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His ideas are concrete |

and easy to explain,

. | He also heads a research lab at Google.
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Matt may be a rock _star...
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Matt may be a rock star...but there is a big skeleton
~= == in his closet.

. Naive Bayes, all in my brain
’ Neural nets they don't seem to train
Actin' funny, but | don't know why
.:1 Excuse me while | classify
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Most of Matt’s tools only work when he has lots of labeled training data or
a hypothesis he wishes to test
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When Matt needs to extract some open-ended “insights” from unfamiliar data, he
doesn’t know where to begin.




Most of Matt’s tools only work when he has lots of labeled training data or
a hypothesis he wishes to test
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When Matt needs to extract some open-ended “insights” from unfamiliar data, he
doesn’t know where to begin.

So, Matt made a new friend to help him with open-ended data analysis.
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. He also doesn’t
trust computers.

= Tom thinks about
| things which can't NS Blah blah
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. and he can't tell the difference
between his donut and his coffee cup.
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Why did Matt choose Tom?

Aunaly‘t‘i‘cs '



Why did Matt choose Tom?

Tom understands shape of data.
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Why did Matt choose Tom?

Tom understands shape of data.

His methods don’t require hypotheses, parameters, or
even coordinates.
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Why did Matt choose Tom?

Tom understands shape of data.

His methods don’t require hypotheses, parameters, or
even coordinates.

To draw insights from data, all he needs is a measure of
similarity between points.
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Why did Matt choose Tom?

Tom understands shape of data.

His methods don’t require hypotheses, parameters, or
even coordinates.

To draw insights from data, all he needs is a measure of
similarity between points.

How does Tom do it???
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TDA in Theory
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G
Ask yourself:

Is the shape of O more similar to that of P, or B?
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Our intuition about shape is based on loops

O and P have similar shape: 1 loop
O and B have different shape: 1 loop vs 2 loops
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Our intuition about shape is based on loops

O and P have similar shape: 1 loop
O and B have different shape: 1 loop vs 2 loops

The number of loops in a space turns out to depend precisely on
the number of holes in the space
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Our intuition about shape is based on loops

O and P have similar shape: 1 loop
O and B have different shape: 1 loop vs 2 loops

The number of loops in a space turns out to depend precisely on
the number of holes in the space

We can classify a space by counting its holes in each dimension!
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Example: Three-Dimensional Space

Missing two points — 2
one-dimensional holes
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Example: Three-Dimensional Space

Missing two points — 2
one-dimensional holes

Missing one line — 1
two-dimensional hole
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Example: Three-Dimensional Space

Missing two points — 2
one-dimensional holes

Missing one line — 1
two-dimensional hole

Classification: (2,1)
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We can use these classifications to compare spaces!

A space can be represented as a tuple: (3, 1, 2) means
* 3 holes in dimension one

1 holein dimension two

2 holes in dimension three

(3, 1, 2) is more similar to (4, 1, 2) than (2, 5, 5)
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Philosophical Aside

We have lots of mathematical machinery to operate on transformations
between points, e.g. probability and calculus.
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Philosophical Aside

We have lots of mathematical machinery to operate on transformations
between points, e.g. probability and calculus.

Up until topology, we were limited to using these tools within a particular
space at a given time.
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Philosophical Aside

We have lots of mathematical machinery to operate on transformations
between points, e.g. probability and calculus.

Up until topology, we were limited to using these tools within a particular
space at a given time.

Topology gives us a way to talk about entire spaces as points.
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Philosophical Aside

We have lots of mathematical machinery to operate on transformations
between points, e.g. probability and calculus.

Up until topology, we were limited to using these tools within a particular
space at a given time.

Topology gives us a way to talk about entire spaces as points.

We can now use distance, probability, and calculus to study transformations
between entire spaces! (intheory)
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TDA In Practice
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In theory...

TDA is about measuring similarity between spaces
based on their topological features (holes)
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In theory...

TDA is about measuring similarity between spaces
based on their topological features (holes)

In practice...

TDA is about visualizing high-dimensional spaces as
networks, without losing topological features
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The Mapper Algorithm
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The Mapper Algorithm

ee E.g. each point is of a
Colored correlation matrix for asset

data g 0 ® 2 prices, colored according to
points ©%% ee’® returns %
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The Mapper Algorithm
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The Mapper Algorithm

Nodes correspond to Colored

market regimes, network
colored by returns % >"
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Real Use Case:

Forecasting Returns i1

300+ market and economic s ; 2 :
variables, sampled over 25 years i # .

Nodes colored by year ﬁ
Colors are spread out — indicates "..,,. " X

repeated patterns over time
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Real Use Case:
Forecasting Returns

High-volatility and
high-stress times are
grouped together
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Real Use Case:
Forecasting Returns

High-volatility and
high-stress times are
grouped together

Implies similar market
regimes
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Real Use Case:
Diagnosing Denied

Claims e Gy
Structure: claim similarity - 1
(5 million medical claims) 1 _
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Real Use Case:

Diagnosing Denied ‘ .
Claims , 3
Structure: claim similarity : ' ' _
(5 million medical claims) == - o[ Tecal

Color: claim denial frequency

Result: advice for | L e A l.l;'_'__

e pre-submission action: .
modifying final code or e o/ e
supporting diagnosis A A4
point of care: seeking :

pre-authorization or = Beriad Gl e
reconsidering a procedure
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Real Use Case:
ldentifying Fraud

Structure: similarity in how
providers practice

(CMS public health claims 2
dataset) Y ,-.""“E:

W
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Real Use Case:
ldentifying Fraud

Structure: similarity in how
providers practice

(CMS public health claims o
dataset) S > xE
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15

Real Use Case:
ldentifying Fraud

Structure: similarity in how
providers practice

(CMS public health claims o
dataset) S > xE

Color: medicare payment
amount

it

Result: Identify leads for
fraud investigation by looking
for outlier providers who are
getting paid abnormally much
compared to similar providers

TP
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Real Use Case: Campaign

Planning W
Structure: Twitter account similarity (36k

users who tweeted about Chris Christie)
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Real Use Case: Campaign
Planning

Structure: Twitter account similarity (36k "scandal’

users who tweeted about Chris Christie)

Color: word frequency | LY _

“traffic”

< 4

“Governor”
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Real Use Case: Campaign
Planning

Structure: Twitter account similarity (36k
users who tweeted about Chris Christie)

Color: word frequency

Result: Identify niche conversations that
are good targets for ads.

15
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Real Use Case: Campaign
Planning

Structure: Twitter account similarity (36k
users who tweeted about Chris Christie)

Color: word frequency

Result: Identify niche conversations that
are good targets for ads.

(Can also investigate an individual group
to see what other words differentiate the
group from others.)

15
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TDA Software
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Commercial Software: Ayasdi

Ayasdi dominates the commercial TDA market.
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Commercial Software: Ayasdi

Ayasdi dominates the commercial TDA market.

Every single use-case in the previous section is from an Ayasdi
webinar.
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Commercial Software: Ayasdi

Ayasdi dominates the commercial TDA market.

Every single use-case in the previous section is from an Ayasdi
webinar.

Ayasdi not only implements the Mapper algorithm but also has
an “explain” function which automatically differentiates clusters
by running a barrage of statistical tests and ranking their most
significant differences.
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Open Source Software: TDAmapper

Not as pretty or easy as Ayasdi, but still not bad™*:

*I don’t know how well (or poorly) it scales
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TDA Potential
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Snoopy - Location Tracking

Dataset includes counts of visits to different location categories, for several thousand users

Clustering visit profiles within the “Recreation and Leisure” category revealed 5 niche

clusters:
Recreation Category Cluster1 Cluster2 Cluster3 Clusterd4 Cluster5 Cluster6
Athletic Fields 1% 1% 1% [NSE%: | 1% [ 49%
Golf 0% [NEET, 1%| 1%)| 0% 7%
Gym and Fitness 1%| 1% | 1%| 0% o7 | 6%
Outdoors 1% 1% [NE6% | 0% 1% [ 13%
Recreation Centers 0%| 0%| 0%| 0% 0% 7%
Stadiums and Arenas  [JINGTS: | 1%| 2% 0% 1% 17%
Swimming Pools 0% 0%| 0% 0%| 0% 7%
High-end Golfers  Hikers Recreational Gymrats Everyone else
sports Campers sports players

players/fans

Aunaly‘tmiwcls '




Snoopy - Location Tracking

Mapper algorithm reveals many more clusters. Moreover, we can see the paths by
which they are connected.
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Snoopy - Location Tracking

Mapper algorithm reveals many more clusters. Moreover, we can see the paths by
which they are connected.
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Snoopy - Location Tracking

Mapper algorithm reveals many more clusters. Moreover, we can see the paths by

which they are connected.
red=in node 19, black=out of node 19

mean +/- sdev
00 0.2 04 086

Node 19 has a normal profile
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Snoopy - Location Tracking

Mapper algorithm reveals many more clusters. Moreover, we can see the paths by

which they are connected.
red=in node 21, black=out of node 21

i

mean +/- sdev
0.0 02 04 08

Node 21 has abnormally low visit
frequency to gym/fitness centers
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Snoopy - Location Tracking

Mapper algorithm reveals many more clusters. Moreover, we can see the paths by
which they are connected.

5 red=in node 26, black=out of node 26
: X
@ Y
: 15 - G -
® 5 g o
@ + i
9 & 2= ,
LiF]
© ]
o
.4 S ETERtte e ps

Node 21 has not only abnormally low visit frequency to gym/fitness
centers, but also to athletic fields, golf, and outdoors. However, it
has abnormally high visit frequency to stadiums/arenas.
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Questions? :)
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