
CheckMySteps: A Web App to Help Students Fix their
Algebraic Mistakes

Justin Skycak
Georgia Institute of Technology

ABSTRACT
It is inefficient for mathematics educators to manually search
student work for technical mistakes. To this end, a prototype
web app, CheckMySteps, has been implemented to automati-
cally assist students in self-correcting small errors and minor
misconceptions. Students enter their steps line-by-line as
they solve equations or simplify expressions, and each line is
checked against the previous line for mistakes. If a mistake is
detected, then an example input is chosen to demonstrate the
discrepancy, and feedback is generated regarding common
misconceptions which may potentially form the basis of the
mistake.

1 INTRODUCTION
Many students struggle in mathematics due to technical
misconceptions [1, 3] in solving equations and simplifying
expressions, such as forgetting to FOIL when multiplying ex-
pressions, or forgetting to divide both terms of the numerator
in a fraction.

FOILing error: (x + 2)2 → x2 + 22 → x + 4

Division error:
x + 1
x

→ 1 + x/
x/ → 1

As a result, mathematics educators spend significant time
and effort engaged in a repetitive process of searching stu-
dent work for these misconceptions, demonstrating that they
are indeed incorrect, and explaining how to correct them.
This is an inefficient process, because students are some-
times able to correct their own misconceptions when given
a generic explanation of their error. An extreme case of stu-
dent self-correction is so-called “silly” mistakes, where the
student understands a concept but makes a careless error
on a question they would normally answer correctly. Stu-
dents especially skilled at self-correction are sometimes even
able to teach themselves new concepts, if given some guid-
ance on what their error might be. In any case, a teacher’s
time is best spent explaining misconceptions that cannot be
self-corrected.

It was the goal of this project to develop a web application
that automatically assists students in self-correcting small
errors and minor misconceptions, thus enabling teachers to
focus their time on explaining major misconceptions that
cannot be self-corrected by students.

2 CHECKMYSTEPS
A prototype web app, CheckMySteps, was implemented as
a notebook environment where students enter their steps
line-by-line as they solve equations or simplify expressions
(see Figure 1). It can be accessed at

https://checkmysteps.herokuapp.com

Each line is checked against the previous line for mistakes,
and if a mistake is detected, then an example input is chosen
to demonstrate the discrepancy. Furthermore, a list of po-
tential mistakes is displayed, which classifies the student’s
mistake as a potential violation of some algebraic rule(s)
and informs the student of the correct interpretation of the
algebraic rule(s).

Figure 1: Screenshot of CheckMySteps interface, with sam-
ple input.

System Design
Deployment. CheckMySteps is deployed onHeroku as a Flask
application. The front-end of CheckMySteps leverages an
array of MathQuill [13] math fields to receive input from the
user. The user is able to type math symbols using LaTeX or
other intuitive key combinations (such as < followed by =
to make ≤).
The back-end of CheckMySteps leverages Sympy [7] to

process mathematical expressions. An equation is processed
as a pair of mathematical expressions, and is solved by set-
ting the difference equal to zero. A set of logically joined
equations (delimited by “and” or “or”) is processed using
the solutions of each component equation, taking the inter-
section or union as appropriate. The input “no solution” is

https://checkmysteps.herokuapp.com
https://checkmysteps.herokuapp.com
https://checkmysteps.herokuapp.com

interpreted as an equation having the solution of the empty
set.

Step Checking. To check whether a step in simplifying ex-
pressions is correct, the difference between the post-step
and pre-step expressions is computed and simplified. The
step is deemed correct if the difference simplifies to zero,
and incorrect otherwise. In the event of an incorrect step, a
counterexample is chosen by substituting integers [0, 1, 2, ...,
9, -1, -2, ..., -9, 10, 11, ..., 99, -10, -11, ..., -99] into the difference
expression, until it evaluates to a nonzero number.

To check whether a step in solving an equation is correct,
solution sets of the post-step and pre-step equations are com-
puted. The step is deemed correct if the solution sets are
identical, and incorrect otherwise. In the event of an incor-
rect step, a counterexample is chosen from the symmetric
difference of the two solution sets.

Mistake Classification. To generate the list of potential mis-
takes for an incorrect step, ad-hoc mistake classification
rules were used to select relevant entries from a master list
of potential mistake classes and feedback descriptions.
Student mistakes in algebra often come from weakness

in the fundamentals of arithmetic [3], and overgeneralizing
simple rules to situations where they do not apply [1]. As
such, mistake classes were chosen as arising from arithmetic
weaknesses and overgeneralization of simple rules, such as
distribution rules. The choices of mistake classes were also
guided by several reports [5, 11, 12, 14] detailing common
algebra mistakes that educators experience in practice when
working with students.

Each mistake classification rule was defined on two lines
of input: the line preceding the algebraic step (called the pre-
vious line), and the line following the algebraic step (called
the current line). Mistake classification rules leveraged not
only the written content of these two lines, but also each
line’s solution set, and the difference expression of the two
lines.

For lines consisting of expressions, the difference expres-
sion was defined as the current expression minus the previ-
ous expression. For a single equation, the difference expres-
sion was defined as the left-hand side of the equation minus
the right-hand side of the equation. For lines consisting of
equations, the difference expression of the two equations was
defined as the difference expression of the current equation,
minus the difference expression of the previous equation.
More information about the potential mistakes module

is provided in the appendices. Appendix A justifies the use
of ad-hoc rules for mistake classification in CheckMySteps.
Appendix B contains the master list of mistake classes, classi-
fication rules, and feedback descriptions used in CheckMyS-
teps.

Validation
Mistake classification rules were validated by first manually
generating example(s) for eachmistake class, and then verify-
ing that the corresponding mistake class was triggered when
each example was given as input. These examples are pro-
vided along with the mistake class information in Appendix
B.
To test the general coverage of the mistake classes used,

an undergraduate tutor unfamiliar with CheckMySteps was
asked to generate a sample of steps containing algebraic
errors based on their experiences with real-life students.
These steps were supplied as input to CheckMySteps, and
in 10 out of the 14 steps, CheckMySteps detected a relevant
mistake class and supplied relevant feedback. The sample of
erroneous steps and the relevant mistake classes detected by
CheckMySteps are provided in Appendix C.

Future Work
CheckMySteps can be improved by implementing more gran-
ular mistake classes. For example, the “Negative Sign” mis-
take class is triggered whenever a negative sign has been
incorrectly dropped or added from one step to the next, but
it does not discriminate between dropping a negative sign
and adding a negative sign – both variations of the mistake
are lumped into the same class. A granular set of mistake
classes, where variations of similar mistakes are separated
into individual classes, would provide the user with more
specific information surrounding their mistake.
CheckMySteps can also be improved by implementing

location-specific feedback when mistake classes are trig-
gered, which highlights the specific term(s) in the equation
or expression where the mistake occurred. A simple way to
pinpoint the relevant terms in some cases may be to match
terms in the difference expression with terms in the lines
preceding and following the erroneous step.
Lastly, CheckMySteps can be improved by better han-

dling equations which cannot be solved using standard alge-
braic techniques. Computing the solution sets of such inputs
can require excessive or indefinite computation time, thus
making CheckMySteps susceptible to time-out issues. For-
tunately, though, such equations do not appear on algebra
homeworks, where the aim is to practice solving equations
which can be solved using standard algebraic techniques.

REFERENCES
[1] G. T. Bagni. 2000. ‘Simple’ Rules and General Rules in Some High

School StudentsâĂŹ Mistakes. Journal fÃĳr Mathematik-Didaktik 21,
2 (2000), 124–138.

[2] J. S. Brown and R. R. Burton. 1978. Diagnostic models for procedural
bugs in basic mathematical skills. Cognitive science 2, 2 (1978), 155–192.

[3] J. S. Brown and R. J. Quinn. 2006. Algebra students’ difficulty with
fractions: An error analysis. The Australian Mathematics Teacher 62, 4
(2006), 28.

2

[4] J. S. Brown and K. VanLehn. 1980. Repair theory: A generative theory
of bugs in procedural skills. Cognitive science 4, 4 (1980), 379–426.

[5] P. Dawkins. 2017. Common Math Errors - Algebra Errors.
PaulâĂŹs Online Notes (2017). http://tutorial.math.lamar.edu/Extras/
CommonErrors/AlgebraErrors.aspx

[6] B. Erabadda, S. Ranathunga, andG. Dias. 2017. Automatic Identification
of Errors in Multi-Step Answers to Algebra Questions. Advanced
Learning Technologies (ICALT), 2017 IEEE 17th International Conference
on (2017), 215–219.

[7] A. Meurer et al. 2019. Sympy: symbolic computing in Python. PeerJ
Computer Science 103, 3 (2019).

[8] C. S. Gonzalez, D. Guerra, H. Sanabria, L. Moreno, M. A. Noda, and A.
Bruno. 2010. Automatic system for the detection and analysis of errors
to support the personalized feedback. Expert Systems with Applications
37, 1 (2010), 140–148.

[9] H. U. Hoppe. 1994. Deductive error diagnosis and inductive error
generalization for intelligent tutoring systems. Journal of Interactive
Learning Research 5, 1 (1994), 27.

[10] Z. Huang and N. Tokuda. 1996. Deductive error diagnosis and inductive
error generalization for intelligent tutoring systems. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans 26, 2
(1996), 280–285.

[11] E. Schechter. 2009. The Most Common Errors In Undergraduate Math-
ematics. (2009). https://math.vanderbilt.edu/schectex/commerrs/

[12] T. Scofield. 2003. Top Algebra Errors Made By Calculus Students.
(2003). https://www.calvin.edu/~scofield/courses/materials/tae/

[13] H. Seoul-Oh and J. Adkisson. 2016. MathQuill. (2016). http://mathquill.
com/

[14] J. Steig. 1999. Common Mistakes in Algebra. (1999). http://www.
mesacc.edu/~marfv02121/readings/errors/

3 APPENDICES
A JUSTIFICATION OF AD-HOC RULES
In the past, math learning systems have approached the
problem of error diagnosis through the use of procedural
networks [2], whose nodes represent granular steps in a
problem-solving procedure, and whose edges reflect how the
stepsmay be arranged in sequence. By including edges which
correspond to underlying procedural bugs, the problem of
diagnosing an error reduces to the problem of identifying
the path through the network. Furthermore, knowledge of
common misconceptions is not a vital prerequisite to us-
ing procedural networks: potential procedural bugs can be
generated systematically by deleting node(s) from the net-
work and introducing buggy edges to traverse any breaks in
connectivity [4].
Procedural networks work well for modeling errors in

arithmetic, because arithmetic is represented by a procedural
network which is finite and acyclic. In such a network, there
are finitely many buggy procedural paths and they can all
be enumerated easily. Student errors can then be classified
according to the bug that best predicts the student’s answers.
On the other hand, procedural networks offer less of an

advantage for modeling errors in algebra, because algebra
is represented by a procedural network which is infinite
and permits cycles. There are often multiple procedures by

which one can solve an algebra problem, and there are always
infinitely many valid manipulations which one may perform
on an algebraic equation or expression (though many of
them may be unhelpful in traveling towards a solution). As a
result, the procedural network for algebra contains infinitely
many buggy procedural paths, and thus fails to simplify the
problem of error diagnosis.

An alternative to procedural networks is ad-hoc error di-
agnosis [6, 8–10], where a set of common errors are chosen
using domain knowledge, and an error detector is hand-
crafted for each individual error. Ad-hoc rules are often tai-
lored to particular forms of algebraic input, such as linear
or quadratic equations, and can achieve error classification
accuracy comparable to that of human teachers within their
domain of intended input [6]. However, as a result of be-
ing tailored to particular forms of input, ad-hoc rules tend
not to generalize well to arbitrary algebraic input, such as
equations containing rational and non-polynomial terms.

B MISTAKE CLASSES, EXAMPLES, DETECTION
RULES, AND FEEDBACK DESCRIPTIONS

Each mistake class is listed below, together with feedback
for the mistake, an example of the mistake, and a rule for
detecting the mistake. Any particular mistake detection and
feedback can be observed, for example, by entering the pro-
vided mistake example as input into CheckMySteps.
■ Distribution of Exponentiation: exponentiation dis-

tributes over all terms of a product or quotient, but
cannot be distributed over a sum or difference.
□ Mistake Example: (x + 2)2 → x2 + 4
□ Detection Rule: Previous line has parentheses fol-

lowed by exponent.
■ Distribution of Multiplication: multiplication dis-

tributes over all terms of a sum or difference, but only
to a single term of a product, and only to the first term
of a quotient.
□ Mistake Example: 2(x + 1) → 2x + 1
□ Detection Rule: Previous line has parentheses and

Distribution of Exponentiation has not been trig-
gered.

■ Exponent of 0: raising anything to the power of 0
gives a result of 1.
□ Mistake Example: x0 → 0
□ Detection Rule: Difference expression evaluates to 1

or -1 and previous line has a zero exponent.
■ Self-Division: dividing anything by itself gives a re-

sult of 1.
□ Mistake Example: xx → 0
□ Detection Rule: Difference expression evaluates to 1

or -1 and previous line contains division and Expo-
nent of 0 has not been triggered.

3

http://tutorial.math.lamar.edu/Extras/CommonErrors/AlgebraErrors.aspx
http://tutorial.math.lamar.edu/Extras/CommonErrors/AlgebraErrors.aspx
https://math.vanderbilt.edu/schectex/commerrs/
https://www.calvin.edu/~scofield/courses/materials/tae/
http://mathquill.com/
http://mathquill.com/
http://www.mesacc.edu/~marfv02121/readings/errors/
http://www.mesacc.edu/~marfv02121/readings/errors/

■ Square Root of Square: taking the square root of a
squared expression results in the absolute value of that
expression.
□ Mistake Example:

√
x2 → x

□ Detection Rule: Difference expression evaluates to
x −

√
x2.

■ Negative Exponent: a negative exponentx−n is equiv-
alent to the fraction 1

xn .
□ Mistake Example: x−2 → −x2
□ Detection Rule: Previous line contains negative expo-

nent.
■ Consecutive Exponentiation: when an exponenti-

ated expression is exponentiated once more, the expo-
nents are multiplied.
□ Mistake Example:

(
x2
)3 → x5

□ Detection Rule: Previous line contains consecutive
exponentiation.

■ Multiplication with Common Bases: when an ex-
ponentiated term is multiplied by another exponenti-
ated term which shares the same base, the exponents
are added.
□ Mistake Example:

(
x2
) (
x3
)
→ x6

□ Detection Rule: Previous line contains at least 2 expo-
nents and Consecutive Exponentiation has not
been triggered.

■ Negative Sign: check for any dropped or unnecessary
negative signs.
□ Mistake Example: x + 1 = 0 → x = 1
□ Detection Rule: A nonzero current solution is the

negative of a previous solution.
■ Arithmetic: check for any mistakes in simple arith-

metic.
□ Mistake Example: x + 5 = 13 → x = 9
□ Detection Rule: Difference expression is constant.
■ Positive or Negative Root: if x2 = a, then x = ±

√
a.

□ Mistake Example: x2 = 1 → x = 1
□ Detection Rule: Previous line is an equation which

contains an exponent, and a nonzero current solu-
tion is the negative of a previous solution.

■ Division by Variable: dividing by a variable x can
cause you to lose a solution x = 0. Try factoring out
the variable instead.
□ Mistake Example: x2 = x → x = 1
□ Detection Rule: Previous line has a solution 0 but

current line does not have a solution 0.
■ Multiplication by Variable: multiplying by a vari-

able x can cause you to introduce an invalid solution
x = 0. Try factoring out a 1

x instead.
□ Mistake Example: 1

x = 0 → x = 0

□ Detection Rule: Current line has a solution 0 but pre-
vious line does not have a solution 0.

■ Partial Cancellation within Fraction: a factor can-
not be cancelled out from the numerator and denom-
inator of a fraction unless every term contains that
factor.
□ Mistake Example: x+2x → 2
□ Detection Rule: Difference expression contains a frac-

tion.

■ Distribution/Factoring ofRoot:Roots distribute over
products and quotients, but not sums nor differences.
Terms cannot be factored out of a root, but roots can
be distributed over multiplication.
□ Mistake Examples:√

x + 2 →
√
x +

√
2√

2x → 2
√
x

□ Detection Rule: Difference expression contains at
least one root.

■ Distribution/Factoring of Absolute Value: Abso-
lute value distributes over products and quotients, but
not sums nor differences. Negative terms cannot be
factored out of an absolute value, but absolute value
can be distributed over multiplication.
□ Mistake Examples:

|x + 2| → |x | + |2|
| − 2x | → −2|x |

□ Detection Rule: Difference expression contains at
least one absolute value.

■ Distribution/Factoring of Sine: Sine does not dis-
tribute over sums, nor differences, nor products, nor
quotients, nor exponents. Terms cannot be factored
out of sine.
□ Mistake Examples:

sin(x + 2) → sin(x) + sin(2)
sin(2x) → sin(2) sin(x)
sin(x2) → sin(x)2
sin(2x) → 2 sin(x)

□ Detection Rule: Difference expression contains at
least one sine.

■ Distribution/Factoring of Cosine: Cosine does not
distribute over sums, nor differences, nor products, nor
quotients, nor exponents. Terms cannot be factored
out of cosine.
□ Mistake Examples:

cos(x + 2) → cos(x) + cos(2)
cos(2x) → cos(2) cos(x)
cos(x2) → cos(x)2
cos(2x) → 2 cos(x)

□ Detection Rule: Difference expression contains at
least one cosine.

4

■ Distribution/Factoring of Tangent: Tangent does
not distribute over sums, nor differences, nor products,
nor quotients, nor exponents. Terms cannot be factored
out of tangent.
□ Mistake Examples:

tan(x + 2) → tan(x) + tan(2)
tan(2x) → tan(2) tan(x)
tan(x2) → tan(x)2
tan(2x) → 2 tan(x)

□ Detection Rule: Difference expression contains at
least one tangent.

■ Distribution/Factoring of Logarithm: Logarithms
do not distribute over sums, nor differences, nor prod-
ucts, nor quotients, nor exponents. Terms cannot be
factored out of logarithms. However, multiplication
inside logarithms can be converted to addition outside
logarithms through the rule log(ab) = log(a) + log(b).
□ Mistake Examples:

log(x + 2) → log(x) + log(2)
log(2x) → log(2) log(x)
log(x2) → log(x)2
log(2x) → 2 log(x)

□ Detection Rule: Difference expression contains at
least one logarithm.

■ Distribution/Factoring ofNatural Log:Natural log
does not distribute over sums, nor differences, nor
products, nor quotients, nor exponents. Terms cannot
be factored out of natural logs. However, multiplication
inside natural log can be converted to addition outside
natural log through the rule ln(ab) = ln(a) + ln(b).
□ Mistake Examples:

ln(x + 2) → ln(x) + ln(2)
ln(2x) → ln(2) ln(x)
ln(x2) → ln(x)2
ln(2x) → 2 ln(x)

□ Detection Rule: Difference expression contains at
least one natural log.

The following additional exclusion rules were introduced,
based on the empirical results of testing the mistake example
cases above:
■ If Self-Division or Multiplication by Variable or

SquareRoot of Square orPositive orNegativeRoot
has been triggered, exclude Distribution of Multi-
plication.

■ If Multiplication by Variable has been triggered,
exclude Partial Cancellation within Fraction.

C EXTERNAL SAMPLE OF ALGEBRAIC MISTAKES
The algebraic errors generated by an undergraduate tutor
for the purposes of validation are provided below, together
with the relevant mistake classes detected by CheckMySteps.

In 10 out of the 14 steps, CheckMySteps detected a relevant
mistake class and supplied relevant feedback.

(x + 5)2 = x2 + 10

x2 + 10 = x2 + 10

Distribution of Exponentiation

x2 + 3x + 6 = x2 + 5x + 4
10 = 2x

Arithmetic

2(x + 3)2 = 8

(2x + 6)2 = 8

Distribution of Exponentiation

6x + 3
4x − 10

= 12

3x + 3
2x − 5

= 12

Partial Cancellation within Fraction

(x − 2)2 = 8

x2 − 4x − 4 = 8

Arithmetic

2x + 3
x − 1

= 7

2x + 3 = 7x − 1

(no relevant mistake class detected)

(x2)4 = 64

x6 = 64

Consecutive Exponentiation

3 − (x − 5) = 10
3 − x − 5 = 10

Distribution of Multiplication Arithmetic

x(x − 5) = 2
x = 2 or x − 5 = 2

(no relevant mistake class detected)
5

x

x + 1
= 3

x

x
+

1
x
= 3

(no relevant mistake class detected)

2
(x
5

)
= 4

2x
10
= 4

Distribution of Multiplication

(x + 4)(x − 1)
x − 1

= 0

x = 1 or x = −4
(no relevant mistake class detected)

x2 + (−2)2 = 3x

x2 − 3x − 4 = 0
Arithmetic

√
x +

√
4x = 10

x + 4x = 100
Distribution/Factoring of Root

6

	Abstract
	1 Introduction
	2 CheckMySteps
	System Design
	Validation
	Future Work

	References
	3 Appendices
	A Justification of Ad-Hoc Rules
	B Mistake Classes, Examples, Detection Rules, and Feedback Descriptions
	C External Sample of Algebraic Mistakes

