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ABSTRACT.

Topological Data Analysis, abbreviated TDA, is a suite of data analytic
methods inspired by the mathematical field of algebraic topology. TDA is
attractive yet elusive for most data scientists, since its potential as a data
exploration tool is often communicated through esoteric terminology unfamiliar
to non-mathematicians. The purpose of this guide is to bridge the communication
gap between academia and industry, so that non-mathematician data scientists
may add current TDA methods to their analytic toolkits and anticipate new
developments in the field of TDA.

The guide begins with an overview of Mapper, a TDA algorithm which has
recently transitioned from academia to industry with commercial success. We
explain the Mapper algorithm, demo open-source software, and present a
handful of its commercial use-cases (some of which are original). Then, we switch
to persistent homology, a TDA method which has not yet broken through to
industry but is supported by a growing body of academic work. We explain the
intuition behind homotopy, approximation, homology, and persistence, and
demo open-source persistent homology software. It is hoped that the data
scientist reading this guide will be inspired to give Mapper a try in their future
analytic work, and be on the lookout for future developments in persistent

homology that push it from academia to industry.
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1. MAPPER.

Section 1 elaborates on three main points surrounding Mapper:

1. Algorithm. The Mapper algorithm maps high-dimensional data into smaller
networks which retain the main topological features of the data and are
easy to visualize.

2. Software. To run the Mapper algorithm on small to medium-size datasets,
one can use the open source R package TDAmapper.

3. Use-cases. On a larger scale, Mapper has been used commercially by the
company Ayasdi to forecast returns, detect fraud, aid in oil and gas

exploration, plan ad campaigns, and discover biomarkers.



1.1. ALGORITHM.

The Mapper algorithm (Singh et al. 2007) represents a data space’s topology
by converting it into a network. For example, suppose you have four classes of
data: blue, green, yellow, and red. These classes might represent e.g. patient
health or customer churn risk on a spectrum from favorable to unfavorable. If
you could see in, say, 42 dimensions, you might notice that members of the same
class tend to group together into clusters because they tend to have features in
common. Maybe many of the sick patients have temperatures above 100 degrees
Fahrenheit while most of the healthy ones have temperatures around 98, and
maybe many of the high-risk churners have not signed up for the rewards
program while most of the active customers have. You might also notice that,
even though the data is 42-dimensional, there are a few distinct “paths” between
favorable and unfavorable clusters, which may correspond to e.g. different
treatment paths or customer journeys.

Unfortunately, we cannot see our data in a 42-dimensional space like we
see objects in 3-dimensional space. However, using dimensionality-reduction
algorithms, we can collapse the least important dimensions and focus on the ones
that provide us with useful information, just like we can hold a paper flat in front
of us to make it easier to read (here, we are reducing the dimensionality from 3 to
2). Mapper is one such dimensionality-algorithm, and it stands out from the rest

because it preserves the topological features, such as paths, in our data.



Mapper works by focusing our data through a lens, a particular key feature
such as health or churn risk, and drawing a network, a 2-dimensional doodle that
represents the overall shape of our data when seen through the lens. As an
example, we’ll walk through how the Mapper algorithm can algorithmically

convert the dataset on the left to the network on the right:

First, Mapper focuses the data through the lens, a function which assigns a
numerical value to each data point. The number can be a single feature of the
data, like a patient’s body temperature, or a combination of data features, like the
total sum of phone calls, emails, and purchases made by a customer in the past
month. To make this example easy to visualize, we’ll choose a simple lens:

vertical height.



Next, Mapper uses a clustering algorithm to create a collection of
overlapping clusters for the data, based on how far data points appear when seen
through the lens. In other words, Mapper creates a “cover” for the mapped data.
For example, a cover for a body temperature lens might consist of the intervals
90-96, 95-99, 98-101, 100-103, and 104-110 degrees Fahrenheit. Likewise, a cover
for customer purchase total might consist of the intervals 0-10, 5-30, 20-50, 40-100,

75-150, 100-300, and 250-1000 dollars.
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Then, Mapper runs another clustering algorithm within each original
cluster, to separate each cluster into sub-clusters based on how far the data
points actually are in the full data space (rather than just as seen through the
lens). These sub-clusters represent different circumstances under which data
points can be assigned the same value in the lens function. For example, two
patients can both have the same high temperature of 101 degrees Fahrenheit, but
one patient may be sick with a bacterial infection while the other may have the
flu. On the basis of temperature alone, the two patients seem the same, but if
variables from blood analysis are taken into account, the difference is clear.
Likewise, two customers may have high churn risk due to a low number of
purchases in the past year, but upon incorporating each customer’s account
balance and number of emails to the company, we might see that one customer is

unhappy with the company whereas the other customer simply cannot afford



purchases anymore.

Finally, Mapper constructs a network by representing sub-clusters as
nodes, and connecting nodes whose sub-clusters overlap (i.e. share data points).
The nodes represent different segments of the population of data, segmented
primarily by the lens metric and secondarily by all other factors. The connections
or edges between nodes describe how the segments blend together, and can
suggest potential paths for how data points may move through the data space.
Knowledge of paths in the data space can be useful for businesses who want to
learn how to engage e.g. their medium-activity customers and push them into the
high-activity clusters over the next few months. Likewise, if a patient contracts a
disease through a specific path, e.g. obesity via overeating, it may be more

effective to treat the disease by trying to push them backwards along the same



path they came. For example, if a patient becomes obese due to some medication,
it may be more effective to first try to counteract any other biomarkers that the
medication pushes out of range, than to start by telling the patient to eat less and

exercise more.

The resulting network also makes it easier to communicate the data
visually, and gain exploratory insight from non-data-savvy domain experts who

would not be able to interpret the data in numeric form.
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1.2. SOFTWARE.

The Mapper algorithm has an open-source implementation in the
TDAmapper package for R (Pearson et al. 2016). We’ll begin its demonstration by

creating a ND logo dataset and passing it into the Mapper function.

n x <- c(rep(-.5,101),0.01*(-50:50) ,rep(.5,101))

ny<-c¢c(0.02*(-50:50),-0.02*(-50:50),0.02*(-50:50))

d x <- c(rep(-0.9,101),0.02*(-50:25),0.02*(-50:25),
0.44sgrt (0.5%2-(0.01*(-50:50))"2))

dy <= c(0.01*(-50:50),rep(0.5,76),rep(-0.5,76),
0.01*(-50:50))

nd <- data.frame(x=c(n x,d x),y=c(n_y,d y))

plot (nd)

1"



TDAmapper’s mapper function uses hierarchical clustering for the cover,
which means that it accepts distances rather than points as input. This makes the
mapper more flexible, since it is sometimes possible to compute distances or
similarity scores even when the actual points are unknown - and if we do know
the points, we can always compute distances between them. In this example,
though, the practical implication of using distances is that we must convert the
ND logo into a distance matrix before we pass it into the mapper.

We’ll choose the rest of the parameters so that our lens projects points onto
their x-coordinates, our primary clustering creates an image cover consisting of
10 intervals which overlap by 50%, and our secondary clustering separates each

interval into up to 10 sub-clusters.

m <- mapperlD (
distance matrix = dist(nd),
filter values = c(n _x,d Xx),

num intervals = 10,

percent overlap = 50,

num bins when clustering = 10)

Then, we’ll plot the topological network using R’s igraph package.
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set.seed(0)
g <- graph.adjacency(mlx$adjacency, mode="undirected")

plot (g, layout = layout.auto(g))

Not only does TDAmapper enable us to create the Mapper network, but it
also tells us how the network was constructed at each step in the Mapper
algorithm. For starters, we can find out which of the 10 image clusters a given

node (sub-cluster) came from by looking at its level.

> m$level of vertex

1234455606 7787910
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This tells us that node 1 is a sub-cluster from the first (least) lens interval,
and moreover, it is actually the full lens interval (i.e. the first lens interval did not
split into separate sub-clusters). Similarly, node 2 is the full second lens interval,
and node 3 is the full third lens interval. Nodes 4 and 5 are sub-clusters from the
forth lens interval, nodes 6 and 7 are sub-clusters from the fifth lens interval, and

so on, up to node 14, which is a sub-cluster from the 10th lens interval.
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We can display this same information, indexed by lens interval level rather

than node number, as follows:

> m$vertices in level

14



[[7]1] 10 11
[r81] 12
[([91] 13

[[10]] 14

We can also recover the indices of points in the original dataset, which

comprise each node or sub-cluster.

> m$points in vertex

[[1]] 304 305 ... 498

[([2]] 1 2 ... 103 414 415 ... 430 490 491 ... 506
[[31]1 1 2 ... 121 423 424 ... 439 499 500 ... 515
[[4]] 104 105 ... 138 431 432 ... 448

[[5]] 507 508 ... 524

[[6]] 122 123 ... 155 440 441 ... 456

[[7]] 516 517 ... 532

[[8]] 139 140 ... 172 525 526 ... 541

[[9]] 449 450 ... 465
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[[14]]

156 157 ... 190

457 458 ... 474

173 174 ... 303
656 657

191 192 ... 303
646 ... 657

560 561 ... 654

533 534

466 467

475 476

480 542 543

480 551 552

559 665

569 645

With this information, we can color nodes according to their lens cluster

level, and resize nodes according to how many data points they contain.

my resolution = 100
my palette = colorRampPalette(c(‘red’,’green’))
my max = max(m$Slevel of vertex, na.rm=TRUE)

my vector = m$level of vertex / my max

my colors = my palette(my resolution) [as.numeric (cut (

g <- graph.adjacency (m$Sadjacency,

vertex size <- unlist (lapply (mlxSpoints in vertex,

plot (g, layout =

My vector, breaks=my resolution))]

layout.auto(glx),

16

function (x)

mode="undirected")

length(x)))



vertex.size = 30*log(vertex size)/
max (log (vertex size)),

vertex.color = my colors)

We can also look at what the nodes represent in the original plot:

par (mfrow=c(4,4))
for(i in l:length (mSpoints in vertex)) {
plot (nd[m$points in vertex[[i]],],
xlim=c(-1,1),ylim=c(-1,1),
xaxt="'n',yaxt="'n"',

main=paste ('vertex',1i))}

11



vertex 1 vertex 2 vertex 3 vertex 4

vertex 5 vertex 6 vertex 7 vertex 8
~IEEREE: - IEEEE: 5
vertex 9 vertex 10 vertex 11 vertex 12
TN e
vertex 13 vertex 14

By identifying the vertices on the original plot, we can see how the output

network got its shape.
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For more in-depth analysis, one can also run a barrage of statistical tests to
discover key factors contributing to differences between nodes. However, the
relevant data must be passed manually from the mapper object to R’s native
statistical functions, as there are not yet off-the-shelf functions built into the

TDAmapper’s mapper object.

19



1.3. USE CASES.

Section 1.3 covers industry use-cases of Mapper at two companies:

1. Ayasdi, a commercial software company whose commercial Mapper
software can used to forecast returns, diagnose denied claims, detect fraud,
identify oil wells and drilling machine failures, target campaign ads, and
discover biomarkers.

2. Aunalytics, the data science software & consulting company at which the
author is employed. Here, Mapper (via R’s TDAmapper) provided granular
insights on a location tracking dataset, and revealed insights in a sparse
call-center dataset even though there was little cohesion in the resulting

network.

20



1.3.1. AYASDI.

The commercial company Ayasdi developed commercial Mapper software
and sells a subscription service to clients who wish to create topological network
visualizations of their data. Their implementation is similar to R’s TDAmapper,
except that it is heavily optimized to crunch large-scale datasets consisting in the
millions of records. Furthermore, it has an “explain” function which automates
the process of differentiating clusters via statistical testing. “Explain” works by
running a barrage of statistical tests against a selected group, and ranking the

selected group’s most significant differences from the rest of the data.

Create Color Schemes from Selection

D Cobuma Name Vabue Traction in Crowp 1 fraction in Both Croup... Count in Croup 1 Cownt in Both_ Hypergeometric p... . |
5 provider_type Registered Dietician/Nutrtion Professional 0002533 0.001308 47 47 1.000e-12 .
] provider_type Ambulance Service Suppler 0.03379 0.0176% 627 614 1.000e-12
] provider_type Piaysical Therapist 0.0679 0.03663 1261 1316 1.000e-12
5 provider_type Independent Dagnoitk Testing Faciey 0.01310 0.009324 243 135 1.000e-12
5 provider_type At $ T 4 OMOGY 0.04872 0.03630 904 1304 1.000e-12
5 provider_type Chnical Peychologist 0.01466 0.01083 272 s 1.000e-12
5 provider_type Audiniogist (billing inde pendently) 0.00975% 0.005456 181 196 1.000e-12
4] provider_type Obstetrics /[Cynecology 0.03703 0.02653 687 953 1.000e-12
] provider_type Occupational therapist 0.006737 0.003730 125 134 1.000e-12
t] provider_nype CRNA 0.03886 0.02861 721 1028 1.000¢-12
5 provide!_type Emergency Medicne 0.06193 0.03632 1149 1305 1.000e-12
5 provider_type Poychaatry 0.04932 0.01067 915 1102 1.000e-12
5 provider_type Mass immunization Roster Biler 0.01940 0.01183 360 425 1.000e-12
5 provider_type Optometry 0.03498 0.02255 €49 510 1.000e-12

In this section, we explore several commercial use-cases of Ayasdi’s
software. Many of the use-cases involve coloring the nodes of the network,

visually identifying clusters, and figuring out what separates interesting clusters

21



from the rest of the data.

Forecasting Returns

Below is a network that Ayasdi software generated by applying the Mapper

algorithm to over 300 market and economic variables, sampled over 25 years

(Roche et al. 2015). The nodes are colored by year.

We see that the map is spread out over time, which indicates repeated

patterns over time. For example, the group of highlighted nodes corresponds to
high-volatility and high-stress conditions. This suggests the following strategy to
forecast from an initial date: locate neighboring dates on the map, use their price
trajectories to build a distribution of changes in price for each asset, and use

mean or median for predictions. Then, individual predicted asset price-changes

22



can be aggregated to yield higher-level predictions, i.e. for each market sector.

Diagnosing Denied Claims

Simple denial patterns, consisting of only a few patterns, usually account
for only a small portion of a denial backlog. However, Ayasdi’s software has been
used to find complex patterns in infusion and oncology medical necessity denials,
accounting for up to 65% of the denial backlog (“Machine Intelligence,” 2015). The
following topological network was constructed by applying the Mapper algorithm
to 5 million individual claims - its structure is determined by similarity between
claims, and its nodes are colored according to how often the claims were

accepted or denied on average.

Denied Claims

-

23



By locating several groups in the network and analyzing the group
statistics, analysts were able to gain enough information to advise action
pre-submission by modifying the final coding or supporting diagnosis, or at the

point of care by seeking pre-authorization or reconsidering a procedure.

Detecting Fraud

The topological network below is based on the CMS public health claims
dataset, which consists of over 9 million claims, 36 thousand providers, and 3600
unique codes (Rogers and Grahnen, 2015). The network structure is determined
by similarity in how providers practice, while the node color is determined by

medicare payment amount.
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One can identify leads for investigation by looking for outlier providers
who are getting paid abnormally much compared to other similar providers (two
such groups are boxed in the network above). One can also improve detection
models using this topological network: by recoloring the network nodes
according to model performance (e.g. false positive rate), one can find groups for
which the model performs poorly - and by running statistical tests to discover
how these groups differ most significantly from the rest of the population, one

can identify specific parameters which the model may have learned incorrectly.

Red = False Positives
Blue = False Negatives
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Oil and Gas Exploration

Below is an example of a topological network whose structure is based on
drilling location, and whose color is based on the amount of oil recovered there
(Parulekar and Johnson, “Analyzing Oil,” 2014). This information can be useful in

identifying new locations most likely to be oil-rich.

Topological networks can provide valuable information about the drilling
equipment, as well. Below is a network whose structure is determined by a
number of system state readout variables, and whose color determined by
frequency of failure (red = high, blue = low). By better understanding the
correlation between system status and failure frequency, one can anticipate

critical events and avoid unnecessary replacements.
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Campaign Ad Targeting

Based on data on 37,000 Twitter users who tweeted about Chris Christie, a
topological network structured by account similarity and colored by word
frequency can be used to identify niche conversations that are good targets for
campaign ads (Parulekar and Johnson, “Campaign Planning,” 2014). Shown below
(top to bottom) are colorings corresponding to “scandal,” “traffic,” and

“Governor.”

2]



One can also investigate an individual group to see what other words
differentiate the group from other groups. This gives more specific insight into

the content of the discussion.
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Biomarker Discovery

Below is a topological network generated by data from 272 breast cancer
patients, where the structure is based on similarity in genes expressed by
patients (Parulekar and Johnson, “Ayasdi Cure,” 2014). The left graph is colored
by death (red = high, blue = low), while the right graph is colored by esr1 level

(red = high, blue = low). We can see that the flare of patients who survived

corresponds to the flare of patients with high levels of esr1.
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1.3.2. AUNALYTICS.

Aunalytics is the data science software & consulting company at which the
author is employed. Here, Mapper (via R’s TDAmapper) outperformed
hierarchical clustering in providing granular insights on a location tracking
dataset, and detected call-center teams which took abnormally long times to

accept calls even when there was little cohesion in the network.

Segmentation via Location Tracking

A location tracking dataset from an Aunalytics digital media client included
a count of visits to different location categories. In attempt to segment the user
base, the author originally performed hierarchical clustering on visit profiles
within each category. The highest degree of segmentation was observed within
the “Recreation and Leisure” category, which consisted of the following
subcategories: Stadiums/Arenas, Recreation Centers, Swimming Pool, Athletic
Fields, Baseball, Basketball, Football, Soccer, Tennis, Running, Golf, Gym and
Fitness Centers, Outdoors.

To perform hierarchical clustering, the author created a dataset whose
rows consisted of visit frequency (in %) for each of 13 subcategories above, and
then computed and sorted a Euclidean distance matrix via dendrogram. The

resulting visualization revealed 6 clusters.
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Recreation Category Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Athletic Fields 1%| 1%| 1% [NSS% | 1% [l 49%
Golf 0% [N65% | 1%| 1%| 0% 7%
Gym and Fitness 1%| 1%| 1%| 0% a7 | 6%
Outdoors 1%| 1% [NO6% 0% 1% 13%
Recreation Centers 0%| 0% 0%| 0%| 0% 7%

Stadiums and Arenas |G 1%| 2%| 0%| 1%l 17%
Swimming Pools 0%| 0% 0%| 0% 0% 7%
High-end Golfers  Hikers Recreational  Gymrats Everyone else

sports Campers sports players
players/fans

Using the Mapper algorithm, however, revealed many more clusters.

Moreover, it revealed paths by which clusters were connected.
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For example, we will inspect the distinguishing characteristics of the
high-visit flare consisting of nodes 19, 21, and 26. Below are graphs of column

means for the in-node and out-of-node populations.

red=in node 19, black=out of node 19

mean +/- sdev
00 02 04 086

column

red=in node 21, black=out of node 21

mean +/- sdev
00 02 04 08

column
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red=in node 26, black=out of node 26
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Node 19 has a normal profile, but node 21 has a low average in column
corresponding to gym and fitness centers (column 12). Node 26 has a low average
here as well, and also has low averages in columns corresponding to athletic
fields, golf, and outdoors (columns 4, 11, 13). However, node 26 has a high
average in stadiums and arenas (column 1). We conclude that, for this example,
the Mapper algorithm revealed much finer granularity than hierarchical

clustering.

Call Center

Mapper was also used to investigate a 10,000-record sample of call center
data. The initial goal was to find trends over time, but after a week of little
success this goal was replaced with an anomaly detection approach. The

topological network below was structured by comparing each call’s queue, team
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name, and location name, and colored by the amount of time needed to accept

the call (green = short, red = long).

Ideally, calls should be accepted quickly. However, we can see that clusters
163 and 165, corresponding to the tech team from a particular location, are
associated with abnormally long times to accept calls. This example demonstrates
how Mapper can reveal insights from data even when the data is sparse and
non-cohesive and the resulting network does not appear to contain any clear

paths between nodes.
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2. PERSISTENT HOMOLOGY.

Section 2 elaborates on four main points surrounding Persistent Homology:

1. Homotopy. Algebraic topology aims to describe the connectivity of any
arbitrary space. It does this by computing the homotopy, or number of
“loops” in each dimension.

2. Approximation. In computational topology, datasets can be interpreted as
samples taken from an underlying topological space, and for any given
margin of error a topology can be constructed to approximate the
underlying space.

3. Homology. Homotopy groups are extremely difficult to compute in high
dimensions. Homology is a similar concept which can be easier to compute.

4. Persistence. Persistence barcode plots show which topological features
persist through many scales of the data, and can be used to calculate
similarity between different spaces.

5. Software. To compute persistent homology of small to medium-size

datasets, one can use the open source R package TDA.
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2.1. HOMOTOPY.

To describe a shape’s connectivity, you can count the number of “loops” in
the shape, starting from an initial point called the basepoint. For example, the
letters “O” and “P” are said to have the same connectivity because they each have
one loop, whereas the letters “O” and “B” are said to have different connectivity
because “O” has one loop and “B” has two loops. Algebraic topology takes this
idea of classifying shapes based on how many loops they have, and extends it to

spaces of arbitrarily many dimensions (Carlsson, 2009).

For example, let’s start off with a two-dimensional space, a plane.
Immediately, we run into a problem we didn’t have with letters: we can draw

infinitely many loops in this infinite sheet. How should we count them all?
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So that we’re not stuck counting loops for eternity, we say that loops are
equivalent if they can be continuously deformed into each other. Given a loop,
we can drag it across the plane, twist it around, stretch it, compress it, and so on,
and it will still be the same loop. The only thing we aren’t allowed to do is tear it.

That’s cheating.

< FAIR CHEAT »

To count loops using this equivalence, we need to figure out how many
distinct loops there are. In the plane above, it’s easy -- there is only one distinct

loop. However, if there is a hole in the sheet, the loop with the hole inside is not
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the same as the loop with the hole outside: if the hole is inside a loop, the only

way to move it to the outside is to tear the loop, and that’s cheating.

A plane with one hole, then, has two loops: one loop with the hole inside
and another loop with the hole outside. The loop with the hole inside can be
deformed into any other loop with the hole inside, and the loop with the hole
outside can be deformed into any other loop with the hole outside. For a plane
with two holes, we have four distinct loops: one around each hole, one around
both holes, and one around neither hole. Topologists have a word, homotopy, for
the kind of non-tearing deformations we’re imagining, and they call the collection

of distinct loops a homotopy group.
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In higher-dimensional spaces, we need to count loops in each dimension.
For example, consider a three-dimensional space with two points and a line
removed. This looks like a cube of cheese that has two air bubbles and has been

poked by a toothpick, infinitely enlarged.
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There are two one-dimensional loops: a circle with the line inside, and a

circle with the line outside.

A circle containing the line is tethered to the line, but a circle containing
the missing point can move above and below the point. Since circles can move
through the missing points, the missing points do not affect the number of

distinct one-dimensional loops.
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There are four two-dimensional loops: a bubble with no points inside, a
bubble with one point inside, a bubble with the other point inside, and a bubble
with both points inside. The missing line does not affect the number of distinct
two-dimensional loops because the line spans the entire space and consequently

we cannot put the line inside of a bubble.
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In higher dimensions, it’s helpful to think of loops as surfaces. A
1-dimensional loop (circle) is the surface of a 1-dimensional sphere (disk). A
2-dimensional loop (bubble) is the surface of a 2-dimensional sphere (solid
sphere). In general, an n-dimensional loop is the surface of an n-dimensional

sphere.
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2.2. APPROXIMATION.

Real-world datasets are not explicit topological spaces. Rather, they are
collections of points sampled from topological spaces, and the goal of topological
data analysis is to analyze these point clouds and infer information about their
underlying topological spaces. One can do this by using the point cloud to
construct a “simplicial complex” which approximates the underlying topological

space (Carlsson, 2009).

. o o
.
TR
¢ * —
°

The main idea behind turning point clouds into simplicial complexes is to
put epsilon-balls, or error margins, around points and use the overlaps to
determine the connections in the simplicial complex. The constructions
generated using different values of epsilon will correspond to topological
approximations of the point cloud at different levels of scale.

For example, one generates the Cech complex of a point cloud by adding an

n-simplex whenever the intersection of all n balls is nonempty. A more
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computationally efficient method, which generates the Vietoris-Rips complex,
adds an n-simplex whenever the intersection of every pair in the n balls is
nonempty, and contains the Cech complex as a subcomplex.

To see how these complexes are constructed, first consider these three

points with pairwise-overlapping balls.

The associated Cech complex includes three points and three segments, but
no triangle because the three balls don’t all overlap together anywhere. However,

The Vietoris-Rips complex contains the triangle in addition to the three points

and segments, since each pair of balls overlaps.
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Cech Vietoris-Rips

There is a theorem stating that for any epsilon, there is a finite set of points
such that the Cech complex is homotopy-equivalent to the full space (this also
applies to the Vietoris-Rips complex, since it contains the Cech complex).
Therefore, in theory, our approximation should have the same topological

features as the actual space, provided we use enough points.
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2.3. HOMOLOGY.

Unfortunately, homotopy groups are extremely difficult to compute in high
dimensions. However, there is a similar concept, homology, which can be
calculated on simplicial complexes via linear algebra (Carlsson, 2009). Like
homotopy, homology also counts the number of loops of each dimension in a
space, where loops are allowed to shift along the boundary of a
higher-dimensional component on the space.

In simplicial complexes, the lowest-level components are points, followed
by segments, and then triangles, and then solid tetrahedrons, and so on. You can
think of an nth level component as an n-dimensional triangle, or more formally,

an n-simplex.

Level-0 point 0-dimensional 0-simplex
component triangle
Level-1 segment 1-dimensional 1-simplex
component triangle
Level-2 triangle 2-dimensional 2-simplex
component triangle
Level-3 tetrahedron 3-dimensional 3-simplex
component triangle
Level-n N-dimensional n-simplex
component triangle
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For example, consider the following simplicial complex:

11 ®

This complex contains the following simplices:
e O-simplices: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}
e 1-simplices: {1,2}, {2,3}, {2,6}, {3,4}, {3,5}, {4,5}, {5,10}, {6,7}, {6,8}, {6,9},
{78}, {7,9}, {8,9}, {9,10}

e 2-simplices: {3,4,5}, {6,7,8}, {6,7,9}, {6,8,9}, {7,8,9}

The Oth homology of this complex consists of those 0-dimensional loops
along 0-simplices, which cannot be deformed into one another by shifting along
the boundary of a 1-simplex. Put more simply, it consists of those points which
cannot be shifted to one another along an edge. Since points {1} through {10} are
all connected by paths through edges, they are all viewed as the same in first
homology -- but since {11} is not connected to any other point by an edge, it is
different. Thus, the Oth homology of the above complex consists of two loops,

which intuitively represent “point islands”: points {0} through {10} inhabit the
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first island, while point {11} is the lone inhabitant of the second island.

The 1st homology of this complex consists of those 1-dimensional loops
along 1-simplices, which cannot be deformed into one another by shifting along
the boundary of a 2-simplex. Put more simply, it consists of those edge loops
which cannot be shifted to one another along triangles. For example, the two
edge loops below are the same because {3,5} can be shifted to {3,4} and {4,5} on
the triangle {3,4,5}, and {6,9} can be shifted to {6,7} and {7,9} on the triangle

{6,7,9}.
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11 ®

It turns out that, for this complex, there is no other edge loop that is
different from the inner edge loop. Therefore, the 1st homology of the above
complex consists of one loop, which intuitively represents the “donut hole” in the
complex.

The 2nd homology is the last homology for this complex, because it
contains no simplices beyond the 2nd dimension. It consists of those
2-dimensional loops along 2-simplices, which cannot be deformed into one
another by shifting along the boundary of a 3-simplex. Put more simply, it
consists of those closed (think “inflatable”) surfaces which cannot be stretched
into to one another along solid tetrahedrons. The 2-simplices {3,4,5}, {6,7,8},
{6,7,9}, {6,8,9}, and {7,8,9} together form the surface of a tetrahedron, and the
solid tetrahedron itself is not included in our complex. Therefore, the 2nd
homology of the example complex consists of one loop, the surface of the

tetrahedron.
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11 @

The number of components in the nth homology is called the nth Betti
number, and by comparing the Betti numbers of different spaces, we can gain an
idea of how topologically similar or different they are. For example, our complex
had three nontrivial homologies, giving rise to Betti numbers (2, 1, 1). If we found
two other datasets, constructed complexes on them, computed their homologies,
and found that they had Betti numbers (2, 2, 1) and (1, 5, 3), then we would
interpret the process generating the data of our example (2, 1, 1) complex as more
similar to the process generating the data of the (2, 2, 1) complex, than the
process generating the data of the (1, 5, 3) complex.

Measuring topological similarities between spaces by comparing their Betti
numbers is just the tip of the iceberg. We have lots of mathematical machinery
(e.g. probability and calculus) to analyze transformations between points, and
Betti numbers give us a way to interpret entire spaces at points. This opens the
door to studying not only relationships between parameters in a system, but also

relationships between systems with completely different parameters.
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2.4. PERSISTENCE.

When we’re interested in topological features which persist across many
scales of the data, we need consider all values of epsilon for the simplicial
complex we construct on our data. This is the idea behind persistent homology:
we can figure out which topological features persist over the full range of scale by
making a plot that says whether a particular homology component was detected
at some value of epsilon (Carlsson, 2009).

Barcode plots have values of epsilon on the horizontal axis, and a list of
homology components on the vertical axis. Each row, then, corresponds to a
homology component, and is shaded at values of epsilon where the homology
component appears. For example, if the barcode plot below represents first
homology, then a single long bar tells us that the dataset has a main loop which
persists across many scales. Therefore, the dataset must look something like a

circle.

—| =

In a barcode plot with many long bars, many loops means many

possibilities for the space. In these situations, we cannot always get a clear idea of

o1



what our space “looks” like, but we can still quantify the degree to which two
datasets share the same topology by computing a similarity index between their

persistence barcodes.

Persistence barcode distributions are currently an active area of research,
and they can encode persistence of not only homology components, but also

centrality, density, and other network measures.
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2.5. SOFTWARE.

An R package named TDA (Fasy et al. 2014) has persistent homology

capabilities, which we will demonstrate on another ND logo dataset.

n x <- c(rep(-1,31),0.005*seq(-200,-50,5) ,rep(-.25,31))
n y <- c(0.0l*seq(-75,75,5),-0.01*segq(-75,75,5),
0.01*seq(-75,75,5))
d x <- c(rep(.25,31),
0.15+4sgrt (0.75%2-(0.01*seg(-75,75,5))"2))
d y <- c(0.01*seq(-75,75,5),0.01*seq(-75,75,5))
nd <- data.frame (x=c(n _x,d x),y=c(n_y,d vy))

plot (nd)
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We’ll create a barcode diagram to display the dataset’s persistent homology
in dimensions 0 and 1, for epsilon ranging from 0 to 1. The first homology
components are colored black, while the second homology components are

colored red.

Diag <- ripsDiag (X = nd, maxdimension = 2, maxscale = 1,
library = "GUDHI", printProgress = FALSE)
plot (Diag[["diagram"]], barcode = TRUE, main = "Barcode")
| | | | I

0.0 0.2 0.4 0.6 0.8 1.0

In first homology we see one component which persists the whole way,
capturing the N and D together, and another component which persists about
halfway, capturing the separation between the N and the D. In second homology,

we see one component which persists halfway, which captures the hole in the D.
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Birth-death diagrams are also used to display the same information as

persistence barcodes:

plot (Diag[["diagram"]])

Death

Birth

There are also functions for calculating the Bottleneck and Wasserstein
distances, which measure dissimilarity between homology diagrams. Below, we

calculate these distances between the N and the D in the logo.

n <- data.frame(x = n x, y = n_y)
d <- data.frame(x = d x, y = d vy)
DiagN <- ripsDiag(X = n, maxdimension = 1, maxscale = 1)
DiagD <- ripsDiag(X = d, maxdimension = 1, maxscale = 1)
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> print (bottleneck(Diagl = DiagN[["diagram"]],

Diag2 = DiagD[["diagram"]], dimension = 1))
0.2404992
> print (wasserstein(Diagl = DiagN[["diagram"]],

Diag2 = DiagD[["diagram"]],p = 2, dimension
0.05783988
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