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Part 1​
Vectors 
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1.1 N-Dimensional Space 

 

N-dimensional space consists of points that have N components. 

For example,  is the origin in 2-dimensional space,  is 

the origin in 3-dimensional space, and  is the origin in 

4-dimensional space. 

 

Similarly, the points , ,  are the corners of a triangle 

in 2-dimensional space, the points , , , 

 are the corners of a tetrahedron in 3-dimensional space, 

and the points , , , , 

 are the corners of a “hypertetrahedron” in 4-dimensional 

space. 

 

 

Functions with Multiple Inputs and Outputs 
 

We’re used to seeing single variables as inputs and outputs to 

functions, but functions can really take any number of variables as 

input and produce any number of variables as output. 

 

For example, the function  takes two input 

variables, and adds them to produce a single output variable. Thus, 

it maps points in 2-dimensional space onto points in 1-dimensional 

space. 
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Similarly, the function  takes two 

input variables and produces four output variables: the sum, 

difference, product, and quotient of the inputs. Thus, it maps points 

in 2-dimensional space onto points in 4-dimensional space. 

 

Lastly, the function  

takes  input variables and produces  output variables, which 

are just the first  input variables multiplied by their indices. Thus, 

it maps points in N-dimensional space onto points in M-dimensional 

space. 

 

 

Vectors 
 

Points in N-dimensional space consist of numbers, but can also be 

thought of as manipulable entities in their own right, called vectors. 

When we think of points as vectors, we cease to think of them as 

fixed points in space. Instead, we think of them as displacements 

through space. 

 

For example, the vector  can represent the displacement from 

the point  to the point  -- but it can also represent the 

displacement from  to , or  to , or any 

other point  to . 
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Vectors can be added component-wise, and adding a sequence of 

vectors together yields a net displacement through all the vectors 

combined, starting each vector where the previous one ends. 

 

 

 

 

 

 



18​ ​ ​ ​                Justin Skycak | Linear Algebra 

Scalars 
 

Vectors can also be multiplied by regular numbers called scalars. 

Multiplying a vector by a scalar has the effect of rescaling a vector to 

become shorter or longer, depending on the magnitude of the 

scalar. 

 
 

 

 

 

If the scalar is negative, then the vector also flips direction, in 

addition to being rescaled by the magnitude of the scalar. 
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Norm of a Vector 
 

In two dimensions, a vector’s length, called its norm, can be 

obtained using the Pythagorean theorem: 

 

 

In general, the norm of a vector can be computed by extending the 

Pythagorean theorem to higher dimensions. 
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To see that this definition of the norm is compatible with the idea 

that scalar multiplication rescales a vector, observe that the norm of 

a scaled vector is equal to the product of the scalar and the norm of 

the unscaled vector. 

 

 

 

 

Algebra with Vectors 
 

Lastly, expressions involving multiple vector operations follow the 

standard rules of arithmetic, and equations involving vector 

variables follow the standard rules of algebra. 
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We can also use algebra to solve for unknown components of 

vectors. 

 

 

 

 

Exercises 
 

For each function, list the dimensionalities of the input space and 
the output space. 
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Perform the indicated vector operations. 
 

  

 

 

 

 

 

Solve for the unknown variable. 
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1.2 Dot Product and Cross Product 

 

We know how to multiply a vector by a scalar, but what does it 

mean to multiply a vector by another vector? 

 

The two most common interpretations of vector multiplication are 

the dot product, and for vectors in 3 dimensions, the cross product. 

 

 

Dot Product 
 

The dot product is computed as the sum of products of 

components. 

 

 

 

First of all, notice that the dot product of a vector with itself is just 

the vector’s norm, squared. 

 

 

 

Also notice that the dot product can distribute over sums of vectors, 

just like multiplication. 
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One can also verify that the dot product behaves like multiplication 

in other ways -- for example for two vectors  

and  and any scalar  we have 

 and . 

 

 

Geometric Interpretation of Dot Product 

 

Using the law of cosines on a triangle whose sides are formed by the 

vectors , , and , we can find a geometric interpretation of 

the dot product: 

 

, 

 

where  is the angle between the two vectors  and . 
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One interesting consequence of this formula is that perpendicular 

vectors have a dot product of zero: the angle between perpendicular 

vectors is , and .  
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Even if the dot product is not zero, we can still use it to compute the 

angle between the two vectors. 

 

 

 

 

Cross Product 
 

For 3-dimensional vectors, we also have another interpretation of 

vector multiplication called the cross product. The cross product is 

given by 

 

. 

 

Using the above definition, one can verify that the cross product 

distributes over sums and satisfies  

for any scalar . 

 

However, when the two vectors in a cross product are interchanged, 

the result changes sign: . This is a key difference 

between the cross product and the dot product. 
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Geometric Interpretation of Cross Product 
 

Like the dot product, the cross product also has a geometric 

interpretation: 

 

 

 

This is similar to the geometric interpretation of the dot product, 

except we have  instead of , and we are talking about the 

norm of the vector resulting from the cross product. 

 

As a result, the cross product  represents a vector whose norm 

is equal to the area enclosed by the parallelogram that has  and  

as sides. Moreover, the cross product produces a vector that is 

perpendicular to the vectors  and .  

 

 

 

To see that the cross product  is perpendicular to  and , 

observe that the dot products  and  both 

evaluate to . 
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To understand why , we can begin by squaring 

both sides of the equation and expressing the right-hand side using 

the dot product. 

 

 

 

Now, we expand out the right hand side using  and 

. We find that some terms cancel, and the remaining 

terms can be rearranged into the square of the norm of the cross 

product. 
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Exercises 
 

Evaluate the following vector expressions. 
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Solve for . 
 

 

 

 

 

 

 

 

Use the dot product to find the angle  between the two vectors. 
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Use the cross product to find the area contained by each 
parallelogram whose sides are given as vectors. 
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1.3 Lines and Planes 

 

A line starts at an initial point and proceeds straight in a constant 

direction. Thus, we can write the equation of a line as 

 

 

 

where 

●​  is the initial point, 

●​  is the constant direction in which 

the line travels, and 

●​  is the point reached by 

traveling  units away from  in the direction of . 

 

(Though  is actually a vector, we can also refer to it as the point 

where the vector lands when the vector is placed at the origin.) 
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Finding the Equation of a Line 
 

For example, to compute the line between the points  

and  in 4-dimensional space, we can start by computing 

the direction  as the difference between the two points: 

 

 

 

Taking  as our initial point, then, we can express the 

line as 

 

. 

 

If we wanted to find another point on the line, we could substitute 

another value for , say, . 

 

 

 

 

Checking Whether a Point is on a Line 
 

If we wanted to check whether the point  is on the 

line, we could substitute this point for  and try to solve for . 

 

 

https://www.codecogs.com/eqnedit.php?latex=t%0
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Setting first components equal, we find , which implies that 

. But equating second components yields , which 

implies that . So, there is no solution that matches all pairs of 

components, and consequently the point  is not 

on the line. 

 

However, we can verify that the point  is on the line 

using the same method. 

 

 

 

Equating first components yields  which is valid for ; 

equating second components yields  which is also valid 

for ; equating third components yields  which is valid for 

all choices of ; and equating fourth components yields  

which is also valid for . Thus the point  is on the 

line because it is simply  evaluated at . 

 

 

The Equation of a Plane 
 

Now, let’s talk about how to write the equation of a plane in 

N-dimensional space. A plane can be visualized as a flat sheet that 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20%5Cleft%3C%209%2C-6%2C3%2C10%20%5Cright%3E%20%26%3D%20%5Cleft%3C%204%2C-4%2C0%2C3%20%5Cright%3Et%20%2B%20%5Cleft%3C%201%2C2%2C3%2C4%20%5Cright%3E%20%5C%5C%20%5Cleft%3C%209%2C-6%2C3%2C10%20%5Cright%3E%20-%20%5Cleft%3C%201%2C2%2C3%2C4%20%5Cright%3E%20%20%26%3D%20%5Cleft%3C%204%2C-4%2C0%2C3%20%5Cright%3Et%20%5C%5C%20%5Cleft%3C%208%2C-8%2C0%2C6%20%5Cright%3E%20%20%26%3D%20%5Cleft%3C%204%2C-4%2C0%2C3%20%5Cright%3Et%20%5Cend%7Balign*%7D%0
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makes a right angle with some particular vector. Thus, a plane just 

consists of all vectors through some point in the plane, that are 

perpendicular to a single vector. 

 

 

 

If  is a point in the plane, then the vectors in the plane can be 

written , where  represents other points on the plane. 

These vectors are all perpendicular to a single vector, call it , so 

their dot product must be zero: .  

 

 

 

Distributing the dot product, we have , and 

rearranging we have . The right-hand side  is just 
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a constant, so we can simply call it . Thus, we have the general 

equation for a plane: 

 

 

 

Here,  is a vector that is perpendicular to the plane,  are points 

on the plane, and  is some constant. Writing  

and , we can expand out the general equation 

for a plane into an equation consisting only of scalars: 

 

 

 

 

Finding a Plane Given a Point and 

Perpendicular Vector 
 

For example, to compute the plane that passes through the point 

 and has a perpendicular vector of , we can start 

by setting up the equation with the perpendicular vector 

substituted. 

 

 

To solve for , we can simply substitute the point  for  and 

take the dot product. 
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Then, we can substitute for  and expand out the dot product in the 

initial equation. 

 

 

 

Now, suppose we have an equation for a plane, and we want to find 

the perpendicular vector. 

 

 

 

To do this, we can simply organize the equation and convert it to the 

vector equation of the plane, using the dot product. 

 

 

 

The perpendicular vector is just the first vector in the dot product, 

. 

 

 

Finding a Plane Given Three Points 
 

Lastly, suppose that we want to find the equation of the plane that 

contains the three points , , and . 
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To start off, we can find two vectors within the plane by starting at 

one of the points, say , and computing the displacement 

vectors to the other two points: 

 

 

 

These displacement vectors are within the plane, so if we can find a 

vector that is perpendicular to these displacement vectors, then we 

will have a vector that is normal to the plane. 

 

Since these displacement vectors are 3-dimensional, we can 

compute their cross product, which yields a perpendicular vector. 

 

 

 

 

 

Using this vector as the normal vector of the plane, the equation of 

the plane becomes 
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for some constant . To find the value of , we can simply 

substitute one of the points in the plane, say, . 

 

 

 

Thus, the equation of the plane is 

 

 

 

which can be simplified to 

 

. 

 

Looking back, we could have saved some work by using the vector 

 instead of the displacement vector , since 

 follows the same direction (it’s just half as long). 

 

The normal vector resulting from the cross product would then have 

been , which is the normal vector in the fully simplified 

equation of the plane. 

 

(The vector  points in the same direction as the original 

normal vector ; it’s just half as long.) 
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Exercises 
 

Compute the equation of the line that passes through the given 

points. 

 

  

  

 

Check whether the given point  is on the given line. If so, 

determine the value of  for which . 
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Write the equation of the plane that contains the given point  and 

is perpendicular to the given normal vector . 

 

  

  

 

Write the equation of the plane that contains the three given points. 
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1.4 Span, Subspaces, and Reduction 

 

The span of a set of vectors consists of all vectors that can be made 

by adding multiples of vectors in the set. 

 

For example, the span of the set  is just the entirety 

of the 2-dimensional plane: any vector  in this plane can be 

made by adding . For instance,  can be 

written as . 

 

Similarly, the span of the set  is also the entirety of 

the 2-dimensional plane: any vector  in this plane can be made 

by adding . This is a little less obvious, 

but it’s true: for example,  can be written as 

. 

 

The span of the set , however, is just a 1-dimensional 

line within the 2-dimensional plane: it contains only vectors of the 

form , where  is a constant. To see why this is, observe 

what happens when we try to add multiples of the vectors: 
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Subspaces of Two-Dimensional Space 
 

The span of  is a 1-dimensional line within the 

2-dimensional plane. So, we say that the span forms a 1-dimensional 

subspace of the 2-dimensional plane. 

 

In 2 dimensions, it turns out that any set of two vectors that are 

multiples of one another will span a line, and any set of two vectors 

that are NOT multiples of one another will span the entire space. 

 

For example, the set  spans a line because 

. On the other hand, the set  

spans the entire space because the vectors cannot be written as 

multiples of each other. 

 

But just because two vectors are multiples, doesn’t mean they can’t 

be included in a set that spans the space. For example, the set 

 spans only a line, but if we add include a third 

vector  that is not a multiple of the original two vectors, then 

the set  spans the entire plane. 

 

 

Subspaces of N-Dimensional Space 
 

Now, let’s generalize these ideas to N dimensions. It might be 

tempting to think that in general, a set of vectors will span the entire 

space provided there are some three vectors that aren’t multiples of 

one another. But this isn’t always true. 
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For example, consider the set . None 

of these vectors are multiples of each other, but there is no way to 

combine the vectors to reach a point whose third component is not 

zero. 

 

The issue here is that the third vector is the sum of the first two 

vectors. As a result, the third vector is redundant -- we can already 

reach any point using the first two vectors, that we can reach using 

the third vector. The set, then, has the same span as the set of just 

the first two vectors. It covers just a plane, a 2-dimensional 

subspace of 3-dimensional space. 

 

 

 

The vectors span the plane . No matter how we combine 

vectors, the third component will always be  -- so we cannot reach 

any points above or below the plane, by adding multiples of vectors 

in the set. 
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Independence 
 

In general, the dimension of the span of a set of vectors is equal to 

the number of independent vectors that remain after we remove 

the dependent vectors. A vector is said to be dependent if it can be 

written as a sum of multiples of other vectors in the set. 

 

The labeling of vectors as independent or dependent depends on 

the order in which the vectors are considered, but regardless of 

order, removing all dependent vectors will leave the same number 

of independent vectors, even if the independent vectors themselves 

are different for different orders. 

 

For example, in the set  we can start by 

looking at the first vector, . This vector is dependent since it 

can be produced by subtracting the other two vectors: 

. Removing this vector from the set 

yields the reduced set , which contains two 

independent vectors and thus cannot be reduced any further. 

 

Since the fully reduced set has two independent vectors, it spans a 

2-dimensional plane, and since the original set has the same span as 

the reduced set, the original set also spans the same 2-dimensional 

plane. 

 

Alternatively, beginning with the original set 

 we can start by looking at the second 

vector, . This vector is dependent since it can be produced 

by subtracting the other two vectors: . 
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Removing this vector from the set yields the reduced set 

, which contains two independent vectors and 

thus cannot be reduced any further. 

 

Again, since the fully reduced set has two independent vectors, it 

spans a 2-dimensional plane, and since the original set has the same 

span as the reduced set, the original set also spans the same 

2-dimensional plane. 

 

The last alternative, beginning with the original set 

, is to start by looking at the third 

vector, . This vector is dependent since it can be produced 

by adding the other two vectors: . 

Removing this vector from the set yields the reduced set 

, which contains two independent vectors and 

thus cannot be reduced any further. 

 

Again, since the fully reduced set has two independent vectors, it 

spans a 2-dimensional plane, and since the original set has the same 

span as the reduced set, the original set also spans the same 

2-dimensional plane. 

 

 

Maximum Number of Independent Vectors 
 

Since the number of independent vectors in a set tells us the 

dimension of the span of that set, we can make the general 

conclusion that a set of N-dimensional vectors can have at most N 

independent vectors. 
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The N-dimensional vectors reside in N-dimensional space, so the 

largest space they can possibly span is their full N-dimensional 

space. Consequently, it’s not possible for the set of vectors to 

contain more than N independent vectors -- otherwise, they would 

need to span a space of more than N dimensions. 

 

For example, consider the following set of vectors:  

 

 

 

Looking at the first two vectors  and , we see that these 

two vectors are independent since they are not multiples of each 

other. As a result, the span of the vectors must have a dimension of 

at least 2. 

 

But the vectors reside in 2-dimensional space, so their span is 

limited to at most 2 dimensions. Thus, we can conclude that the set 

of vectors spans exactly 2 dimensions, and that the third and fourth 

vectors in the set must be dependent, without even needing to 

check whether they can be written as sums of multiples of the first 

two vectors. 

 

Now, consider the following set of vectors: 

 

 

 

 



Justin Skycak | Linear Algebra​​ ​ ​ ​     51 

We can tell the first two vectors  and  are 

independent since they aren’t multiples of each other, but it’s 

harder to see whether the remaining two vectors  and 

 are independent because we also have to make sure 

they can’t be written as sums of multiples of other vectors in the 

set. 

 

 

Reduction 
 

To make it easier for us to tell whether these vectors are 

independent, we can reduce the set of vectors to a simpler set with 

the same span, by adding multiples of vectors from each other. 

 

To begin the process of reduction, we can add multiples of the first 

vector to the other vectors so that we eliminate the first component 

from each of the other vectors. 

●​ The second vector has a first component of , so we can 

eliminate it by adding  times the first vector. 

●​ The third vector has a first component of , so we can 

eliminate it by adding  times the first vector. 

●​ The fourth vector has a first component of , so we can 

eliminate it by adding  times the first vector.  
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The resulting set of vectors is shown below. 

 

 

 

Since we only added multiples of vectors, we haven’t changed the 

span at all. But now all of the first components are zero EXCEPT for 

the first component in the first vector, so we can see that the first 

vector cannot be written as a sum of other vectors in the set. All the 

other vectors have zero in their first component, so every time we 

add multiples of them, the result will still have zero in the first 

component. 

 

To check whether the second vector is independent, we can add 

multiples of the second vector to the remaining vectors to eliminate 

their second components. 

 

But to make this easier, we can start by rescaling (i.e. multiplying) 

the second vector to have a second component of . Its second 

component is currently , so to convert  to , we need to multiply 

by . 
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Now, we can add multiples of the second vector to the third and 

fourth vectors so that we eliminate their second components. 

●​ The third vector has a second component of , so we can 

eliminate it by adding  times the second vector. 

●​ The fourth vector has a second component of , so we can 

eliminate it by adding  times the second vector.  

 

 

 

 

 

Clearly, the second vector cannot be written as a sum of multiples 

including the first vector, since including the first vector would cause 

the first component to become nonzero. And the second vector 

cannot be written as a sum of multiples of the third and fourth 

vectors, either, because no combination of them can produce a 

nonzero second component. So the second vector must be 

independent. 
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To determine whether the third and fourth vectors are independent, 

we can repeat the usual process once more. First, we’ll rescale the 

third vector by  so that its first component is . 

 

 

 

The result is shown below. 

 

 

 

The fourth vector has a third component of , so we can eliminate 

it by adding  times the third vector. 

 

 

 

Our final result is shown below. 
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We see that the first three vectors are independent, whereas the 

fourth vector is dependent since it is a multiple of every vector in 

the set (you can multiply any other vector by  to obtain the fourth 

vector). As a result, our set spans a 3-dimensional subspace of 

4-dimensional space. 

 

 

Exercises 
 

Tell the dimension of the span of the set of vectors. 
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1.5 Elimination as Vector Reduction 

 

Recall that systems of linear equations can be solved through 

elimination, multiplying equations by constants and adding 

equations to each other to cancel variables.  

 

For example, to solve the following linear system 

 

 

 

we can start by adding the first equation to the second equation and 

subtracting two times the first equation from the third equation. 
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Then, starting with , we can back-substitute to solve for each 

of the variables: 

 

 

 
 

 

We reach the final solution , , and . 

 

 

Interpreting Elimination as Vector Reduction 
 

In light of the previous chapter, elimination can also be interpreted 

as vector reduction. 

 

First, we can interpret the linear system itself as a set of vectors, 

consisting of the coefficients and constants. 

 

 

 

Then, to reduce the set of vectors, we can add the first equation to 

the second equation, and subtract two of the first equation from the 

third equation. 
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Then, we can convert the set of vectors back into equations that can 

be solved in the same way via back-substitution. 

 

 

 

The big geometric insight here is that the space of linear equations 

is actually a vector space. 

 

This occurs because we’re allowed to add/subtract multiples of the 

equations. The particular linear equations in our system span a 

subspace of this vector space, and reducing the vectors allows us to 

simplify the system while maintaining the original span. 
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Thinking of linear equations in terms of vectors can sometimes yield 

additional insight. For example, notice that for a system of linear 

equations to have a single solution, the vectors must be reducible to 

the following form:​
 

 

 

In other words, the vectors must span all components except the 

last. For a system of linear equations in  variables, the vectors 

consist of  components: the first  components correspond to 

variable coefficients, and the last component corresponds to the 

constant. 
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As a result, for a system of linear equations in  variables to have a 

single solution, at least  equations are required. 

 

 

Exercises 
 

Solve the following systems. 
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Part 2​
Volume 
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2.1 N-Dimensional Volume Formula 

 

N-dimensional volume generalizes the idea of the space occupied by 

an object:​
 

●​ 1-dimensional volume refers to the space occupied by a 

1-dimensional object, such as the length of a line segment.​
 

●​ 2-dimensional volume refers to the space occupied by a 

2-dimensional object, such as the area of a square. ​
 

●​ 3-dimensional volume is what we normally mean by the word 

“volume” -- the amount of space occupied by a 3-dimensional 

object, such as the volume of a cube. 

 

Continuing this pattern, we can infer that 4-dimensional volume 

refers to the space occupied by a 4-dimensional object. It’s harder to 

come up with an example, though, since it’s difficult to visualize 

shapes in 4 and higher dimensions. 

 

 

Volume Enclosed by N-Dimensional Vectors 
 

However, it becomes easier if we think about N-dimensional volume 

as being enclosed by N-dimensional vectors. 
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The length of a unit line segment can be interpreted as the space 

enclosed by the 1-dimensional unit vector .​
 

 

 

The area of a unit square can be interpreted as the space enclosed 

by the two 2-dimensional vectors  and . 

 

​
 

The volume of a unit cube can be interpreted as the space enclosed 

by the three 3-dimensional unit vectors: , , and 

. 
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​
 

Continuing this pattern, the volume of a unit 4-dimensional cube 

can be interpreted as the space enclosed by the four 4-dimensional 

unit vectors: , , , and . 

 

This is harder to draw, but it gives us a general way to think about 

volume in N dimensions. The volume of a unit N-dimensional cube 

can be interpreted as the space enclosed by the N N-dimensional 

unit vectors: 
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Volume of a Parallelogram 
 

Given an object whose sides are perpendicular unit vectors, it’s easy 

to see that the volume of the object is 1, since the distance of the 

object in each perpendicular dimension is 1. 

 

But it’s difficult when the vectors are not perpendicular. For 

example, how would we compute the area of the parallelogram 

enclosed by the vectors  and ? 

 

 

 

Remember, the area of a parallelogram enclosed by two 

3-dimensional vectors is just the magnitude of their cross product.  

 

Although the vectors  and  are 2-dimensional, we can 

interpret them as the 3-dimensional vectors  and  in 

the  plane. 
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Taking the magnitude of the cross product, we find that the area of 

the parallelogram is . 

 

 

 

 

Volume of a Parallelepiped 
 

We can also use the cross product as a starting point to find the 

volume of a parallelepiped enclosed by three 3-dimensional vectors 

, , and . 

 

The cross product of two of the vectors, say , gives a vector 

whose magnitude is the area of a face of the parallelepiped, and 

which points in the direction perpendicular to the face. 

 

The height of the parallelepiped, then, is the length of the remaining 

vector  in the direction of . 
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Thus, the volume can be obtained using the dot product: 

 

 

 

This result is known as the triple product. 

 

 

 

That being said, the triple product may come out negative, 

depending on the order of the vectors in the cross product. So, to 

compute the volume, we have to take the absolute value of the final 

result. A simple example for the unit cube is shown below. 
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N-Dimensional Volume Formula 
 

Now that we know general methods to compute volume enclosed 

by 2-dimensional and 3-dimensional vectors, how do we extend this 

to 4-dimensional vectors? 

 

If we rewrite the 3-dimensional volume formula in terms of the 

2-dimensional volume formula, a pattern jumps out at us. 

 

To start, let’s write down the 2-dimensional volume formula for two 

vectors  and . 

 

 

 

However, in order to make the pattern clear, we will leave off the 

absolute value sign, thereby permitting “signed” volume. 

 

 

 

In 2 dimensions, the volume is traced out from the first vector 

 to the second vector , and the sign 

of the volume just tells us whether the tracing occurs 

counterclockwise (positive) or clockwise (negative). Intuitively, this 

convention matches that which is used for tracing out positive or 

negative angles in the unit circle. 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20V%20%5Cbegin%7Bpmatrix%7D%20%5Cleft%3C%20x_%7B11%7D%2C%20x_%7B12%7D%20%5Cright%3E%20%5C%5C%20%5Cleft%3C%20x_%7B21%7D%2C%20x_%7B22%7D%20%5Cright%3E%20%5Cend%7Bpmatrix%7D%20%26%3D%20%5Cleft%7C%20%5Cleft%3C%20x_%7B11%7D%2C%20x_%7B12%7D%2C%200%20%5Cright%3E%20%5Ctimes%20%5Cleft%3C%20x_%7B21%7D%2C%20x_%7B22%7D%2C%200%20%5Cright%3E%20%5Cright%7C%20%5C%5C%20%26%3D%20%5Cleft%7C%20%5Cleft%3C%200%2C0%2Cx_%7B11%7Dx_%7B22%7D%20-%20x_%7B12%7Dx_%7B21%7D%20%5Cright%3E%20%5Cright%7C%20%5C%5C%20%26%3D%20%5Cleft%7C%20x_%7B11%7Dx_%7B22%7D%20-%20x_%7B12%7Dx_%7B21%7D%20%5Cright%7C%20%5Cend%7Balign*%7D%0
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Now, let’s write down the 3-dimensional volume formula for 3 

vectors , , and 

, again leaving off the absolute value sign and 

thereby permitting “signed” volume. (The meaning of “signed” 

volume in 3 dimensions will be addressed later.) 

 

 

 

To ease notation, we define another volume function  that also 

computes volumes of vectors, but first re-indexes the vectors by 

removing the kth component and moving entries after the kth 

component to the beginning of the vector. This way, the 

3-dimensional volume formula can be simplified to 

 

. 

 

Using this form, we can guess at an N-dimensional volume formula: 
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Sanity Checks 
 

Let’s test out this formula on a simple case: the 4-dimensional unit 

cube, which is enclosed by the vectors , 

, , and . 
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Now we’re reaching the point where it’s hard to actually “see” 

what’s happening. But the math shows us a pattern, the pattern 

matches our intuition on a simple case, and given that 

3-dimensional volume is the sum of multiples of 2-dimensional 

volumes, it seems plausible that N-dimensional volume could be the 

sum of multiples of (N-1)-dimensional volumes. 

 

Moreover, the volume formula matches our intuition when we 

rescale a vector. Intuitively, rescaling a vector should have the effect 

of rescaling the volume: for example, if we double the length of one 

of the sides of a parallelogram, the area should double. 
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Likewise, if we double the length of one of the sides of a 

parallelepiped, then the volume should double. 

 

 

 

More generally, if we rescale a single vector by a factor , then the 

volume should also be rescaled by a factor . Indeed, this is the 

case with our formula. 
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Of course, we have only shown that rescaling the first vector 

rescales the volume. However, we can use this fact to show that 

rescaling the second vector also rescales the volume. 
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We could keep on going, using similar arguments to show that 

rescaling the 3rd, 4th, so on, and Nth vector have the same effect of 

rescaling the volume. 

 

 

Final Remarks 
 

Unfortunately, this volume formula is unintuitive and unwieldy for 

volume computations in high-dimensional space. 

 

Soon, though, we will introduce a more intuitive concept called 

shearing, which will lead us to an easier, more intuitive process of 

computing high-dimensional volumes. 

 

The volume formula presented in this chapter is still noteworthy, 

though, because although shearing will provide us with a process for 

computing volume, it won’t give us a formula for computing volume. 

 

 

 

Exercises 
 

Compute the N-dimensional unsigned volume  

enclosed by the vectors . 
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2.2 Volume as the Determinant of a​
Square Linear System 

 

We have seen that the space of linear equations is actually a vector 

space, and that the linear equations in any particular system span a 

subspace of this vector space. 

 

 

Linear Systems as Vector Equations 
 

However, there is also another way to interpret linear systems in 

terms of vectors: a linear system can be interpreted as a single 

vector equation stating that some multiples of particular vectors 

add up to another particular vector. 

 

For example, we can write the system below as a vector equation by 

interpreting each side of the equation as a vector: 
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This equation states that some multiples , , and  of the 

coefficient vectors , , and  sum to the 

constant vector . 

 

You might recall that we solved this system earlier using reduction, 

and we found that the solution was , , and . 

Now, we see that these are simply the multiples of the coefficient 

vectors that sum to the constant vector. 

 

 

 

For the linear system to have a solution, there must be some 

multiples of the coefficient vectors that add to the constant vector. 

In other words, for the linear system to have a solution, the constant 

vector must be in the span of the coefficient vectors. 

 

Thinking about linear systems in terms of coefficient vectors can 

provide useful intuition. For example, we can tell that the linear 

system below has a solution because its coefficient vectors span the 

full 2-dimensional plane. 
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Moreover, since there are 3 coefficient vectors spanning a 

2-dimensional plane, there must be a dependent vector, so there 

must be infinitely many solutions. 

 

For example,  is a multiple of , so in any solution we can 

increase  by some amount and decrease  by twice that amount 

to yield another solution. Thus since  is a 

solution, so is , and , 

and so on. 

 

 

The Determinant 
 

When there are exactly N coefficient vectors that form an 

N-dimensional parallelepiped, we can also extend this intuition to 

relate to the volume of the coefficient vectors. Such linear systems 

are called square linear systems because they consist of N rows of 

equations and N columns of variables. In a square system, the 

volume of the coefficient vectors is called the determinant, because 

it determines much about the solutions of the system. 

 

When the determinant is nonzero, there is exactly one solution. 

When the determinant is nonzero, the N coefficient vectors form a 

parallelepiped that extends some nonzero amount in all N 

dimensions, and consequently the coefficient vectors span the full 

N-dimensional space, guaranteeing a solution. 
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Moreover, the solution must be unique. For N vectors to span N 

dimensions, the vectors must be independent -- meaning that no 

vector can be written in terms of the others, and thus guaranteeing 

that there is only one solution. 

 

For example, the following linear system has a nonzero determinant, 

and a single solution . 

 

 

 

 

 

On the other hand, when the determinant is zero, there are either 

no solutions or infinitely many solutions. When the determinant is 

zero, the coefficient vectors form a parallelepiped that is flat in at 

least one dimension, and consequently the coefficient vectors span 

only a smaller subspace of N-dimensional space, which may or may 

not contain the constant vector. 

 

If the subspace does not contain the constant vector, then there is 

no solution. 

 

If the subspace does contain the constant vector, then there is a 

solution, and moreover, since a set of N vectors spanning fewer than 

N dimensions must contain at least one dependent vector, there 

must be infinitely many solutions. 
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For example, the following linear system has a zero determinant and 

no solutions. 

 

 

 

 

 

On the other hand, the following linear system has a zero 

determinant, and infinitely many solutions. 

 

 

 

 

 

One solution, for example, is . But since 

 is the sum of  and , we can obtain another 

solution by increasing  and  by some amount, and decreasing  

by that same amount. For example, another solution is 

, and yet another solution is 

. 

 

Later, we will see that the determinant plays a fundamental role in 

understanding transformations of vectors, which are called 
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matrices. For now, though, we will just get in the habit of writing 

volume using the determinant operator  in place of . 

 

 

Exercises 
 

Determine whether the system has A) exactly one solution, or B) no 

solutions or infinitely many solutions. 
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2.3 Shearing, Cramer’s Rule, and​
Volume by Reduction 

 

Not only can a nonzero determinant tell us that a linear system has 

exactly one solution -- the nonzero determinant can also help us 

quickly find that solution through a process known as Cramer’s rule.  

 

 

Shearing 
 

The key bit of intuition surrounding Cramer’s rule is the idea that 

moving one of the sides of a parallelepiped in a parallel direction 

does not change the volume of the parallelepiped. This kind of 

transformation is known as shearing, and the intuition can be most 

easily illustrated in 2 dimensions. 

 

Suppose we have the following 2-dimensional linear system: 

 

 

 

The three vectors in this system -- two coefficient vectors and one 

constant vector -- can be represented visually as the vertices of a 

parallelogram. 
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Notice that shearing the parallelogram does not change its area. 

 

 

 

 

Cramer’s Rule in Two Dimensions 
 

Equating the volumes of the original parallelogram and the sheared 

parallelogram, we have 

 

. 

 

Using the fact that scaling a vector results in the volume being 

scaled by the same amount, we can simplify and solve for . 
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This is the solution for  in the original system! We can use the 

same method to solve for , too. 
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This method is known as Cramer’s rule. We illustrate it below on a 

concrete example, which would otherwise be annoying to solve by 

reduction because its solutions are fractional. 

 

 

 

Using Cramer’s rule, however, the solutions are much easier to 

compute. 
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Cramer’s Rule in N Dimensions 
 

To generalize Cramer’s rule to N dimensions, we first come up with a 

compact notation for writing systems of linear equations. 

 

 

 

 

 

 

 

In this notation, we reduce the linear system to a single equation in 

terms of the vectors , , and 

. The solutions from Cramer’s rule can then be written 

as follows: 

 

 

 

The pattern is clear:  is given by a fraction whose denominator is 

the determinant of the coefficient vectors, and whose numerator is 

the same except that the th coefficient vector  is replaced with 

the constant vector . 
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For an N-dimensional square linear system, then, the solutions to 

 

 

 

are given by 

. 

 

 

Volume by Reduction 
 

Now, let’s take a step back and talk more about the elegance of 

shearing. We have seen that through Cramer’s rule, shearing can be 

used to express the solution of a linear system using ratios of 

volumes. Now, we will see that shearing can also be used to 

compute volumes themselves, without having to use the volume 

formula. 

 

In a set of vectors, shearing simply amounts to adding one vector to 

another vector. Consequently, reducing a set of vectors preserves 

the volume of the parallelepiped formed by those vectors, provided 

that we don’t rescale any of the vectors themselves (otherwise, the 

volume would be rescaled as well). 

 

The volume of a reduced set of vectors is much easier to compute: 

we can simply multiply the diagonal, because the diagonal entries 

are the parallelepiped’s lengths in each dimension. 

 

 

 



Justin Skycak | Linear Algebra​​ ​ ​ ​     93 

As a simple example, we can use shearing to compute the volume 

enclosed by the vectors  and . 

 

 

 

 

 

 

 



94​ ​ ​ ​                Justin Skycak | Linear Algebra 

When computing the volume of 4 or more vectors, it is much faster 

to use shearing instead of the volume formula. Below is an example 

of a 4-dimensional volume calculation using shearing. 
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Exercises 
 

State whether the linear system has A) exactly one solution, or B) no 

solutions or infinitely many solutions. If there is A) exactly one 

solution, then use Cramer’s rule to find it. 

 

In your calculations of determinants in higher than 3 dimensions, be 

sure to use the technique of shearing -- it will save lots of time! 
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2.4 Higher-Order Variation of Parameters 

 

Until this point, we have been working exclusively with linear 

systems. However, solving linear systems can sometimes be a 

necessary component of solving nonlinear systems. 

 

 

Second-Order Variation of Parameters 
 

For example, recall the variation of parameters method for solving a 

second-order differential equation of the form  

 

. 

 

Variation of parameters proceeds by first guessing a solution of the 

form 

 

, 

 

where  and  are the two zero solutions of the differential 

equation 

 

, 

 

and  and  are some unknown multiplier functions that 

we solve for by setting up a system of equations. 
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To set up the first equation in our system, we force  

 

 

 

and equate it to the true derivative of : 

 

 

 

The second equation comes from substituting our guess for  into 

the differential equation and simplifying, using the fact that  and 

 are the zero solutions. 

 

 

 

This results in a square system of 2 equations. 
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In 2 dimensions, we can easily solve for  and  using 

elimination, obtaining the result below. 

 

 

 

Then, we can simply integrate and substitute these back into our 

particular solution. 

 

 

 

 

Higher-Order Variation of Parameters 
 

When we wish to use variation of parameters to find the particular 

solution of an Nth order differential equation 

 

 

 

we guess a solution of the form  

 

 

 

and force 
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. 

 

By equating each derivative with the true derivative of  up to 

order N, we can set up a system of equations.  

 

 

 

This system is difficult to solve by elimination. But now we can use 

Cramer’s rule! First, let’s write our system more compactly, using the 

notation 

 

. 

 

The system becomes 

 

. 

 

According to Cramer’s rule, each  is given by 

 

. 
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The denominator of this fraction is also known as the Wronskian, 

denoted 

 

. 

 

If we define  as 

 

 

 

then we have 

 

. 

 

Finally, we can write the particular solution to the differential 

equation by integrating and substituting into our initial guess. 

 

 

 

 

Demonstration 
 

Let’s illustrate this method on a simple example. To make it easier to 

find the zero solutions, we’ll choose an example with constant 

coefficients, but remember that this method works even when the 

coefficients are functions themselves. 

 

 

 



102​ ​ ​ ​                Justin Skycak | Linear Algebra 

We start off by finding the zero solutions, i.e. those that satisfy the 

equation whose right-hand side is zero. 

 

 

 

We do this by finding the roots of the characteristic polynomial 

. We can find the roots via factoring by 

grouping. 

 

 

 

These roots correspond to the following zero solutions: 

 

 

 

It remains to find the particular solution. To use variation of 

parameters, we need three independent zero solutions, so we’ll 

choose the simplest ones from above: . 

 

Substituting these into the variation of parameters formula, we have 

a particular solution of the form 
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with . Now, it remains to do the computations. First, we 

compute the standard Wronskian in the denominator. 
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Next, we compute the modified Wronskians in the numerators. 
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Lastly, we substitute back into the formula for the particular 

solution, and simplify. 
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The full solution to the differential equation, then, is 

 

. 

 

 

Exercises 
 

Solve the following differential equations using variation of 

parameters. 
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Part 3​
Matrices 
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3.1 Linear Systems as Transformations​
of Vectors by Matrices 

 

Let’s create a compact notation for expressing systems of linear 

equations like the one shown below. 

 

 

 

 

Matrices of Column Vectors 
 

We’re familiar with a slightly condensed version using coefficient 

vectors. 

 

 

 

However, we can condense this even further by putting the 

coefficient vectors in a vector themselves and taking the dot product 

with the vector of variables. 
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To save space, the vector of variables can be written as a column 

vector as well. 

 

 

 

Finally, to simplify the notation, we can remove the vector braces 

around the individual coefficient vectors and remove the dot 

product symbol. 

 

 

 

The array containing the coefficients is called a matrix. It’s really just 

a vector of sub-vectors, written without braces on the individual 

sub-vectors. 
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Looking back, it makes sense to define a matrix multiplying a vector 

as follows:  

 

 

 

 

Matrices of Row Vectors 
 

Keeping this form of matrix notation and multiplication in mind, let’s 

start from scratch and proceed to condense a system of linear 

equations in a different way. We’ll get an interesting result. 

 

Again, we will start with the system below. 

 

 

 

This time, however, we will begin by writing each equation as a dot 

product. 
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Then, we will write the system as a single vector equation by 

interpreting each side of the equation as a vector. 

 

 

 

Each component of the left-hand-side vector includes a dot product 

with the vector of variables, so we can factor out the vector of 

variables. 

 

 

 

Again, to save space, the vector of variables can be written as a 

column vector. 
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Finally, to simplify the notation, we can again remove the vector 

braces around the individual coefficient vectors. 

 

 

 

Again, there is a matrix! And again, the matrix just represents a 

vector of sub-vectors, written without braces on the individual 

sub-vectors. 

 

But this time, looking back, it makes sense to define a matrix 

multiplying a vector by a different rule. 

 

 

 

 

Matrix Multiplication 
 

Which rule is correct? It turns out, they both are. Before we do an 

example, though, let’s recap. 
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We’re stumbling upon the following structure: 

 

 

 

 

 

The array on the left-hand side is called a matrix, and we have two 

ways to compute the product of a matrix and a vector -- one which 

involves interpreting the columns of the matrix as individual vectors, 

and another which involves interpreting the rows of the matrix as 

individual vectors. 
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To verify that both methods of computation indeed yield the same 

result, we can try out a simple example using the two different 

methods to compute the product of a 2-by-2 matrix and a 

2-dimensional vector. 
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Geometric Intuition 
 

Lastly, let’s build some geometric intuition. Geometrically, a matrix 

represents a transformation of a vector space, and we can visualize 

this transformation by thinking about what the matrix does to the 

N-dimensional unit cube. 

 

For example, to see what the matrix from the example does to the 

unit square, we can multiply the vertices  and  of the unit 

square by the matrix. 

 

 

 

 

We see that the matrix moves the vertices of the unit square from 

 and , to  and . Notice that these are just the 

columns of the matrix! 
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But it’s not just the unit square that is transformed in this way. The 

entire space undergoes this transformation as well. 

 

 

 

And it’s more than simple stretching -- the space is actually flipped 

over, since the original bottom vertex  is now the top vertex 

, and the original top vertex  is now the bottom vertex 

. 
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Exercises 
 

Convert the following linear systems to matrix form. 
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Compute the product of the given vector and matrix by A) 

interpreting the columns of the matrix as individual vectors, and B) 

interpreting the rows of the matrix as individual vectors. Verify that 

the results are the same. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=18)%0
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3.2 Matrix Multiplication 

 

We have seen how to multiply a vector by a matrix. Now, we will see 

how to multiply a matrix by another matrix. 

 

Whereas multiplying a vector by a matrix corresponds to a linear 

transformation of that vector, multiplying a matrix by another matrix 

corresponds to a composition of linear transformations. 

 

 

General Procedure 
 

The procedure for matrix multiplication is quite familiar: we simply 

multiply each column vector in the right matrix by the left matrix.  

 

Really, we’re just trying to figure out where the points  and 

 map to after being transformed once by the right matrix and 

then again by the left matrix. We already know that the right matrix 

maps those points to its columns, so all we have to do is map those 

columns according to the left matrix. 
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An example is shown below. 

 

 

 

We can verify that multiplying a vector by this new matrix gives the 

same result as multiplying the vector first by the original right 

matrix, and then by the original left matrix. 
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Case of Rectangular Matrices 
 

Matrix multiplication isn’t limited to just square matrices. The 

matrices can be rectangular, too. 

 

 

 

But notice that if we switch the above example around, it no longer 

makes sense to multiply the matrices, because we are unable to 

multiply each column vector in the right matrix by the left matrix. 

There are fewer columns in the left matrix than there are entries in 

each column of the right matrix. 
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Criterion for Multiplication 
 

The trick to telling whether matrix multiplication is defined in a 

particular case is to check whether the width of the left matrix 

matches the height of the right matrix. 

 

Matrix dimensions are usually written as , so matrix 

multiplication is defined whenever the inner dimensions match up.  

 

For example, in the multiplication 

 

 

 

the left matrix has dimensions  and the right matrix has 

dimensions . 

 

Writing these dimensions in the order of multiplication, we see that 

the inner dimensions do indeed match up: they’re  and . 

 

 

 

Moreover, the outer dimensions give the dimensions of the resulting 

product: . 

 

 

 

http://www.texrendr.com/?eqn=%5Cbegin%7Balign*%7D%20%5Cbegin%7Bpmatrix%7D%203%20%26%204%20%5C%5C%205%20%26%206%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26%202%20%5Cend%7Bpmatrix%7D%20%5Cend%7Balign*%7D%0
http://www.texrendr.com/?eqn=%5Cbegin%7Balign*%7D%20%5Cbegin%7Bpmatrix%7D%203%20%26%204%20%5C%5C%205%20%26%206%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26%202%20%5Cend%7Bpmatrix%7D%20%5Cend%7Balign*%7D%0
http://www.texrendr.com/?eqn=%5Cbegin%7Balign*%7D%20%5Cbegin%7Bpmatrix%7D%203%20%26%204%20%5C%5C%205%20%26%206%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%201%20%26%202%20%5Cend%7Bpmatrix%7D%20%5Cend%7Balign*%7D%0
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On the other hand, the matrices in the multiplication 

 

 

 

have dimensions . The inner dimensions don’t 

match up: they’re  and . Therefore, the matrix multiplication is 

not defined. 

 

Notice the implications for square matrices: multiplication is defined 

for square matrices only when they both have the same dimensions, 

say , and multiplication remains defined even if we switch 

the order of the square matrices, because the dimensions of the 

product stay the same: 

 

  

 

Moreover, the output is itself a square matrix of the same 

dimension, . 

 

 

Non-Commutativity 
 

Even for square matrices, though, matrix multiplication is generally 

not commutative -- if we switch the order of two matrices in a 

product, we tend to get a different result. 
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For example, switching the two matrices in the most recent example 

yields a different result: 

 

 

 

 

Even simple matrices generally do not commute: 

 

 

 

 

The reason matrices tend not to commute is that left-multiplication 

and right-multiplication have different interpretations: 

left-multiplication sums combinations of row vectors, whereas 

right-multiplication sums combinations of column vectors. 
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Applying some operation to the rows of a matrix is generally not the 

same as applying that operation to the columns of a matrix. 

 

Left-multiplication of  by  

 

 

Right-multiplication of  by  

 

 

 

Diagonal Matrices 
 

That being said, there are some instances in which matrices do 

commute. 
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For example, diagonal matrices commute with each other. (A 

diagonal matrix consists of zero everywhere except the diagonal 

running from the top-left entry to the bottom-right entry.) 

 

 

 

 

Diagonal matrices commute with each other because the diagonal 

components end up being multiplied independently as scalars rather 

than vectors, and scalar multiplication does in fact commute. 

 

 

 

Be aware, though, that antidiagonal matrices generally do not 

commute with each other. (An antidiagonal matrix is like a diagonal 

matrix, but with the diagonal running from top-right to bottom-left.) 
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Exercises 
 

Compute the product of the given matrices, if possible, using A) the 

left-multiplication interpretation, and B) the right-multiplication 

interpretation. 

 

Otherwise, if it is not possible to compute the product, then state 

the dimensions that A) the left matrix would need to have for the 

multiplication to be defined, or B) that the right matrix would need 

to have for the multiplication to be defined. 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 

 



130​ ​ ​ ​                Justin Skycak | Linear Algebra 
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3.3 Rescaling, Shearing, and the Determinant 

 

The key insight in this chapter is that every square matrix can be 

decomposed into a product of rescalings and shears. Before we 

elaborate on that, though, let’s discuss what rescalings and shears 

are, in terms of matrices. 

 

 

Rescaling Matrices 
 

Rescaling matrices are matrices that rescale the dimensions of 

space, with each dimension potentially being rescaled by a different 

amount. That is to say, the dimensions of space maintain their 

original direction, but their lengths are multiplied by some factors.  

 

For example, in 2-dimensional space, the rescaling of  into 

 and  into  is given by left- or right-multiplication by 

the following rescaling matrix: 
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We could also have negative rescalings, or even zero rescalings that 

collapse a vector’s length down to . For example, the rescaling 

matrix that rescales  into  and  into  is given 

by 

 

. 

 

We can extend to higher dimensions as well. In 3-dimensional space, 

the rescaling matrix that rescales  to , and  

to , and  to  is given by 

 

. 

 

Do you notice a pattern? Rescaling matrices are just diagonal 

matrices! 

 

There is a fast trick for multiplying rescaling matrices: just multiply 

the diagonal entries independently. Consequently, the product of 

two rescaling matrices is itself always a rescaling matrix as well. 

 

 

 

Likewise, there is also a fast trick to compute the determinant of a 

rescaling matrix. Since the vectors in a rescaling matrix form a 

rectangular prism, and the volume of that prism is obtained by 
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multiplying the side lengths, the determinant of a rescaling matrix is 

simply the product of the rescalings, i.e. the product of the diagonal. 

 

 

 

 

Shearing Matrices 
 

Now let’s talk about shearing matrices. Recall that shearing involves 

moving one of the sides of a parallelepiped in a parallel direction, 

and does not change the volume of the parallelepiped. We have also 

seen that in a set of vectors, shearing simply amounts to adding a 

multiple of some vector to a different vector.  

 

Since a matrix is defined by its transformation of the unit cube, we 

can consider just the shears of the unit cube. In 2 dimensions, for 

example, a shear of the unit cube would either consist of vectors 

 and , or  and , where  is the multiple of 

the vector that is added. 
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Likewise, in 3 dimensions, a shear of the unit cube could consist of 

vectors , , and ; or , , and 

; or , , and , where  and  are 

the multiples of the vectors that are added. These correspond to the 

following matrices, respectively: 

 

Left-multiply: 

 

OR    

Right-multiply: 

 

 

Do you notice a pattern? Shear matrices consist of a diagonal of 1s, 

with all other entries zero except for possibly a single row or 

column. 
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Unfortunately, there is no easy trick for multiplying shear matrices, 

other than just adding multiples of one row/column to another 

row/column. The result of multiplying two shear matrices might not 

even maintain a diagonal of 1s, for example: 

 

 

 

However, there is one property that is conserved in the result of 

multiplying shear matrices: the determinant of a product of shear 

matrices has to remain 1. This is because shear matrices don’t 

change the volume of any parallelepiped within a vector space. 

 

 

Decomposing into Rescalings and Shears 
 

Now let’s move onto the main idea of this chapter: every square 

matrix can be decomposed into a product of rescalings and shears. 

We’ll illustrate the process through a couple of examples. 

 

The process of decomposing a matrix into a product of rescalings 

and shears is very familiar -- it mainly consists of reducing the row or 

column vectors while keeping track of our multipliers in rescaling 

and shear vectors. 

 

The only catch is that we need to keep track of the process in 

reverse, which means we have to flip the sign of the multipliers that 

we put in shear matrices, and take the reciprocal of the multipliers 

that we put in rescaling matrices. 
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For example, to decompose the matrix below into a product of 

rescalings and shears, we start by adding  times the first row to 

the second row, which means we put  in our left shear matrix to 

represent the reverse operation. Then, we multiply the bottom row 

by , which means we put  in our left rescaling matrix to 

represent the reverse operation. 

 

 

 

 

 

Here is another example, which might initially seem tricky because 

the first row has a  as its first entry. However, we can create a  as 

the first entry by adding  of the second row. Then, all that 

remains is to rescale the second row. 
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Note that sometimes we may need to rescale by  to introduce a  

into a row of s, such as in the top row of the matrix below. 

 

 
 

Likewise, to introduce a  into a column of s, we can right-multiply 

by a rescaling matrix having a  entry on the diagonal. 

 

 
 

Below is a final example of decomposing a  matrix into 

rescalings and shears. 
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Determinant of a Product 
 

One important consequence of decomposing square matrices into 

rescalings and shears is that, for two square matrices  and , we 

have 

 

. 

 

To understand why this is, imagine writing  and  each as a 

product of rescalings and shears. 

 

Since the shears have no effect on volume, they can be removed 

from the product  without changing . 

 

Then, we are left with the rescaling matrices for  and , which 

give the determinants for  and , respectively. 
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Meaning of Negative Determinant 
 

Another consequence of decomposing square matrices into 

rescalings and shears is that it makes clear the meaning of negative 

determinant. 

 

Since shears don’t change the determinant, a negative in a 

determinant must come from the rescalings -- meaning that the 

total number of negative entries in the diagonals of all the rescaling 

matrices must be odd. 

 

There is geometric intuition for negative determinants as well, 

having to do with the orientation of space. 

 

The orientation of space can be thought of as a “curl” proceeding 

from  to , and then to , and so on, until , and then back 

to . For example, for the unit cube in 3 dimensions, the curl is 

counterclockwise (when viewed opposite the origin). 

 

However, applying a matrix with a single negative rescaling and thus 

a determinant of , one of the sides of the unit cube is flipped in 

the opposite direction. This causes the curl to reverse its orientation 

from counterclockwise to clockwise. 
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On the other hand, applying a matrix with two negative rescalings 

and thus a determinant of , two of the sides of the unit cube are 

flipped in the opposite direction, and the curl maintains its 

counterclockwise orientation. 
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Exercises 
 

Decompose the following matrices into products of rescalings and 

shears. 
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Compute  for the matrix  in the equations below, given 

that , , and . 
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3.4 Inverse Matrices 

 

In this chapter, we introduce the idea of the inverse of a matrix, 

which undoes the transformation of that matrix. 

 

 

Verifying an Inverse Matrix 
 

For example, it’s straightforward that the inverse of the rescaling 

matrix 

 

 

 

is obtained as the rescaling matrix that rescales each dimension by 

the inverse amount. 

 

 

 

We can verify that by multiplying the matrix by its inverse, and 

observing that the inverse takes the matrix back to the unit square. 
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Procedure for Finding the Inverse 
 

But when we consider a more general matrix like the one below, it’s 

less straightforward how to find the inverse. 

 

 

 

We could try inverting each of the components separately, like we 

did with the diagonal of the rescaling matrix, but the resulting 

matrix doesn’t take the original matrix back to the unit square -- so 

it can’t be the inverse. 

 

 

 

Here is another idea: since we want to end up with the unit square, 

let’s left-multiply our matrix by other matrices representing row 

operations until we get to the unit square. 
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Then, let’s take all the matrices we multiplied by, and find their 

product. That will be our inverse matrix. 

 

 

 

We can verify that indeed, this is the correct inverse matrix. 

 

 

 

 

Left and Right Inverses 
 

Based on the fact that we computed the inverse by left-multiplying, 

we should only expect the inverse to work for left-multiplication.  

 

Interestingly, it works for right-multiplication as well! 

 

 

 

This result is general to any inverse matrix -- regardless of whether 

we multiply a matrix by its inverse on the left or right, the result will 

be the unit cube. 
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To see why, we’ll need to do a bit of simple algebra. To ease 

notation, we’ll denote the unit cube matrix by , which stands for 

the identity matrix and comes from the fact that  

for any matrix . 

 

Since  for an inverse matrix obtained by 

left-multiplication, and since matrix multiplication is associative, we 

have 

 

. 

 

But if we left-multiply  by a matrix and maintain a result of , 

that matrix must be the identity! That is, if , then we 

must have . Hence, left and right inverses are one and 

the same.  

 

 

Non-Invertible Matrices 
 

Now, let’s try to find the inverse of the matrix below. Something 

weird will happen. 

 

 

 

This is simply a rescaling matrix with the rescaling quantities  and  

on the diagonal. With rescaling matrices, we’re used to finding the 

inverse by inverting the diagonal entries. We can invert  and get , 

but we can’t invert  -- the fraction  is undefined. 
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It turns out, this matrix has no inverse. In general, any matrix having 

a  rescaling has no inverse, because once a vector is rescaled by a 

factor of , it’s impossible to recover the original length of the 

vector -- as far as we know, it could be any length, because  times 

any number results in . 

 

 

Criterion for Invertibility 
 

By the same token, any matrix whose rescalings are all nonzero has 

an inverse. Once a vector is rescaled by a factor of , we can 

recover the original length of the vector by simply rescaling again 

by . 

 

Since the determinant of a matrix is the product of its rescalings, we 

can put all this together into an elegant statement: a matrix is 

invertible if and only if its determinant is nonzero. 

 

This statement gives another perspective on why a linear system 

with nonzero determinant has exactly 1 solution, whereas a linear 

system with zero determinant has none or infinitely many solutions.  

 

Any linear system can be written as a matrix equation , and 

if , then  exists, resulting in a single solution given 

by . 

 

On the other hand, if , then  contains some zero 

rescaling, and thus if there is any solution at all, then there must be 

infinitely many solutions because multiplication by zero gives the 

same result for infinitely many numbers. 
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Faster Method for Computing Inverses 
 

Lastly, let’s end by discussing a faster method to compute inverse 

matrices, based on the technique of reduction. 

 

We already know how to use reduction to keep track of coefficients 

when solving linear systems by elimination -- but we’ll introduce a 

more compact augmented matrix notation that will allow us to 

compute inverse matrices. 

 

To solve the linear system below, we first convert it to an augmented 

matrix. 

 

 

 

Then, we perform row operations on the augmented matrix until we 

have reduced the left-hand side to the identity matrix. 

 

 

 

Finally, the solutions are displayed on the right-hand side:  

and . 

 

This process is familiar -- we’re just left-multiplying by matrices 

corresponding to row operations until we get to the identity matrix, 

at which point we have effectively multiplied the original left-hand 

side matrix by its inverse. 
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Since we perform those same operations on the right-hand side 

vector, we are effectively multiplying the vector by the inverse 

matrix as well, which yields the solution. 

 

If we want to find the actual inverse matrix, rather than just using it 

to solve the system, we can modify this process slightly by replacing 

the original right-hand side vector with the identity matrix. 

 

Then, once the left-hand side matrix is taken to the identity matrix, 

the right-hand side identity matrix will be taken to the inverse 

matrix. 

 

To find the actual inverse matrix in the previous example, we replace 

the right-hand side with the identity matrix and perform the same 

row operations to reduce the left-hand side. 

 

 

 

Thus, we have the inverse matrix: 
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Formula for the Inverse of a 2-by-2 Matrix 
 

There is a nice general formula for the inverse of a  matrix, 

which is given below. 

 

 

 

It is recommended to memorize this formula to ease manipulations 

with  matrices, since the whole point of doing examples with 

 matrices is to ensure that they are relatively simple and fast. 

 

 

Exercises 
 

For each given matrix , compute  to tell whether  is 

invertible. If it is, then compute , and verify that  

and . 
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For each equation , tell whether  exists. If it does, then 

compute the solution . 
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Part 4​
Eigenspace 
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4.1 Eigenvalues, Eigenvectors, and​
Diagonalization 

 

Suppose we want to compute a matrix raised to a large power, i.e. 

multiplied by itself many times. 

 

 

 

Of course, we could perform this computation using sheer brute 

force, multiplying out each of the 999 matrices -- but this would take 

a while. 

 

On the other hand, we could go about the multiplications in a more 

clever way -- for example, if the matrix is , then we could compute 

, , and so on until we get to 

, and then compute  

 

. 

 

However, this would still require us to compute 14 multiplications, 

which -- although it is much better than the original 999 -- is still an 

annoyingly large amount of work, especially once the numbers 

inside the matrices become large. 
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Inverse Shearings and Rescalings 
 

Fortunately, there is an even better way. First, notice that there is a 

way to express this matrix as a particular product of shearings and 

rescalings shown below. 

 

 

 

The two shearings surrounding the rescaling are special in that they 

are inverses of each other: 

 

 

 

As a result, if we multiply 999 copies of the decomposed matrix, we 

see that all of the shears cancel except the very first and the very 

last, leaving us with a product of 999 rescaling matrices in between. 
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But rescaling matrices are easy to multiply -- we can just multiply 

the diagonal entries separately! This leaves us with only 3 remaining 

matrix multiplications, which isn’t too much work to do by hand. 

 

 

 

 

 

Diagonalized Form 
 

In order to reproduce this trick on other matrices, we need to come 

up with a general method for expressing a matrix  in the 

diagonalized form 
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where  is a diagonal rescaling matrix and the surrounding 

matrices  and  are inverses of each other.  

 

In order to solve for  and , it helps to right-multiply both sides 

of the equation by  so that 

 

. 

 

Then, we can express  in terms of its column vectors  and  in 

terms of its diagonal entries , and multiply. 

 

 

 

 
 

We see that the problem amounts to finding pairs of vectors  and 

scalars  such that 

 

. 
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Eigenvectors and Eigenvalues 
 

Such vectors  are called eigenvectors of the matrix , and the 

scalars  that the eigenvectors are paired with are called 

eigenvalues. 

 

Essentially, the eigenvectors of a matrix are those vectors that the 

matrix simply rescales, and the factor by which an eigenvector is 

rescaled is called its eigenvalue. 

 

There is one important constraint: the eigenvectors must be 

nonzero and independent, since we need to be able to compute the 

inverse of the matrix that has them as columns. 

 

In order to solve for the eigenvector and eigenvalue pairs, we 

rearrange the equation once more, introducing the identity matrix 

 so that we may factor out the eigenvector . 

 

 

 

Since we’re assuming  is not the zero vector, the last equation tells 

us that some combination of not-all-zero multiples of columns of 

 makes the zero vector. Consequently, the columns of 

 must be dependent, and thus 

 

. 
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Finally, we have an equation that we can use to solve for . Then, 

for each solution that we find for the eigenvalue , we can simply 

substitute back into  to solve for the corresponding 

eigenvector . 

 

 

Demonstration of Diagonalization 
 

Let’s work an example. Say we want to diagonalize the matrix below. 

 

 

 

We start by solving the equation  for the 

eigenvalues . 
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Now that we have the eigenvalues  and , we solve 

the equation  for corresponding eigenvectors  and 

. 

 

 

 

At this point, one option is to write  in terms of its components, 

say , and simplify the matrix equation into a linear system 

in  and . 

 

 

 

 

We can simplify the system by dividing the top equation by  and 

the bottom equation by . This reveals that the two equations are 

really just the same equation. 
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As a result, they can be reduced down to a single equation, and we 

can easily solve for  in terms of . 

 

 

 

Substituting back into , we have 

 

. 

 

In other words, the eigenvector  can be chosen as any multiple of 

the vector . Intuitively, this makes sense: if , then 

any multiple  of  will have the same property:  

 

 

 

We only need to choose a single vector for . For the sake of 

simplicity, we will choose  to be the least multiple of  that 

has whole number coefficients, and a positive first component. We 

multiply the vector by  to reach 

 

 



Justin Skycak | Linear Algebra​​ ​ ​ ​     163 

. 

 

Thus, we have our first eigenvalue-eigenvector pair! 

 

 

 

Solving for an eigenvector might seem like a bit of work, but once 

you go through the process several times, you’ll notice a faster 

method: we can simply multiply by a diagonal matrix. 

 

 

 

The diagonal matrix represents the operations we did the long way 

on the system of equations: dividing the top equation by  and 

the bottom equation by . 
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Then, we just have to choose  as a vector whose dot product with 

 is equal to . The simplest choice is , and to keep the 

solution general, we introduce a parameter  to mean that  is any 

nonzero multiple of . 

 

For the purposes of diagonalization, we just need one particular 

such vector, so we will choose the simplest case,  (and we will 

implicitly assume such choice when solving for other eigenvectors).  

 

Using this method, we reach the same eigenvalue-eigenvector pair. 

 

 

 

Next we repeat the same process to find the second 

eigenvalue-eigenvector pair, this time starting with our second 

eigenvalue . 
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Now that we have our eigenvalues and eigenvectors, we can 

substitute them into our diagonalization. 

 

 
 

 

More Complicated Case 
 

In this example, the eigenvalues came out to nice integer values. As 

we’ll see in the next example, eigenvalues and eigenvectors might 

be messy, involving roots or even complex numbers. 

 

The next example will also be on a  matrix, to illustrate that 

the method of diagonalization is the same even for 

higher-dimensional matrices. 
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To diagonalize the matrix 

 

 

 

we begin by computing the eigenvalues: 
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Then, we solve for the eigenvectors corresponding to the 

eigenvectors , , and . 

 

 

 

 

 



168​ ​ ​ ​                Justin Skycak | Linear Algebra 

 

 

Collecting our eigenvalues and eigenvectors, we have 

 

. 
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We substitute the eigenvalues and eigenvectors into our 

diagonalization. 

 

 
 

Then we compute . 

 

 

 

Finally, we’re done! 
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Eigenvalues with Multiple Eigenvectors 
 

When diagonalizing some matrices such as the one below, we may 

end up with a single repeated eigenvalue, which corresponds to 

multiple independent eigenvectors. 

 

 

 

This matrix consists of two distinct eigenvalues, one of which is 

repeated. 
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When we solve for the eigenvector corresponding to the eigenvalue 

, we find that the solution consists of combinations of two 

independent vectors. 

 

 

 

We shall use the simplest cases,  and , to 

choose two eigenvectors corresponding to the eigenvalue . 

Thus, we have two eigenvalue-eigenvector pairs! 
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We solve for the third eigenvector, corresponding to the eigenvalue 

, as usual. 

 

 

 

Then, we can invert the eigenvector matrix and diagonalize. 

 

 
 
 

Non-Diagonalizable Matrices 
 
Other times, though, we may not find enough independent 
eigenvectors to create the matrix . 
 
In such cases,  simply cannot be diagonalized (though we will later 
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learn a different method to exponentiate such matrices without too 
much more work). 
 
For an example of a non-diagonalizable matrix, consider the matrix 
below: 
 

 

 

We are able to solve for the eigenvalues of this matrix: 

 

 

 

However, when we attempt to solve for the eigenvectors, we reach a 

problem: there is only one independent vector that satisfies 

. 
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We need two pairs of eigenvalues and eigenvectors to diagonalize 

the matrix, but we have a repeated eigenvalue and only one 

independent eigenvector corresponding to that eigenvalue. 

 

Thus, we simply do not have enough independent eigenvectors to 

diagonalize the matrix. 

 

 

Exercises 
 

Diagonalize the given matrices , if possible. If diagonalization is 

possible, then use the diagonalization to compute a formula for . 

Check your formula on the case . 
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4.2 Recursive Sequence Formulas via​
Diagonalization 

 

In this chapter, we introduce an interesting application of matrix 

diagonalization: constructing closed-form expressions for recursive 

sequences. 

 

 

Recursive Sequences 
 

A recursive sequence is defined according to one or more initial 

terms and an update rule for obtaining the next term after some 

number of previous terms. 

 

For example, the sequences  and  given below are 

arithmetic and geometric sequences given in recursive form. 

 

  

 

For both of these sequences, it is straightforward to write a 

closed-form expression for the Nth term: 
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For other sequences, however, this is not so straightforward. For 

example, consider the Fibonacci sequence, whose first term is , 

whose second term is , and whose successive terms are obtained 

by adding the previous two terms together. 

 

 

 

The recursive rule for the Fibonacci sequence is as follows: 

 

 

 

 

Finding a Closed-Form Expression 
 

Notice that we can express the recursive update rule using matrices. 

 

 

 

Repeatedly multiplying by this matrix, we can write a closed-form 

expression for the Nth and (N+1)st terms. 
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We can simplify this expression even further by diagonalizing the 

matrix. First, we solve for the eigenvalues. 

 

 

 

Now, we find the eigenvectors  and  that correspond to the 

eigenvalues  and . 
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Finally, we can diagonalize the matrix. 

 

 
 

Substituting the diagonalized matrix into the original formula, we 

are able to simplify so much that we find a closed-form, non-matrix 

formula for the Nth term of the sequence. 
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This formula might be a little surprising -- the Fibonacci sequence 

consists only of whole numbers, yet  appears often in the 

formula! 

 

However, the formula is indeed correct. We verify the formula for 

, , and  -- and it will work on all the other terms as well. 
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Case when Approximation is Required 
 

This same method applies for any recursive sequence, though we 

may need to diagonalize a higher-dimensional matrix and 

numerically approximate the eigenvalues. 

 

For example, consider the following spin-off of the Fibonacci 

sequence: 

 

 

 

First, we express the recursive update rule using matrices, and write 

a closed-form expression involving an exponentiated matrix 

multiplying the first few terms. 

 

 

 

 



184​ ​ ​ ​                Justin Skycak | Linear Algebra 

We omit the steps of diagonalizing the matrix since they should be 

routine by now -- but it is worthwhile to discuss the method of 

approximating the eigenvalues. 

 

When solving for the eigenvalues, we reach the following equation: 

 

 

 

This cubic cannot be factored manually -- not even using synthetic 

division -- since it has no rational roots. 

 

Hence, we turn to a graphing utility to approximate a root 

. Then, we can perform synthetic division with that root 

to factor the polynomial into 

 

. 

 

We can use the quadratic equation to solve  

 

 

 

for the other two roots, which we find as  

and . 

 

Then, with a bit of grunt work, we can use these approximations to 

solve for the eigenvectors, substitute the diagonalization into the 

original equation, and multiply to find the formula for the Nth term.  
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The result, with each term rounded to 3 decimal places, is 

 

. 

 

Lastly, we can verify that the first several terms match up with the 

actual sequence . 

 

Our estimates are slightly off due to compounded rounding error, 

but they could be made more accurate by using greater precision in 

the decimals that occur in the formula for . 
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Exercises 
 

Use diagonalization to compute a closed-form expression for the 

recursive sequence . 
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4.3 Generalized Eigenvectors and Jordan Form 

 

As we saw previously, not every matrix is diagonalizable, even when 

allowing complex eigenvalues/eigenvectors. The matrix below was 

given as an example of a non-diagonalizable matrix. 

 

 

 

 

Patterns in Powers 
 

However, notice that there’s a pattern in the powers of this matrix. 

 

 

 

Leveraging this pattern, we can still write a formula for the Nth 

power of this matrix. 
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When we conduct this same experiment with a  matrix of 

similar form, a more general pattern pops up. 

 

 

 

The pattern is that the numbers are all just binomial coefficients 

taken from Pascal’s triangle! Writing this pattern more generally for 

a  square matrix, we have 

 

. 
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If we replace the diagonal with another number, say , then similar 

experimentation reveals the following formula: 

 

 

 

 

Jordan Form 
 

These matrices consisting of a diagonal  directly below an 

off-diagonal of s are called Jordan blocks, and a matrix consisting 

of Jordan blocks is called a Jordan matrix. 

 

For example, the matrix below consists of two Jordan blocks. (Note 

that blank entries correspond to .) 

 

 

 

The big question, then, is: which matrices  can be expressed as 

 

 

 

where  is a Jordan matrix? 
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The answer is quite satisfying: all of them! Thus, Jordan form 

provides a guaranteed backup plan for exponentiating matrices 

that are non-diagonalizable. 

 

 

Procedure for Finding a Jordan Form 
 

So, how do we construct the matrices  and ? Let’s start out like 

we did with diagonalization, right-multiplying both sides of the 

equation by . 

 

 

 

To keep things simple but interesting enough to generalize our 

results, let’s assume the following two-block Jordan matrix. 

 

 

 

Then we have 

 

. 
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First of all, since 

 

  

 

we see that  and  are eigenvectors corresponding to the 

eigenvalues  and , respectively. 

 

This makes intuitive sense because these columns mark the start of 

the Jordan blocks and thus don’t have a 1 above them -- these 

columns are perfect diagonals. 

 

Before we go on, notice that we can rearrange the above equations 

as follows: 

 

 

 

This will be helpful shortly. Now, we move into the more novel 

cases, beginning by equating the second columns. 

 

 

 

By rearranging the equation, we come up with an equation similar 

to those we found for the eigenvectors  and . 

 

 



192​ ​ ​ ​                Justin Skycak | Linear Algebra 

 

 

We call  a generalized eigenvector of order  for the eigenvalue 

 because it solves the equation , whereas 

normal eigenvectors (i.e. generalized eigenvectors of order ) for the 

eigenvalue  solve the equation . 

 

By the same reasoning, we conclude that  is a generalized 

eigenvector of order  for , and  is a generalized eigenvector 

of order  for . 

 

 

Demonstration 
 

To conclude this chapter, we walk through an example of 

exponentiating the non-diagonalizable matrix below by converting it 

to Jordan form. 
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First, we compute the eigenvalues. In the row manipulations, we use 

the symbol  to denote matrix entries that change but have no 

consequence when computing the determinant. 

 

 

 

 

 

 

 

Now that we have the eigenvalues  repeated twice and 

 repeated three times, we solve for the first and 

second-order generalized eigenvectors for , and the first, second, 

and third-order generalized eigenvectors for . 
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First, we solve for the first-order generalized eigenvector  of 

. 
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Next, we solve for the second-order generalized eigenvector  of 

, which is independent of the first-order generalized 

eigenvector . 
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Before we go on, let’s take inventory of what we have, filling in part 

of our Jordan form expression. 

 

 

 

 

Continuing, we solve for the first-order generalized eigenvector  

of . 
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Then, we solve for the second-order generalized eigenvector  of 

, which is independent of the first-order generalized 

eigenvector . 
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Lastly, we solve for the third-order generalized eigenvector  of 

, which is independent of the first and second-order 

generalized eigenvectors  and . 
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Finally, we can fill in the rest of our Jordan form expression. 

 

 

 

 

Exponentiating our matrix, we have 

 

. 

 

To exponentiate the middle matrix, it suffices to exponentiate the 

two blocks separately. The first block is simple and familiar: 
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For the second block, we make use of the general formula 

 

 

 

and find that 

 

. 

 

Thus, we have 

 

. 

 

Multiplying out and simplifying, we reach 

 

. 
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Lastly, let’s verify this formula on the case . 

 

 

 

 

It checks out! 

 

 

Exercises 
 

For each matrix , express  where  is a Jordan 

matrix, and use this Jordan expression to compute . Check your 

formula on the case . 
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4.4 Matrix Exponential and​
Systems of Linear Differential Equations 

 

In this chapter, we will learn how to solve systems of linear 

differential equations. These systems take the form shown below. 

 

 

 

 

Converting to Matrix Form 
 

We can write the system in matrix form: 
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Defining 

 

 

 

the system can be written more compactly as 

 

. 

 

This bears resemblance to a familiar differential equation , 

where  and  are both scalars. We know that the solution to such 

a system is given by . 

 

We infer, then, that the solution to the matrix differential equation 

is given by 

 

. 

 

But what does it mean to exponentiate a matrix? How should we 

compute ? 

 

 

Matrix Exponential 
 

Recall that  can be written as the power series 
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. 

 

Consequently,  can be written as the power series 

 

. 

 

Extending this to the matrix exponential , then, we have 

 

. 

Writing  in the form 

 

 

 

where  is a Jordan matrix, we have 

 

. 
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Thus, computing the exponential of a matrix reduces to the problem 

of computing the exponential of the corresponding Jordan matrix. 

As such, we need only investigate how to compute exponentials of 

Jordan blocks. 

 

First, we consider the simplest case: a perfectly diagonal block. 

 

 

 

In this case, we have 
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. 

 

Second, we consider the more involved case: a block with an 

off-diagonal of s. 
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In this case, we have 

 

 

. 

 

Taking the convention  when , we can write 

 

 

. 
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Notice that the entries in the matrix take the form 

 

 

 

where  is the column index of the matrix. We can simplify these 

expressions as follows: 
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Thus,  

 

 

. 

 

 

Demonstration 
 

Now, we’re ready to run through an example. We shall solve the 

system below. 
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First, we convert the system to matrix form. 

 

 

 

Next, we write the matrix in the form  where  is a Jordan 

matrix. We did this with the same matrix in the previous chapter, so 

we will just assume our previous result. 

 

 

 

We know that the solution to the system is given by 

, which we will be able to multiply once we 

compute . We break up the computation of  across the two 

blocks within . 
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Applying our formula from earlier, we have 

 

. 

 

Putting this together, we have 

 

. 

 

Finally, we compute the solution. 
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Exercises 
 

Solve each system of linear differential equations by converting it to 

a matrix equation  and computing the solution 

. 
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Solutions​
to Exercises 

 

 

 



218​ ​ ​ ​                Justin Skycak | Linear Algebra 

 

 



Justin Skycak | Linear Algebra​​ ​ ​ ​     219 

Part 1 

 

Chapter 1.1 

 

  

  

 

  

  

  

  

  

 
 

 

Chapter 1.2 
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Chapter 1.3 
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Chapter 1.4 
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Chapter 1.5 
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Part 2 

 

Chapter 2.1 

 

  

  

  

  

  

 

Chapter 2.2 
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Chapter 2.3 
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Chapter 2.4 
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Part 3 

 

Chapter 3.1 
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Chapter 3.2 
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Chapter 3.3 
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Chapter 3.4 
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Part 4 

 

Chapter 4.1 
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Chapter 4.2 
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Chapter 4.3 
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Chapter 4.4 

 

 

 

 
 

 

 

 

 

 

 

 



242​ ​ ​ ​                Justin Skycak | Linear Algebra 

 

 

 

 

 

 


	 
	 

	 
	 
	 
	 
	Part 1​Vectors 
	 
	 
	1.1 N-Dimensional Space 
	Functions with Multiple Inputs and Outputs 
	Vectors 
	Scalars 
	Norm of a Vector 
	Algebra with Vectors 
	Exercises 

	 
	 
	1.2 Dot Product and Cross Product 
	Dot Product 
	Cross Product 
	Geometric Interpretation of Cross Product 
	Exercises 

	 
	 
	1.3 Lines and Planes 
	Finding the Equation of a Line 
	Checking Whether a Point is on a Line 
	The Equation of a Plane 
	Finding a Plane Given a Point and Perpendicular Vector 
	Finding a Plane Given Three Points 
	Exercises 

	 
	 
	1.4 Span, Subspaces, and Reduction 
	Subspaces of Two-Dimensional Space 
	Subspaces of N-Dimensional Space 
	Independence 
	Maximum Number of Independent Vectors 
	Reduction 
	Exercises 

	 
	1.5 Elimination as Vector Reduction 
	Interpreting Elimination as Vector Reduction 
	Exercises 


	 
	 
	 
	 
	Part 2​Volume 
	 
	 
	2.1 N-Dimensional Volume Formula 
	Volume Enclosed by N-Dimensional Vectors 
	Volume of a Parallelogram 
	Volume of a Parallelepiped 
	N-Dimensional Volume Formula 
	Sanity Checks 
	Final Remarks 
	Exercises 

	 
	2.2 Volume as the Determinant of a​Square Linear System 
	Linear Systems as Vector Equations 
	The Determinant 
	Exercises 

	 
	 
	2.3 Shearing, Cramer’s Rule, and​Volume by Reduction 
	Shearing 
	Cramer’s Rule in Two Dimensions 
	Cramer’s Rule in N Dimensions 
	Volume by Reduction 
	Exercises 

	 
	2.4 Higher-Order Variation of Parameters 
	Second-Order Variation of Parameters 
	Higher-Order Variation of Parameters 
	Demonstration 
	Exercises 


	 
	 
	 
	 
	 
	Part 3​Matrices 
	 
	 
	3.1 Linear Systems as Transformations​of Vectors by Matrices 
	Matrices of Column Vectors 
	Matrices of Row Vectors 
	Matrix Multiplication 
	Geometric Intuition 
	Exercises 

	 
	 
	3.2 Matrix Multiplication 
	General Procedure 
	Case of Rectangular Matrices 
	Criterion for Multiplication 
	Non-Commutativity 
	Diagonal Matrices 
	Exercises 

	 
	3.3 Rescaling, Shearing, and the Determinant 
	Rescaling Matrices 
	Shearing Matrices 
	Decomposing into Rescalings and Shears 
	Determinant of a Product 
	Meaning of Negative Determinant 
	Exercises 

	 
	3.4 Inverse Matrices 
	Verifying an Inverse Matrix 
	Procedure for Finding the Inverse 
	Left and Right Inverses 
	Non-Invertible Matrices 
	Criterion for Invertibility 
	Faster Method for Computing Inverses 
	Formula for the Inverse of a 2-by-2 Matrix 
	Exercises 


	 
	 
	 
	Part 4​Eigenspace 
	 
	 
	4.1 Eigenvalues, Eigenvectors, and​Diagonalization 
	Inverse Shearings and Rescalings 
	Diagonalized Form 
	Eigenvectors and Eigenvalues 
	Demonstration of Diagonalization 
	More Complicated Case 
	Eigenvalues with Multiple Eigenvectors 
	Non-Diagonalizable Matrices 
	Exercises 

	 
	 
	4.2 Recursive Sequence Formulas via​Diagonalization 
	Recursive Sequences 
	Finding a Closed-Form Expression 
	Case when Approximation is Required 
	Exercises 

	 
	4.3 Generalized Eigenvectors and Jordan Form 
	Patterns in Powers 
	Jordan Form 
	Procedure for Finding a Jordan Form 
	Demonstration 
	Exercises 

	 
	4.4 Matrix Exponential and​Systems of Linear Differential Equations 
	Converting to Matrix Form 
	Matrix Exponential 
	Demonstration 
	Exercises 


	 
	 
	 
	 
	Solutions​to Exercises 
	 
	 
	Part 1 
	 
	Part 2 
	 
	Part 3 
	 
	Part 4 


