivation is likely to be moderated by a number of contextual and 
interpersonal factors (cf. Elliot, 1999).” 

● Praise's magic reinforcement ratio: Five to one gets the job done. (Flora, 2000) 
https://psycnet.apa.org/fulltext/2014-43420-004.pdf 

○ “As reported in their book Meaningful Differences (1995) … . A parental 
“feedback tone” of approximately 5 confirmations, praise and approvals for every 
criticism or disparagement resulted in the greatest improvements.“ 

○ “Those marriages that contain at least five approvals or five positive interactions 
for every criticism or aversive interaction are successful. Marriages with an 
approval to disapproval ratio of less than five to one are very unlikely to last (e.g., 
Gottman, 1994, Monaghan, 1999). “The ratio model... suggests that what is 
important is the relative amount of positive to negative affect.... the ratio of 
positive to negative interaction during conflict resolution was 5 to 1, whereas the 
ratio was 0.8 to 1 in unstable marriages” (Gottman, Coan, Carrere, & Swanson, 
1998, p. 9).” 

○ “In addition to Heart and Risley’s findings and Gottman’s findings, giving five 
approvals for every disapproval has been shown to be a beneficial ratio of 
approvals to disapprovals in changing the behavior of juvenile delinquents 
(Stuart, 1971), and for establishing appropriate behavior generally (Madsen & 
Madsen, 1974). Based on these results, Martin and Pear (1999, p. 43) suggest an 

 

https://psycnet.apa.org/fulltext/2014-43420-004.pdf
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exercise where adult students attempt to reach an approval to disapproval ratio of 
5 to 1 during an hour spent with children.” 

○ Reminiscent of The Eighty Five Percent Rule for optimal learning (Wilson et al., 
2019) https://www.nature.com/articles/s41467-019-12552-4.pdf  

 

Habit and Habit-Formation Mechanisms 

It gets easier to engage in deliberate practice as you build up a habit. Without a habit, you have 
to rely on pure discipline / motivation. The activation energy to get yourself to practice is higher. 
With a habit, it’s easier to stay on the rails. It takes less activation energy to get yourself to 
practice. It’s part of your routine just like brushing your teeth. It’s barely even an active 
decision. You just do it because that’s what you do every day. The habit helps keep you on the 
rails in your talent development journey. 
 
Streaks might be the most powerful habit-formation mechanism. Should cover the psychology of 
streaks, streak mechanics, etc. 
 

● The Science of Habit and Its Implications for Student Learning and Well-being (Fiorella, 
2020) 
https://www.researchgate.net/profile/Logan-Fiorella/publication/339985578_The_Science
_of_Habit_and_Its_Implications_for_Student_Learning_and_Well-being/links/67dbee4c
72f7f37c3e747c4b/The-Science-of-Habit-and-Its-Implications-for-Student-Learning-and
-Well-being.pdf  

○ Just as automaticity overcomes working memory limits, habit overcomes 
self-control limits. 

■ “Habits bypass the need to use one’s limited self-control resources 
(Baumeister et al. 2007; Englert et al. 2017) to consciously appraise the 
situation and deliberate over the response—the situation or context 
automatically activates the response.” 

○ Habits are the strongest predictor of future behavior 
■ “For recurring behaviors, prior habits are a stronger predictor of future 

behavior than goals or intentions (Danner et al. 2008; Verplanken et al. 
1998). Indeed, interventions successful in changing intentions have a 
minimal impact on habitual behaviors (Webb and Sheeran 2006), and 
many health interventions show progress increase steadily during and 
immediately following the intervention, only to fall back near its original 
level within a few months (Wood and Neal 2016). In academic settings, 

 

https://www.nature.com/articles/s41467-019-12552-4.pdf
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https://www.researchgate.net/profile/Logan-Fiorella/publication/339985578_The_Science_of_Habit_and_Its_Implications_for_Student_Learning_and_Well-being/links/67dbee4c72f7f37c3e747c4b/The-Science-of-Habit-and-Its-Implications-for-Student-Learning-and-Well-being.pdf
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students taught effective strategies often struggle to subsequently use 
these strategies spontaneously on their own (Manalo et al. 2018), and 
relatively few studies have tested the long-term effects of self-regulated 
learning interventions (Donker et al. 2014).” 

○ “Habit change depends on (a) disrupting cues associated with less-desirable 
habits (e.g., charging one’s phone outside of the bedroom); (b) structuring one’s 
environment to make it easy to repeat beneficial behaviors in stable contexts (e.g., 
leaving a book on one’s pillow each morning); and (c) linking behaviors to 
intrinsic/uncertain rewards (e.g., a sense of accomplishment or unexpectedly 
receiving praise from one’s friend for going to the gym). Existing interventions 
often target students’ beliefs, intentions, or knowledge of specific strategies 
without explicitly applying habits principles to disrupt existing poor habits and 
create contexts to support recurring desirable behaviors long term (Donker et al. 
2014).” 

● How are habits formed: Modelling habit formation in the real world (Lally et al. 2010) 
○ “The time it took participants to reach 95% of their asymptote of automaticity 

ranged from 18 to 254 days; indicating considerable variation in how long it takes 
people to reach their limit of automaticity and highlighting that it can take a very 
long time. Missing one opportunity to perform the behaviour did not materially 
affect the habit formation process. With repetition of a behaviour in a consistent 
context, automaticity increases following an asymptotic curve which can be 
modelled at the individual level.” 

● Promoting Habit Formation (Phillippa Lally & Benjamin Gardner) 
https://www.cykelvaeksthuset.dk/media/az3linp0/promoting-habit-formation.pdf 

○ Context is really important. Habit is not just frequently performing an activity – 
it’s a strong stimulus-response pattern. So, for instance, learners seeking to 
develop a learning habit should be trying to carve out a specific time of day and a 
specific setting in which to do their learning. Intentions don’t matter nearly as 
much as habits. 

■ “Within psychology, ‘habits’ are defined as behavioural patterns enacted 
automatically in response to a situation in which the behaviour has been 
performed repeatedly and consistently in the past (Verplanken & Aarts, 
1999; Wood & Neal, 2009). Recent studies have shown habit strength to 
increase following repetition of a behaviour in a consistent context (Lally, 
van Jaarsveld, Potts, & Wardle, 2010; Lally, Wardle, & Gardner, 2011). 
When a new action is performed, a mental association between situation 
and action is created, and repetition reinforces and establishes this 
association in memory (Wood & Neal, 2009), making alternative actions 
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less accessible in that situation (e.g., Danner, Aarts, & de Vries, 2007, 
2008). Subsequently, when the associated context cue is encountered, the 
habitual response is automatically activated. While enactment of 
behaviours regulated by motivation typically requires deliberate effort, 
habits are thought to be triggered automatically and so may occur in the 
absence of awareness, conscious control, mental effort and deliberation 
(Bargh, 1994). Actors forming habits tend to find that, with repetition, the 
cognitive effort required to act decreases, and initiation becomes ‘second 
nature’ (Lally et al., 2011). 
 
As a consequence of automatic initiation, habit is hypothesised to have 
two interrelated effects on behaviour: firstly, at least where associated 
with commonly encountered cues, habit prompts frequent performance; 
and secondly, in the presence of these cues, habits may dominate over 
intentions in regulating action (Hall & Fong, 2007; Triandis, 1977). These 
predictions have been empirically supported for health related behaviour. 
… Other reviews have found that behaviours which are performed 
frequently in consistent settings (and so are likely to have become 
habitual; Lally et al., 2010) tend to persist even where motivation shifts 
(Ouellette & Wood, 1998; Webb & Sheeran, 2006). Habits may therefore be 
difficult to inhibit even when they conflict with conscious intentions 
(Hofmann, Friese, & Wiers, 2008; Verplanken & Faes, 1999).” 

■ “Habit formation thus requires progression through four stages. Firstly, a 
decision must be made to take action. … Secondly, the decision to act must 
be translated into action. … Thirdly, the behaviour must be repeated … A 
fourth stage, which is closely related to the third, pertains exclusively to 
habit formation: the new action must be repeated in a fashion conducive 
to the development of automaticity. Recent studies showed that 
participants encouraged to perform a health-promoting behaviour (e.g., 
eating fruit, drinking water, taking physical activity) regularly in 
consistent contexts reported increases in habit-related automaticity (Lally 
et al., 2010; Lally et al., 2011).” 

○ “Traditionally it was assumed that, because habits develop through repetition, 
measures of past behavioural frequency provided an adequate proxy for habit 
(Triandis, 1977). However, in stable decisional contexts, repeated deliberation and 
habit can both prompt frequent action (Gardner, 2009), and so frequency does not 
distinguish between reasoned and habitual action (Ajzen, 2002; Verplanken, 
2006). A measure that combines performance frequency (‘how often do you do 
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behaviour X?’) and context stability (‘when you do behaviour X, how often is cue 
Y present?’) has been proposed (Ouellette & Wood, 1998), applications of which 
have produced patterns which conform to theoretical predictions (e.g., Wood, 
Quinn, & Kashy, 2002; Wood, Tam, & Witt, 2005). The validity of this measure is 
however limited because it assesses only the likelihood that habit has developed, 
but not the strength of the automatic response that characterises habit (Gardner 
et al., in press). More recently, a Self-Report Habit Index (SRHI; Verplanken & 
Orbell, 2003) has been proposed. The SRHI consists of 12 items which assess 
features of habitual action: repetition, automaticity (uncontrollability, lack of 
awareness and cognitive efficiency), and relevance to self-identity. The SRHI has 
been found to adhere to theoretical predictions by correlating strongly with 
behaviour and moderating the intention-behaviour relationship in stable 
decisional contexts (Gardner et al., in press). The SRHI is the most commonly 
used habit measure and can be used to track habit formation (Gardner et al., in 
press; Lally et al., 2010).” 

○ “The concept of behaviour as an automated and reflexive cue-response directed 
by learned associations is rooted in classical behaviourism, and studies of animal 
learning of stimulus-response contingencies (e.g., Hull, 1943; Skinner, 1938; 
Thorndike, 1911; Tolman, 1932). More recent work has sought to reconcile 
behaviourist principles of associative learning with cognitivist portrayals of 
human action as goal-directed and cognitively mediated (e.g., Bargh, 1994). This 
has given rise to models of habit as cue-responses formed via repeated 
performance of actions which are initially typically deliberative, but become 
regulated by an impulsive cognitive system (Strack & Deutsch, 2004; Wood & 
Neal, 2007).” 

○ “Although conceptual discussion in the field often implies a distinction between 
‘habits’ (automatic responses to specific cues) and ‘non-habits’ (non-automatic 
responses), automaticity is more realistically conceived of as a continuum (Moors 
& de Houwer, 2006). In the only study to date to have tracked the formation of 
healthy habits in a naturalistic setting, repeating a behaviour in the presence of 
consistent cues was shown to result in the behaviour becoming more automatic 
(Lally et al., 2010). Within this study, 96 participants performed a self-selected 
health-promoting action once-daily, in response to a stable cue (e.g., ‘going for a 
walk after breakfast’). Habit formation, tracked using an automaticity-specific 
subscale of the SRHI, was found to typically follow an asymptotic curve (see 
Figure 1): initial repetitions caused large increases in automaticity, but with each 
new repetition, automaticity gains reduced until the behaviour reached its limit 
of automaticity (for similar findings from the animal learning literature, see e.g., 
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Adams, 1982 and Dickinson, 1985). These findings suggest that interventions 
should aim to promote sufficient context-dependent repetition of the behaviour 
for the asymptote to be reached, and with as few repetitions as possible. Some 
self-help programmes have claimed that it takes 21 days to form a habit (e.g., 
Maltz, 1969) but it is generally agreed among researchers that habit formation is a 
slower process than this (Redish, Jensen, & Johnson, 2008; Rothman et al., 2009). 
Lally et al. (2010) found the average time for participants to reach the asymptote 
of automaticity was 66 days, with a range of 18-254 days (possible explanations 
for this variability are discussed below).” 

■ “People can fail to act on their intentions when the opportunity to act 
presents itself because they forget to enact their intended action. One 
important approach to help people remember their intentions is the 
formation of a plan. Two prominent theories have highlighted the 
importance of planning in intention translation: the Health Action 
Process Approach (Schwarzer, 1992) and Control Theory (Carver & 
Scheier, 1982). Both suggest that planning increases the chances that the 
intended behaviour will be performed, a hypothesis well-supported by 
empirical evidence (Sniehotta, Schwarzer, Scholz, & Schu¨z, 2005).” 

○ “Text messaging provides a possible medium for reminders of either 
implementation intentions or the goals underlying these. Text messages have 
been found to increase rates of physical activity in comparison with control 
groups who received no reminders (Prestwich, Perugini, & Hurling, 2009, 2010; 
Webb, Joseph, Yardley, & Michie, 2010).” 

● Reflections on Past Behavior: A Self-Report Index of Habit Strength (Verplanken & 
Orbell, 2003) 
https://www.researchgate.net/profile/Sheina-Orbell/publication/227615354_Reflections_o
n_Past_Behavior_A_Self-Report_Index_of_Habit_Strength/links/59e0c0c3aca2724cbfd3b
665/Reflections-on-Past-Behavior-A-Self-Report-Index-of-Habit-Strength.pdf  

○ “(Behavior X) is something … 
○ 1. … I do frequently. 
○ 2. … I do automatically. 
○ 3. … I do without having to consciously remember. 
○ 4. … that makes me feel weird if I do not do it. 
○ 5. … I do without thinking. 
○ 6. … would require effort not to do it. 
○ 7. … that belongs to my (daily, weekly, monthly) routine. 
○ 8. … I start doing before I realize I’m doing it. 
○ 9. … I would find hard not to do. 
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○ 10. … I have no need to think about doing. 
○ 11. … that’s typically ‘me’. 
○ 12. … I have been doing for a long time.” 

● What can machine learning teach us about habit formation? Evidence from exercise and 
hygiene 
https://www.pnas.org/doi/pdf/10.1073/pnas.2216115120 

○ “Contrary to the popular belief in a “magic number” of days to develop a habit, 
we find that it typically takes months to form the habit of going to the gym but 
weeks to develop the habit of handwashing in the hospital.” 

● https://drive.google.com/file/d/19acEuDPE9kugPXCwSYwZaiZTSjN-eFLk/view?usp=driv
e_link 

● https://drive.google.com/file/d/1VpCeXatqMlblu5jHjmZq8J3Yn4ujyf3e/view?usp=drive_li
nk 

 
Gym member retention strategies – academic study of habit frames the problem to solve and 
theory behind it but at the end of the day you have to really get your hands dirty and go 
street-fighting against the problem of getting people to reliably show up, which is what gyms 
have to do 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=exercise+habit+formation&
btnG=  

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=gym+member+churn+predi
ction&btnG= 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=gym+member+retention&b
tnG= 

●  
 
Streaks: 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streaks+habit&btnG= 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streaks+habit+formation&o

q=streaks+habit 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=learning+streaks&btnG= 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=learning+app+streaks&btn

G= 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=broken+streaks+motivation

&btnG= 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+habit+freeze&btnG= 
● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+habit+threshold&bt

nG= 
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● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streaks+in+classroom&btn
G= 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+habit+classroom&bt
nG= 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+gamifica
tion&btnG= 

● https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+habit&b
tnG=  

 

Coaching Science 

It's really interesting how many parallels there are to coaching. I've got it on my reading list to 
check out some literature in coaching science. I anticipate it’s also going to be a gold mine for 
motivational techniques, way moreso than the standard "science of learning" literature, since 
coaching literature seems to focus more on high-performance settings whereas the science of 
learning literature tends to focus on fairly low-performance settings. (Which is unsurprising 
since there are way better incentive structures and accountability mechanisms to support high 
performance in the field of athletics, as compared to the field of education.) 
 

Direct Instruction 

Elaborate more on the decades of research behind direct instruction. Also talk about the need 
for specific direct instruction, not "general" domain-independent problem solving: 
 

● Project Follow Through 
● Zig Engelmann 

○ https://education-consumers.org/pdf/CT_111811.pdf (CLEAR TEACHING: With 
Direct Instruction, Siegfried Engelmann Discovered a Better Way of Teaching. By 
Shepard Barbash) 

○ https://www.zigsite.com/  
● Teaching General Problem Solving Skills Is Not a Substitute for, or a Viable Addition to, 

Teaching Mathematics https://www.ams.org/notices/201010/rtx101001303p.pdf  
● Mathematical Ability Relies on Knowledge, Too 

https://files.eric.ed.gov/fulltext/EJ909939.pdf  
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https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+gamification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+gamification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+habit&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=streak+mechanics+habit&btnG=
https://education-consumers.org/pdf/CT_111811.pdf
https://www.zigsite.com/
https://www.ams.org/notices/201010/rtx101001303p.pdf
https://files.eric.ed.gov/fulltext/EJ909939.pdf
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● Consequences of History-Cued and Means-End Strategies in Problem Solving 
https://www.jstor.org/stable/1422136  

● Response to De Jong et al.’s (2023) paper “Let's talk evidence – The case for combining 
inquiry-based and direct instruction” 
https://www.sciencedirect.com/science/article/pii/S1747938X23000775  

● Should also mention that in recent years, unguided instruction is still around and is still 
leading to subpar learning outcomes: The Efficacy of Inquiry-Based Instruction in 
Science: a Comparative Analysis of Six Countries Using PISA 2015 
https://link.springer.com/article/10.1007/s11165-019-09901-0  

 

CS Education 

We anticipate that our standard approach to teaching math maps over pretty well to coding, but 
we still need to make a strong case for it, especially since so many people in coding eschew the 
idea of building automaticity through repetition of fundamental skills and think students should 
spend 100% of their time working on projects. 
 

● Active Learning 
○ Effects of Active Learning Environments and Instructional Methods in Computer 

Science Education (ACM) 
○ Refactoring a CS0 course for engineering students to use active learning 

● Mastery Learning  
○ https://dl.acm.org/doi/epdf/10.1145/3649165.3690105 “Teaching CS1 With a 

Mastery Learning Framework” 
● Spaced Repetition 

○ “Does a Distributed Practice Strategy for Multiple Choice Questions Help 
Novices Learn Programming?” 

○ Increase Performance in CS2 via a Spiral Design of CS1 
https://dl.acm.org/doi/abs/10.1145/3478431.3499339  

● The Testing Effect / Retrieval Practice 
○ Retrieval-based Teaching Incentivizes Spacing and Improves Grades in 

Computer Science Education 
○ Retrieval Practices Enhance Computational and Scientific Thinking Skills 

https://dl.acm.org/doi/abs/10.1145/3478431.3499408  
● Gamification 

 

https://www.jstor.org/stable/1422136
https://www.sciencedirect.com/science/article/pii/S1747938X23000775
https://link.springer.com/article/10.1007/s11165-019-09901-0
https://dl.acm.org/doi/abs/10.1145/3478431.3499339
https://dl.acm.org/doi/abs/10.1145/3478431.3499408
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○ A Study on the Active Methodologies Applied to Teaching and Learning Process 
in the Computing Area 
https://ieeexplore.ieee.org/document/9252881  

 

Knowledge Spaces 

Explain similarities & differences between ALEKS knowledge space theory and MA’s approach. 
 
Knowledge spaces are another way to describe mastery learning on a knowledge graph data 
structure. The researchers behind ALEKS and knowledge space theory did a great job 
formalizing, setting up definitions, proving rigorous theorems about mastery learning and 
diagnostic exams in a knowledge graph, but in order for our system to do what we want it to do, 
we had to introduce a bunch of other cognitive learning strategies and capabilities resulting in 
needing to wrangle a lot more complexity. 
 
In particular, the combinatorial perspective taken in the knowledge space papers & textbooks 
becomes intractable, which we’ve worked around by taking the approach of having quantities 
physically flowing through the graph – “constructing” the particular knowledge state in 
question as opposed to filtering it out of an exhaustive list of possible knowledge states. You 
kind of have to take the constructive, flowing-quantities approach when you’re incorporating 
spaced repetition into the system. 
 
There are also problems of scale. Several years ago I reimplemented the ALEKS diagnostic 
assessment algorithm and found that it became prohibitively computational expensive when the 
knowledge graph contained more than a hundred or so nodes – whereas MA’s diagnostic 
algorithm can and needs to handle many hundreds, even sometimes over a thousand nodes since 
our content is so much more scaffolded, we’re assessing prerequisite knowledge, and we’re 
going deep into high-level math that has tons of prerequisites. 
 
Here are some of my old notes from that reimplementation project: 

● The adaptive assessment method in the ALEKS paper seems intractable. 
● Running it on a straight graph line, the number of knowledge states is roughly equal to 

the number of nodes. 
● Running it on a binary tree graph, we find that when we double the number of splits, the 

number of knowledge states (KS) gets squared: 
○ ~2 splits --> ~4 KS 
○ ~4 splits --> ~16 KS 

 

https://ieeexplore.ieee.org/document/9252881
https://en.wikipedia.org/wiki/Knowledge_space
https://www.aleks.com/about_aleks/Science_Behind_ALEKS.pdf
https://www.aleks.com/about_aleks/Science_Behind_ALEKS.pdf
https://www.aleks.com/about_aleks/Science_Behind_ALEKS.pdf
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○ ~8 splits --> ~256 KS 
○ ~16 splits --> ~65,536 KS 
○ ~32 splits --> ~4,294,967,296 KS 
○ ~64 splits --> ~1.8 x 10^19 KS 
○ ~128 splits --> ~3.2 x 10^38 KS 

● For recombining binary tree, it's a comparable (but less precise) trend (the numbers fit 
into the range suggested by the non-recombining binary tree). 

● This places constraints on the graph -- beyond about 20 splits, it becomes intractable. 
This matches up with what's in their picture: about 20 splits (about 100 nodes) for 
Beginning Algebra, corresponding to 60,000,KS 

● We have about 150 splits (about 300 nodes) in our MVC/LA course, so this isn't going to 
work for us. 

 

Spaced Repetition Visualization 

I created the following visualization of spaced repetition. It’s already worked into the main body 
of the document. 
 

 
 
However, it needs some additional clarification. In the spaced repetition graphic, the first blue 
rectangle corresponds to initial learning of the first topic within the blue unit, learning to the 
level of mastery. 
 
The next blue rectangle with a slower forgetting curve would correspond to the first spaced 
review of that topic. And so on for future spaced reviews. 
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Same for the red rectangles: the first one corresponds to initial learning of the first topic within 
the red unit learning to the level of mastery. The next red rectangle with a slower forgetting 
curve would correspond to the second spaced review of that topic. And so on. 
 
This same process would be happening for the second topic in each unit, the third topic, and so 
on, all interleaved together. For simplicity, this is not shown in the graphic. 
 
Just considering Blue and Red units, it would look something like this: 
 

 

Chunking 

I haven’t yet done any explicit literature searches on chunking. I should make sure I’m 
referencing “chunking” vocabulary whenever I’m essentially describing it in the body of this 
book, and check if there’s any other relevant info surrounding chunking that I need to address in 
this book. 
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Biological Basis of Neuroplasticity 

Every concept is ultimately represented as a pattern of neural activity. Your brain can only 
devote so much effort to maintaining neural activity, but as you practice activating those neural 
patterns, biological changes occur that make the patterns easier to activate with less effort. As I 
recall, these biological changes are thought to primarily take place within synapses 
(https://en.wikipedia.org/wiki/Synaptic_plasticity), though there is also research into changes 
that occur elsewhere, e.g., in dendrites. Cover the neural mechanisms of retrieval-induced 
plasticity and how synaptic tagging/consolidation processes impact skill automation. 
 

Automaticity and Intuition 

Need to lay out an explicit connection between repetition, automaticity, intuition, and creativity. 
I have a section on the relationship between automaticity and creativity, and the relationship 
between automaticity and intuition should fit right in around there. 
 
Also need to really emphasize how important repetition is in mathematics to get to the point 
where you can even attempt to think creatively. 
 
Doing the grunt work yourself really drills into you what those operations are. Like, you don't 
just think about the definition from afar, you really "feel" what it is, close up and in your bones, 
almost in a physical sense. 
 
Talk about the importance of developing computational (procedural) & conceptual knowledge in 
tandem. 
 

More Case Studies 

Look into other cases where a university changed their instructional methods and got some kind 
of feedback on the outcome. 
 
For instance: https://people.math.harvard.edu/~knill/pedagogy/harvardcalculus/  
 

 

https://en.wikipedia.org/wiki/Synaptic_plasticity
https://people.math.harvard.edu/~knill/pedagogy/harvardcalculus/
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Spaced Repetition in Math vs Language 

Mark (on Discord) mentioned that spaced repetition systems (SRS) have been shown to have very 
positive effects when used for discrete unrelated pieces of information (e.g. state capitals or the 
pronunciation of letters in a syllabary) but for language learners a focus on SRS decks of words 
typically underperforms extensive reading/conversation. It makes perfect sense that our 
fractional implicit repetition (FIRe) solution works well for math, but it is covered later on and it 
is only tangentially explained how FIRe solves those shortcomings affecting SRS decks with 
language learning. We need to address this more directly and early on in the spaced repetition 
section. 
 

Disambiguating Interleaving, Non-Interference, and Spaced 
Repetition 

May also want to have a section on Interleaving, Non-Interference, and Spaced Repetition that 
clarifies the difference between all these things and how we balance all of them. Related 
resources: 

● https://blog.innerdrive.co.uk/interleaving-dos-and-donts 
● https://blog.innerdrive.co.uk/are-spacing-and-interleaving-the-same-thing  

 

Visualization of Macro-Interleaving 

Maybe show some diagrams of interleaved paths through the knowledge graph vs 
non-interleaved paths. 
 

Elaborative Interrogation 

Should also talk about how we scaffold elaborative interrogation once we have more of that in 
the system (and should also have a chapter on elaborative interrogation as its own learning 
strategy). Some resources: 

● https://www.learningscientists.org/blog/2016/7/7-1 
● https://blog.innerdrive.co.uk/retrieval-practice-generative-learning  

 

 

https://blog.innerdrive.co.uk/interleaving-dos-and-donts
https://blog.innerdrive.co.uk/are-spacing-and-interleaving-the-same-thing
https://www.learningscientists.org/blog/2016/7/7-1
https://blog.innerdrive.co.uk/retrieval-practice-generative-learning
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Optimal Manual Teaching 

Another chapter about how teachers can leverage these cognitive learning strategies as much as 
possible if they do not have access to technology. (How would you get the most bang for your 
buck teaching manually, without totally blowing up your workload to an inhuman degree? 
Obviously not going to capitalize on the full effects of what our tech can do, but you can still do 
a lot better than what the status quo is.) 
 

Elaborative Interrogation 

Why/how questions like this: "Why does the parabola y-k=a(x-h)^2 have its vertex at (h,k)?" 
"Starting with the formula for slope, how do you get to the point-slope formula for a line?” 
 
We don’t do much of that at the moment, but now that we have select questions, we can 
probably use those for elaborative interrogation. 
 

Miscellaneous Resources to Check Out 

● Differentiation in Cognitive Abilities Beyond g: The Emergence of Domain-Specific 
Variance in Childhood https://journals.sagepub.com/doi/full/10.1177/09567976251321382  

● Go through my own recent blog posts and check for anything to be worked in 
● Carpenter, S. K., Witherby, A. E., & Tauber, S. K. (2020). On students’ (mis)judgments of 

learning and teaching effectiveness. Journal of Applied Research in Memory and 
Cognition, 9(2), 137–151. https://doi.org/10.1016/j.jarmac.2019.12.009  

● Book: Uncommon Sense Learning 
● https://www.thescienceofmath.com/timed-tests-cause-math-anxiety  
● https://x.com/seventhmeal/status/1838296108369612918 

https://dominiccummings.com/the-odyssean-project-2/   
● https://x.com/justinskycak/status/1841508577443496260 
● https://gwern.net/doc/psychology/chess/2014-hambrick.pdf 
● https://notes.andymatuschak.org/zBmSSpM1WfFDehxNCBcqSZp?stackedNotes=zMX9L

fuz8sGfDUivWZcyWT  
● Tons of great references here:  

https://scienceoflearning.substack.com/p/should-we-teach-children-to-memorize?triedR
edirect=true  

 

https://journals.sagepub.com/doi/full/10.1177/09567976251321382
https://doi.org/10.1016/j.jarmac.2019.12.009
https://www.thescienceofmath.com/timed-tests-cause-math-anxiety
https://x.com/seventhmeal/status/1838296108369612918
https://dominiccummings.com/the-odyssean-project-2/
https://x.com/justinskycak/status/1841508577443496260
https://gwern.net/doc/psychology/chess/2014-hambrick.pdf
https://notes.andymatuschak.org/zBmSSpM1WfFDehxNCBcqSZp?stackedNotes=zMX9Lfuz8sGfDUivWZcyWT
https://notes.andymatuschak.org/zBmSSpM1WfFDehxNCBcqSZp?stackedNotes=zMX9Lfuz8sGfDUivWZcyWT
https://scienceoflearning.substack.com/p/should-we-teach-children-to-memorize?triedRedirect=true
https://scienceoflearning.substack.com/p/should-we-teach-children-to-memorize?triedRedirect=true
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● https://scottbarrykaufman.com/wp-content/uploads/2011/06/Protzko-Kaufman-2010.pdf  
● https://www.colorado.edu/ics/sites/default/files/attached-files/91-06.pdf  
● https://www.researchgate.net/publication/51129143_Spaced_Retrieval_Absolute_Spacing

_Enhances_Learning_Regardless_of_Relative_Spacing  
● https://arxiv.org/abs/2006.01581  
● https://gwern.net/doc/psychology/chess/2014-hambrick.pdf Deliberate practice: Is that all 

it takes to become an expert? 
● https://www.rocketmath.com/about-rocket-math/research_studies-and-results/  
● https://www.rocketmath.com/wp-content/uploads/2016/03/Math-Facts-research.1.pdf  
● https://www.rocketmath.com/wp-content/uploads/2016/03/Third-stage-of-Learning-Math

-Facts.pdf  
● https://www.rocketmath.com/wp-content/uploads/2016/03/How-fast-is-fast-enough-to-be

-automatic.pdf  
● Individual Differences in Arithmetic: Implications for Psychology, Neuroscience and 

Education by Ann Dowker 
● Working Memory and Learning: A Practical Guide for Teachers by Susan Gathercole and 

Tracy Packiam Alloway 
● Children's Mathematical Development: Research and Practical Applications by David C 

Geary 
● Visible Learning: Feedback by John Hattie & Shirley Clarke 
● Visible Learning: The Sequel: A Synthesis of Over 2,100 Meta-Analyses Relating to 

Achievement by John Hattie 
● Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts, 

Volume 3 edited by David C. Geary, Daniel B. Berch, Robert Ochsendorf, & Kathleen 
Mann Koepke 

● Cognitive Foundations for Improving Mathematical Learning, Volume 5 edited by David 
C. Geary, Daniel B. Berch, & Kathleen Mann Koepke 

● Summing up hours of any type of practice versus identifying optimal practice activities: 
Commentary on Macnamara, Moreau, & Hambrick (2016). (link) 

● Deliberate practice and proposed limits on the effects of practice on the acquisition of 
expert performance: Why the original definition matters and recommendations for 
future research. (link) 

● Given that the detailed original criteria for deliberate practice have not changed, could 
the understanding of this complex concept have improved over time? A response to 
Macnamara and Hambrick (2020). (link) 

● Self-Construction, Self-Protection, and Self-Enhancement: A Homeostatic Model of 
Identity Protection. (link) 

● Self-enhancement and self-protection: What they are and what they do (link) 

 

https://scottbarrykaufman.com/wp-content/uploads/2011/06/Protzko-Kaufman-2010.pdf
https://www.colorado.edu/ics/sites/default/files/attached-files/91-06.pdf
https://www.researchgate.net/publication/51129143_Spaced_Retrieval_Absolute_Spacing_Enhances_Learning_Regardless_of_Relative_Spacing
https://www.researchgate.net/publication/51129143_Spaced_Retrieval_Absolute_Spacing_Enhances_Learning_Regardless_of_Relative_Spacing
https://arxiv.org/abs/2006.01581
https://gwern.net/doc/psychology/chess/2014-hambrick.pdf
https://www.rocketmath.com/about-rocket-math/research_studies-and-results/
https://www.rocketmath.com/wp-content/uploads/2016/03/Math-Facts-research.1.pdf
https://www.rocketmath.com/wp-content/uploads/2016/03/Third-stage-of-Learning-Math-Facts.pdf
https://www.rocketmath.com/wp-content/uploads/2016/03/Third-stage-of-Learning-Math-Facts.pdf
https://www.rocketmath.com/wp-content/uploads/2016/03/How-fast-is-fast-enough-to-be-automatic.pdf
https://www.rocketmath.com/wp-content/uploads/2016/03/How-fast-is-fast-enough-to-be-automatic.pdf
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● Illusions of comprehension, competence, and remembering. (link) 
● Assessing our own competence: Heuristics and illusions. (link) 
● Can research inform classroom practice?: The particular case of buggy algorithms and 

subtraction errors (link) 
● https://www.johndcook.com/blog/2013/02/04/four-hours-of-concentration/  

 
Books to check out 

● Teach Like a Champion 
● A Coach's Guide to Teaching 
● Teach to Learn (Catherine Scott) 
● Accelerated Expertise - Robert R. Hoffman 
● Ultralearning – Scott Young 
● The Science of Rapid Skill Acquisition – Peter Hollins 
● Hidden Potential by Adam Grant 

 

https://www.johndcook.com/blog/2013/02/04/four-hours-of-concentration/
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	VI. FREQUENTLY ASKED QUESTIONS 
	FAQ: The Practice Experience 
	Active Learning, Scaffolding, and Automaticity 
	> How does a lesson work? 
	> Solving problems breaks my flow of learning. Is it really necessary? 
	> Don’t students need to struggle for long periods of time, without too much guidance, to train their general problem-solving ability? 
	> Is automaticity really required to move up to the next level? Doesn't it just come with time? 
	> If worked examples are necessary to maximize learning efficiency, then why am I able to solve problems just fine without them? 
	> Why aren’t Math Academy’s university courses structured like typical higher math textbooks with minimal scaffolding? 
	> I expected the quiz to cover topics that I learned since the previous quiz, but it asked me about lots of topics that I learned even before that. I would have done better on the quiz if I knew what was going to be on it or if it just limited the questions to what I’ve learned recently. Is this a bug? It feels weird and unfair. 

	Spaced Repetition and Interleaving 
	> Why can’t I just learn one unit at a time? Interleaving feels disorienting. 
	> Is the spaced repetition happening? I started recently and all I have is lessons. Where are the reviews? 
	> I’ve been having more review tasks lately than I’m used to. What’s going on? 
	> Math Academy reviews feel challenging. Aren’t reviews supposed to be easy if I learned the material properly? 
	> Does Math Academy’s spaced repetition system provide enough practice? I learned some new information on Math Academy but I am not confident in my ability to retrieve it from memory unassisted. 
	> I know reviews are happening, but sometimes I’m waiting weeks for the first review and months for the second, even when I’m sure those topics aren’t getting any implicit review credit from other tasks I’m doing. I’m not struggling to solve the problems, though sometimes I need to look back at the reference topic for a formula that I’ve forgotten. But shouldn’t the reviews be coming sooner? 
	> After I complete a course and move to the next course, won’t I forget what I’ve learned in the first course unless I keep on reviewing it? 
	> It feels like most of my reviews are on topics I did recently. Shouldn’t most of my reviews be on things that I learned a long time ago? 
	> I know the system intends to review material from older courses, but there are some older topics where I’m not getting any more reviews. Why not? 
	> Sometimes I have some reviews in my task queue, but then I do a lesson or two, and the reviews disappear from the queue. Don’t I need to do them? 
	> Given that lessons can “knock out” reviews, should students always give preference to lessons over reviews if both activity types are available? 
	> Why are there multiple questions in reviews? Why not just one question? 
	> I got three questions correct and only two questions incorrect. Shouldn’t I have passed the review? 
	> Math Academy maximizes learning efficiency if a student is willing to engage in forms of training that are highly effortful. What about for students who don’t have as much energy and motivation? 

	Remediation 
	> If a student fails a task, why does the system ask them to re-attempt the task later? Why doesn’t it just peel back their knowledge profile immediately? 
	> If a student fails a task, why does the system have them try the same task again after a delay? Shouldn’t it try to explain things differently, immediately? 
	> If a student passes a lesson but doesn’t get full XP, is extra remediation needed? 
	> I passed a lesson, but I don’t feel like I have the deepest level of understanding. Is this normal?  
	> Does Math Academy work for every student? What about students who are below grade level? 


	FAQ: Student Behavior 
	Usage of Paper and Pencil 
	> Should Math Academy students take notes during lessons? 
	> When should a student solve a problem in their head vs writing it out on paper? 

	Reliance on Reference Material 
	> During a quiz, if I can’t remember a “fact” (e.g., a definition or theorem) but I remember the process for using it to solve problems, should I look it up? 
	> What should a student do if they are unsure how to solve a problem despite trying their best to refer back to the supporting instructional content? 


	FAQ: XP and Practice Schedules 
	XP System 
	> If I pass a lesson but don’t get full XP, does that mean I only understood part of the material? If so, how does Math Academy fill in the rest of my understanding? 
	> I can do way more than 1 XP per minute! 
	> As I progress through Math Academy’s curriculum, it is gradually taking me longer to earn XP. Why does this happen, and can anything be done about it? 
	> I don’t think XP is a perfect measurement of effort. 
	> I feel like a particular answer choice letter has been coming up more frequently than the others! What’s going on? 

	Practice Schedules 
	> If I have a limited amount of time to devote to Math Academy each week, should I allocate that time into longer, less-frequent sessions or shorter, more-frequent sessions? 
	> If a student completes a Math Academy course very rapidly, working several hours per day for several weeks, will they still learn the material properly? 
	> What’s a reasonable XP pace for a typical Math Academy student? 
	> Can Math Academy be used for very casual learning, an hour or two per month? 
	> Why did my estimated completion date change? 


	FAQ: Diagnostics and Curriculum 
	Diagnostics 
	> There were way more questions than I expected on the diagnostic! 
	> Can’t you improve the diagnostic algorithm to cut down on the number of questions? 
	> I am being served lower-grade lessons that feel irrelevant to my course, and it’s taking too long to make progress in my course. What can I do to fix this? 
	> I missed some questions on the diagnostic, but I know those topics, I swear! Can’t you just give me credit for them? 
	> There is a topic that I know how to do, but the diagnostic didn’t ask me about it and I didn’t get credit for it. 
	> After the diagnostic, what if I am asked to complete a lesson for which I have not learned a prerequisite? 
	> After the diagnostic, why did failing a single task bring my progress down multiple percent? 

	Curriculum 
	> With short lessons, is the curriculum really comprehensive? 
	> Will taking a Math Academy course for a standardized exam (e.g., AP Calculus BC) fully prepare a student for the actual exam? 
	> Does Math Academy explain the “why” behind procedures? Are all the concepts taught first? 
	> Do your university courses have exercises with proofs or is it just computation? 
	> It's hard to believe that 5 hours a week for a year starting from basic multiplication tables will have me completely prepared for university courses. I'd prefer an explanation for people who are not familiar with the XP system. 
	> Why is “holistic mode” (in which students also fill in any missing knowledge in lower-grade topics that are not prerequisites of their enrolled course) disabled for university courses? 
	> When you introduce additional scaffolding to increase pass rates of lessons, how do you know the increase in pass rate actually represents learning? Couldn’t the pass rates increase simply due to greater priming? 


	FAQ: Miscellaneous 
	Math Academy Itself 
	> Why use Math Academy instead of self-studying a textbook or free online resource? 
	> Why isn’t Math Academy free? 
	> Where do the exercises and content on Math Academy come from? Are they all made in-house or pulled from other materials? 

	Features that Do Not Exist for a Good Reason 
	> I don’t really want to do any of the learning tasks that Math Academy presents to me. There are other topics I would rather learn. Why can’t I choose my own tasks? 
	> Why can’t I edit my knowledge profile? 
	> Why don’t you provide information about what topics are going to be on a quiz? Surely students would do better if they knew what was going to be on it. 
	> The problems feel tedious and I keep making silly mistakes. Maybe you could have a setting that differentiates between students that need practice to take tests and those who just want to learn concepts? 
	> Why isn’t there an “I don’t know” button on questions during tasks other than the diagnostic? 
	> Why doesn’t Math Academy use large language models (LLMs) to engage students in conversational dialogue? 
	> If I get stuck, is there somewhere that I can ask for help or a further explanation? 
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