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The   goal   of   this   write-up   is   to   show   how   various   predictive   algorithms   function   and   relate   to   each  
other.   
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1.   Naive   Bayes  
 
If   we   know   the   causal   structure   between   variables   in   our   data,   we   can   build   a   Bayesian   network,  
which   encodes   conditional   dependencies   between   variables   via   a   directed   acyclic   graph.   Such   a  
model   is   constrained   by   our   human   understanding   of   the   relationship   between   parts   of   the   data,  
though,   and   may   not   be   optimal   when   we   wish   to   predict   a   target   variable   despite   knowing   little  
about   the   other   variables   to   which   it   may   or   may   not   relate.  
 
That   being   said,   if   we   know   that   the   target   variable   is   a   class   that   somehow   encapsulates   the  
other   variables,   it   can   be   worthwhile   to   try   a   Bayesian   network   where   the   other   variables   are  
assumed   to   depend   conditionally   and   independently   on   the   class.   This   is   called   Naive   Bayes  
classification   because   it   naively   assumes   that   the   presence   of   a   particular   feature   in   a   class   is  
unrelated   to   the   presence   of   any   other   feature.  
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If   the   data   is   given   by     and   each     belongs   to   a   class   ,   then   the   Naive   Bayes  
classifier   computes  
 

 
 
For   example,   we   could   build   a   Naive   Bayes   classifier   to   predict   whether   an   email   is   a   phishing  
attempt   based   on   whether   it   has   spelling   errors   and   links:  
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We   could   then   use   our   model   to   test   whether   a   new   email   is   a   phishing   attempt:  
 

     
 

In   this   example,   we   used   discrete   bins   for   the   features   --   but   Naive   Bayes   can   also   handle  
features   which   are   fit   to   continuous   distributions.   And   despite   assuming   that   features   are  
independent   (and   thus   potentially   ignoring   a   lot   of   useful   information),   Naive   Bayes   can  
sometimes   perform   well   enough   in   simple   applications   to   get   the   job   done.  
 

2.   MAP   and   MLE  
 
Given   data   ,   if   we   model   the   relationship   between   the   predictors   and   the  
target   as   being   governed   by   parameters   ,   then   Bayes’   rule   tells   us   that  
 

 
 
We   can   interpret   the   integral   as   an   average   over   all   models,   where   the   weight   of   a   model’s  
contribution   to   the   sum   is   governed   by   the     term.   This   term   is   called   the   posterior   or   “a  
posteriori”   distribution,   as   it   is   the   result   of   updating   the   prior   or   “a   priori”   distribution     (which  
reflects   our   previous   beliefs   about   the   parameters)   with   the   information   that   the   data   tells   us.  
 
The   average   is   difficult   to   compute,   since   the   number   of   models   grows   exponentially   with   the  
number   of   parameters.   It   is   easier   to   just   pick   the   model   with   the   maximum   a   priori   distribution,  
rather   than   averaging   over   the   entire   ensemble.   This   is   called   Maximum   A   Posteriori   (MAP)  
estimation.  
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If   we   want   to   model   as   though   we   know   nothing   aside   from   what   the   data   tells   us,   then   we   can  
use   the   Jeffreys   prior,   which   assigns     as   a   uniform   distribution   and   is   also   known   as   the  
“uninformative”   or   “improper”   prior   since   it   does   not   actually   depend   on   .   When   we   perform  
MAP   estimation   using   the   Jeffreys   prior,   we   are   doing   what   is   known   as   Maximum   Likelihood  
Estimation   (MLE).   MLE   derives   its   name   from   the   fact   that   MAP   with   the   Jeffreys   prior   amounts  
to   maximizing   ,   which   is   known   as   the   likelihood.  
 

 
 

To   visualize   the   relationship   between   the   MAP   and   MLE   estimations,   one   can   imagine   starting  
at   the   MLE   estimation,   and   then   obtaining   the   MAP   estimation   by   drifting   a   bit   towards   higher  
density   in   the   prior   distribution.  
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3.   Linear   Regression  
 
In   linear   regression,   we   model   the   target     as   a   random   variable   whose   expected   value   is  
depends   on   a   linear   combination   of   the   predictors     (including   a   bias   term,   i.e.   a   column   of   1s).  
When   the   noise   is   assumed   to   be   Gaussian,   MLE   simplifies   to   least-squares:  
 

 
 
In   multivariate   linear   regression,   each     is   a   vector   containing   multiple   targets   .   If   the  
covariance   matrix   of   the   targets   is   a   multiple   of   the   identity   matrix,   then   Gaussian   MLE   again  
simplifies   to   least   squares.   Provided   the   targets   are   linearly   related,   we   can   cause   the  
covariance   matrix   to   become   a   multiple   of   the   identity   matrix   by   converting   the   targets   to   an  
orthonormal   basis   of   principal   components   (this   is   known   as   PCA,   or   principal   component  
analysis).  
 

 
 
One   benefit   of   linear   regression   over   more   complex   models   is   that   linear   regression   is   very  
interpretable.   Provided   the   predictors   are   normalized   and   are   not   linearly   dependent,   the  
parameter   or   coefficient   for   a   particular   term   can   be   interpreted   as   its   “weight”   in   determining   the  
prediction.   Even   if   the   predictors   are   linearly   dependent,   we   can   still   make   the   model  
interpretable   if   we   replace   the   predictors   with   a   subset   of   their   principal   components   before  
performing   the   regression.   This   is   called   Principal   Component   Regression.  
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Some   other   types   of   linear   regression   include   polynomial,   logistic,   and   regularized   (ridge)  
regression.   In   polynomial   regression,   we   include   not   just   ,   but   also   ,   ,   etc.   as   predictors.  
In   logistic   regression,   where   the   target   is   binary,   we   model   the   target   as   a   Bernoulli   random  
variable   where   the   log   of   the   odds   ratio   of   the   success   probability   is   given   by   a   linear   regression:  
 

 
 

In   regularized   or   “ridge”   regression,   we   assume   a   prior   other   than   the   Jeffreys   prior.   A   Gaussian  
prior   gives   rise   to   L2   regularization:  
 

 
 
A   Laplacian   prior   gives   rise   to   L1   regularization:  
 

 
 

4.   Support   Vector   Machines  
 
In   logistic   regression,   we   maximize   the   likelihood   of   assigning   the   correct   target   class   probability  
to   a   group   of   predictors.   However,   if   our   ultimate   goal   is   to   choose   the   most   likely   class   for   the  
group   of   predictors,   we   care   less   about   getting   the   probability   perfect   when   the   choice   of   class   is  
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already   determined   (i.e.   the   probability   is   already   fairly   high   or   low),   and   more   about   choosing  
the   correct   class   when   the   probability   is   borderline.   In   this   case,   we   should   focus   on   finding   the  
best   separation   between   the   classes.  
 
A   Support   Vector   Machine   (SVM)   computes   the   “best”   separation   between   classes   as   the  
maximum-margin   hyperplane,   i.e.   the   hyperplane   which   maximizes   the   distance   of   the   closest  
points   to   the   border   (which   are   called   the   support   vectors).   For   hyperplane   of   the   form  

,   we   can   assume     because   dividing   the   equation   by     yields   the   same  
plane,   and   thus   the   parameters     which   yield   the   maximum   margin   are   given   by  
 

 
 
Through   methods   in   constrained   optimization,   this   “primal”   form   of   the   hyperplane   can   be  
reparametrized   in   “dual”   form   by   the   parameters   ,   one   for   each   point   in   the   data,   which  
are   chosen   as  
 

 
 
and   for   which   the   hyperplane   is   stated   as  
 

 
 
where   the   sum   is   taken   over   the   support   vectors.  
 
If   the   data   is   not   linearly   separable,   then   we   can   use   a   function     to   map   the   data  
into   a   higher   dimensional   “feature”   space   before   fitting   the   hyperplane.   Below   is   an   example   of   a  
function   which   maps   2-dimensional   data     into   3-dimensional   space.  
 

 
 
The   hyperplane,   once   projected   to   the   lower-dimensional   input   space,   is   able   to   fit   nonlinearities  
in   the   data.  
 

7  

https://www.codecogs.com/eqnedit.php?latex=w%5ETx%2Bb%3D0%0
https://www.codecogs.com/eqnedit.php?latex=%7C%7Cw%7C%7C%3D1%0
https://www.codecogs.com/eqnedit.php?latex=%7C%7Cw%7C%7C%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%20%3D%20(w%2C%20b)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5Ctheta_%7BMM%7D%20%26%3D%20%5Carg%5Cmax_%7B%7C%7Cw%7C%7C%3D1%2Cb%7D%20%5Cmin_i%20%7C%7Cx_i-x%7C%7C%20%5C%5C%20%26%3D%20%5Carg%5Cmax_%7B%7C%7Cw%7C%7C%3D1%2Cb%7D%20%5Cmin_i%20%7C%7Cw%5ETx_i%20-%20w%5ETx%7C%7C%20%5C%5C%20%26%3D%20%5Carg%5Cmax_%7B%7C%7Cw%7C%7C%3D1%2Cb%7D%20%5Cmin_%7Bi%7D%20%5Cleft%7C%20w%5ETx_i%2Bb%20%5Cright%7C%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%20(%5Calpha_i)%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%20%5Carg%5Cmax_%7B%5Calpha%3E0%2C%20%5Calpha%5ETy%20%3D%200%7D%20%5Cleft(%20%7C%7C%5Calpha%7C%7C_1%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%2Cj%7D%20%5Calpha_i%20%5Calpha_j%20y_iy_j%20x_i%5ETx_j%20%5Cright)%0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bsv%7D%20%5Calpha_%7Bsv%7Dy_%7Bsv%7Dx_%7Bsv%7D%5ETx%20%2B%20b%20%3D%200%0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi%3A%20R%5Ed%20%5Cto%20R%5E%7Bd%2Bn%7D%0
https://www.codecogs.com/eqnedit.php?latex=x_i%20%3D%20(x_%7Bi1%7D%2C%20x_%7Bi2%7D)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi(x_i)%20%3D%20(x_%7Bi1%7D%5E2%2C%20x_%7Bi2%7D%5E2%2C%20%5Csqrt%7B2%7D%20x_%7Bi1%7Dx_%7Bi2%7D)%0


 

 
 
Normally,   we   would   worry   about   blowing   up   the   number   of   dimensions   in   the   model,   which  
would   cause   computational   and   memory   problems   while   training   (fitting)   the   SVM.   However,   if  
we   choose   a   function   (like   the   one   above)   for   that   can   be   represented   by   a   “kernel,”   we   can  
compute   the   result   of   dot   products   in   the   higher   dimensional   space,   without   having   to   compute  
and   store   the   values   of   the   data   in   the   higher   dimensional   space:  
 

 
 
This   is   called   the   “kernel   trick.”   Some   common   kernels   include   the   homogeneous   polynomial  

kernel   ,   the   inhomogeneous   polynomial   kernel   ,  

the   Gaussian   radial   basis   function   (RBF)   kernel   ,   and   the   hyperbolic  

tangent   kernel   .  
 
Another   way   to   extend   the   SVM   to   data   which   is   not   linearly   separable   is   to   use   a   soft   margin,  
where   we   minimize   a   loss   function   which   penalizes   data   on   the   wrong   side   of   the   hyperplane.  
We   introduce   a   “hinge   loss”   function   which   is   zero   for   data   on   the   correct   side   of   the   margin   and  
is   proportional   to   distance   for   data   on   the   wrong   side   of   the   hyperplane,   and   minimize   the   total  
hinge   loss:  
 

 
 

The   hinge   loss   function   is   named   as   such   because   its   graph   looks   like   a   door   hinge.   When   the  
data   is   linearly   separable,   the   total   hinge   loss   is   minimized   by   our   previous   “hard   margin”  
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method.   In   practice,   it   is   difficult   to   deal   with   the     constraint,   but   we   want   to   prevent   the  
weights   from   blowing   up,   so   we   replace   the   constraint   with   a   regularization:  
 

 
 
A   similar   dual   form   exists   for   this   minimization   problem,   on   which   the   kernel   trick   is   also  
applicable.  
 
SVMs   can   be   extended   to   multiclass   problems   by   building   a   model   for   each   pair   of   classes   and  
then   selecting   the   class   which   receives   the   most   votes   from   the   ensemble   of   models.   This   is  
called   one-vs-one   (OvO)   classification.  
 
Another   option   is   to   force   the   SVM   to   give   a   probabilistic   score   rather   than   binary   output,   build   a  
model   for   each   class   against   the   rest   of   the   data,   and   then   select   the   class   whose   model   gives  
the   highest   score.   This   is   called   one-vs-rest   (OvR)   classification.   To   induce   a   probabilistic   score,  
one   can   interpret   the   distance   from   the   hyperplane   as   the   logit   (log   of   the   odds   ratio)   of   the  
in-class   probability:  
 

 
 
SVMs   can   also   be   used   for   regression,   in   which   case   they   are   called   Support   Vector   Regressors  
(SVRs).   In   SVRs,   the   support   vectors   are   the   furthest   points   form   the   hyperplane,   and   the   task  
is   to   minimize   the   distance   to   the   support   vectors.  
 
 

5.   Neural   Networks  
 
Neural   Networks   (NNs)   consist   of   layers   of   “neurons,”   where   each   neuron   has   an   “activity”  
which   is   computed   as   a   function   of   the   weighted   sum   of   activities   of   neurons   in   the   previous  
later.   The   first   layer   of   neurons   are   activated   directly   from   the   data,   and   the   activation   of   a  
particular   neuron   in   the   last   layer   represents   the   likelihood   of   the   data   belonging   to   a   particular  
class.   NNs   are   similar   to   SVMs   in   that   they   project   the   data   to   a   higher-dimensional   space   and  
fit   a   hyperplane   to   the   data   in   the   projected   space.   However,   whereas   SVMs   use   a  
predetermined   kernel   to   project   the   data,   NNs   automatically   construct   their   own   projection   by  
iteratively   adjusting   (“training”)   the   weights   in   the   intermediate   (“hidden”)   layers   to   minimize   a  
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loss   function.   Unlike   with   the   kernel   trick   in   SVMs,   the   training   of   additional   layers   in   NNs   incurs  
significant   additional   computational   cost,   and   much   work   has   been   devoted   to   optimizing  
algorithms   and   hardware   usage   to   speed   up   the   training   of   Deep   Neural   Networks   (DNNs)  
consisting   of   many   hidden   layers.  
 
Each   layer     of   a   NN   consists   of   a   parameter   matrix   ,   where   the   th   row   vector   contains   the  
weights   received   by   the   th   neuron   in   the   next   layer.   If   we   define     as   the   activation   function  
which   is   applied   component-wise   (i.e.   neuron-wise)   at   the   th   layer,   and   include   a   bias   term   as  
a   neuron   in   each   layer   whose   activity   is   always   1,   then   the   output   activities   of   the   network    
layers   after   the   first   layer   is   given   by  
 

 
 

We   can   write   this   recursively   as  
 

   
 
When   counting   layers,   we   do   not   count   the   first   layer   because   it   reads   in   the   data   and   is  
therefore   not   associated   with   trainable   weight   parameters.   This   way,   each   layer   is   associated   to  
a   weight   matrix.  
 
For   a   regression   network   with     layers,   a   loss   function     is   chosen   to   compare   the   output  

  to   the   desired   target     from   the   data.   Common   choices   for   this   loss   function   include   L1  
and   L2   error.   For   a   classification   network   with     layers,   we   normalize   the   output   to  

  so   that   we   can   interpret   it   as   a   probability.   Then,   a   loss   function  
  is   chosen   to   compare   the   discrepancy   between   the   output     and   the   desired   target  

(“ground   truth”)     from   the   data.   For   classification,   the   loss   function   is   usually   chosen   as   the  
cross-entropy.   For   each   data   point,   the   cross   entropy   is   given   by  
 

 
 
To   make   sense   of   the   cross-entropy,   notice   that   it   can   be   simplified   to  
 

 
 
and   if   the   ground   truth   is   a   single   class   ,   i.e.     and   ,   then   it   becomes  
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The   training   algorithm,   called   gradient   descent,   consists   of   iteratively   updating   the   weights   at  
each   layer   according   to  
 

 
 
where     is   the   learning   parameter   which   governs   how   quickly   the   weights   change.   There   are  
other   variations   of   gradient   descent,   such   as   stochastic   gradient   descent   (SGD),   where   the  
learning   parameter   is   randomized   to   assist   the   weights   in   breaking   out   of   a   shallow   minima  
while   allowing   them   to   settle   into   a   deeper   minima,   and   SGD   with   momentum,   which   is   meant   to  
mimic   the   trajectory   of   a   ball   rolling   down   a   bumpy   hill   into   a   valley.   The   main   problem   in   all   of  
these   methods,   though,   is   computing   the   derivative   (“gradient”)   of   the   loss   function   with   respect  
to   the   weights.   Luckily,   there   is   a   pattern   to   it,   which   we   will   see   after   computing   the   gradient   for  

.  
 
Computing   for   ,   we   have  
 

 
 
Where   the     operation   represents   the   Hadamard   product.   We   define  
 

 
 
so   that  
 

 
 
Computing   for   ,   we   have  
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We   define  
 

 
 
so   that  
 

 
 

Computing   for   ,   we   have  
 

 
 
We   define  
 

 
 
so   that  
 

 
 
Putting   it   all   together,   we   have   that  
 

 
 
where  
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This   method   for   computing   the   gradients   is   called   “backpropagation,”   because   we   propagate   the  

  terms   backwards   through   the   layers,   from   the   last   layer   to   the   first   layer.  
 
The   equations   for   backpropagation   also   give   us   insight   into   our   choice   of   activation   function.   If  
we   choose   a   sigmoidal   activation   function   which   levels   off,   then   the   gradient   will   vanish   for  
neurons   whose   activations   are   too   large   in   magnitude.   But   if   we   choose   a   linear   activation  
function   which   maintains   a   slope   of   1   everywhere,   then   we   have   nothing   more   than   a   linear  
model,   and   the   network   is   unable   to   project   the   data   into   a   higher-dimensional   space   before  
fitting   the   hyperplane.   The   solution   is   to   use   a   “rectified”   linear   unit   (ReLU)   which   is   linear   for  
positive   inputs,   and   zero   for   negative   inputs:  
 

 
 
Ideally,   we’d   use   a   “softmax”   function   which   is   differentiable   at   zero   unlike   ReLUs,   but   ReLUs  
are   so   much   faster   to   compute   that   we   use   them   anyway.   We   can   usually   get   away   with   the  
slope   being   zero   for   negative   inputs   to   the   ReLU   because   the   weighted   sums   in   the   network  
tend   to   be   positive   sometimes.   However,   if   we   set   the   learning   rate   too   high,   we   can   sometimes  
end   up   with   neurons   whose   weighted   sums   are   always   negative,   and   consequently   whose  
gradients   and   activity   are   always   zero.   To   overcome   this   problem   of   “dead”   neurons,   one   can  
use   leaky   ReLUs   which   have   a   small   gradient   and   activity   even   for   negative   inputs:  
 

 
 
That   being   said,   ReLUs   may   not   be   the   best   choice   for   the   output   layer   of   the   network,   which   is  
supposed   to   represent   a   regression   or   classification   prediction.   For   regressions,   linear   activation  
functions   are   a   better   choice   in   the   final   layer,   and   for   classifications,   softmax   units   are   a   better  
choice   in   the   final   layer.  
 
Due   to   the   large   number   of   parameters   in   NNs,   they   are   prone   to   overfitting.   However,   the   risk  
of   overfitting   can   be   reduced   by   “dropout,”   a   method   used   to   avoid   training   all   of   the   weights   on  
all   of   the   training   data.   Dropout   involves   randomly   turning   of   or   “dropping   out”   neurons   from   the  
network   during   each   training   iteration,   and   then   keeping   the   weights   of   those   neurons  
unchanged   during   the   weight   update.   Dropout   also   increases   training   speed,   since   dropping   out  
half   the   neurons   in   a   network   cuts   the   number   of   computations   in   half.  
 
One   type   of   neural   network   that   has   seen   widespread   success   in   the   realm   of   image   processing  
is   the   convolutional   neural   network   (CNN),   which   is   reduces   the   number   of   parameters   (thus  
enabling   deep   networks   of   many   layers)   by   taking   advantage   of   spatially   local   input   patterns.   In  
CNNs,   each   layer   of   neurons   is   really   a   stack   of   sub-layers,   and   each   neuron   in   a   sub-layer   is  
connected   to   only   a   small   region   (“receptive   field”)   of   a   single   sub-layer   in   the   preceding   layer.  
Receptive   field   weights   are   shared   across   neurons   within   a   sub-layer,   thus   forming   a   template  
(“convolution”)   that   can   be   interpreted   as   the   pattern   of   activation   that   the   sub-layer   is   trained   to  
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detect   within   the   sub-layer   in   the   preceding   layer.   A   sub-layer’s   convolution   can   be   expressed  
as   a   weighted   sum   of   different   offsets   of   the   convolution   in   the   sub-layer   in   the   preceding   layer,  
and   by   carrying   the   weighted   sum   through   all   the   layers   down   to   the   input   layer,   one   can   see   the  
visual   feature   that   the   sub-layer   is   trained   to   detect   within   the   image.   Visual   features   of  
sub-layers   within   lower   layers   are   usually   simple,   like   lines   and   edges,   whereas   visual   features  
of   sub-layers   within   higher   layers   can   be   complex,   like   faces   or   cars.  
 

6.   Decision   Trees  
 
One   drawback   of   SVMs   and   NNs   is   that   they   are   black-box   models,   meaning   they   are  
uninterpretable.   Although   they   can   model   highly   nonlinear   data,   we   can’t   make   much   sense   of  
what   the   model   has   learned   by   looking   at   the   parameters.   On   the   other   hand,   the   parameters   in  
linear   regressions   make   intuitive   sense   as   the   contributions   of   individual   factors   to   the   overall  
decision,   but   they   are   restricted   by   linearity   and   thus   won’t   make   a   good   predictive   model   for  
highly   nonlinear   data.   Decision   trees   bridge   the   gap   and   are   able   to   model   nonlinear   data   while  
remaining   interpretable.  
 
A   decision   tree   constructs   a   model   by   recursively   partitioning   (“splitting”)   class   data   along   some  
value   of   a   predictor   (“attribute”)   until   each   partition   represents   a   single   class   of   data.   The   tree  
starts   with   a   single   node   which   represents   all   of   the   data,   and   then   splits   into   two   child   nodes   to  
separate   the   data   into   two   groups   which   are   as   homogeneous   (“pure”)   as   possible.   Then,   each  
child   node   performs   the   same   splitting   process   to   produce   two   more   child   nodes   of   maximum  
purity,   and   so   on,   until   each   terminal   node   (“leaf”)   of   the   tree   is   100%   pure   or   the   data   cannot   be  
split   any   more   (sometimes   otherwise   identical   records   may   have   different   classes).   The  
predicted   probability   distribution   for   the   class   of   any   input     is   computed   as   the   frequency  
distribution   of   classes   within   the   input’s   corresponding   leaf.  
 
The   metric   which   is   used   to   quantify   the   purity   of   a   split   is   called   the   splitting   criterion,   and   it   is  
often   chosen   as   information   gain   or   Gini   impurity.   Information   gain   measures   the   reduction   in  
impurity   (“information   entropy”)   achieved   by   a   split.   Information   entropy   for   a   node   is   measured  
by   the   expectation   value  
 

 
 
over   data   points     and   classes     within   the   node,   where     is   the   proportion  
of   data   points   in   the   parent   node   that   have   .   Information   entropy   is   largest   for   uniform  
distributions,   and   zero   for   distributions   which   are   concentrated   at   a   single   point.   Information   gain  
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is   the   entropy   of   the   parent   node,   minus   the   weighted   average   entropy   of   the   child   nodes  
(weighted   by   its   proportion   of   data   points   from   the   parent   node).   Gini   impurity   is   very   similar   to  
information   entropy,   just   a   little   faster   to   compute.   It   is   given   by  
 

 
 
To   prevent   the   tree   from   overfitting   the   data,   which   it   will   almost   certainly   do   if   left   to   construct   an  
unlimited   number   of   partitions,   the   tree   is   “pruned.”   Pruning   can   be   achieved   by   stopping   the  
tree   prior   to   full   growth,   in   which   it   is   called   pre-pruning,   or   by   cutting   the   tree   short   after   full  
growth,   in   which   it   is   called   post-pruning.   Pre-pruning   can   be   achieved   by   avoiding   splitting   a  
node   if   the   split   purity   is   below   some   threshold   value   --   though,   any   choice   of   such   value   is  
rather   ad-hoc.   With   post-pruning,   it   is   possible   to   take   a   more   principled   approach,   using  
cross-validation   to   check   the   effect   of   pruning   on   the   tree’s   test   accuracy.  
 

7.   Ensemble   Methods  
 
One   big   disadvantage   of   decision   trees   is   that   they   have   a   high   variance   (i.e.   they   are   unstable,  
not   robust   to   noise   in   the   data).   A   slight   change   in   the   data   can   cause   a   different   split   to   occur,  
giving   rise   to   different   child   nodes   and   splits   all   the   way   down   the   tree,   potentially   leading   to  
different   predictions.   However,   we   can   make   the   predictions   more   stable   by   averaging   them  
across   an   ensemble   of   many   different   decision   trees,   called   a   random   forest.   Random   forests  
grow   a   variety   of   decision   trees   by   forcing   each   split   attribute   to   be   selected   from   a   random  
subset   of   candidates.   They   also   train   each   tree   using   a   random   subset   of   the   available   training  
data,   which   is   known   as   bootstrap   aggregating   or   “bagging”   for   short.  
 
In   general,   bagging   constructs   an   ensemble   of   models   which   reduces   model   variance,   making   it  
suitable   for   complex   models   (low   bias,   high   variance).   For   simple   models   (high   bias,   low  
variance),   another   ensemble   model   called   gradient   boosting   can   be   used   to   reduce   model   bias.  
Gradient   boosting   performs   gradient   descent   on   a   cost   function   by   building   the   ensemble   as   a  
sequence   of   “error-correcting”   models,   where   each   model   is   trained   on   a   subset   of   the   training  
data   that   emphasizes   instances   that   were   misclassified   by   the   preceding   model.   The   output   of  
the   ensemble   is   a   weighted   average,   where   the   weight   given   to   a   model’s   prediction   depends  
on   the   model’s   accuracy.  
 
Another   example   of   an   ensemble   that   we   encountered   earlier   was   the   Bayes   optimal   ensemble,  
which   averages   over   all   sets   of   models   with   a   given   set   of   parameters.   Since   the   average   is  
difficult   to   compute,   we   settled   for   choosing   the   single   model   which   contributed   most   to   the  
ensemble   (MAP/MLE).   However,   are   ways   to   approximate   the   average   through   sampling,  
known   as   Bayesian   Model   Combination   (BMC).   
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The   type   of   ensemble   model   that   wins   most   data   science   competitions,   perhaps   surprisingly,   is  
not   the   Bayes   optimal   ensemble.   Rather,   it   is   the   stacked   model,   which   consists   of   an   ensemble  
of   entirely   different   species   of   models   together   with   some   combiner   algorithm   (usually   chosen  
as   a   logistic   regression)   which   is   trained   to   make   a   final   prediction   using   the   predictions   of   the  
models   within   the   ensemble   as   additional   inputs.   Although   the   Bayes   optimal   ensemble  
performs   at   least   as   well   as   (and   often   better   than)   stacking   when   the   correct   data-generating  
model   is   on   the   list   of   models   under   consideration,   the   correct   data-generating   model   for   data  
difficult   enough   to   warrant   a   competition   is   often   too   complex   to   be   approximated   by   models   in  
the   Bayes   optimal   ensemble.   In   such   cases,   it   is   advantageous   to   have   a   diverse   basis   of  
models   from   which   to   approximate   the   data-generating   model.  
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