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Part 1​
Linear Equations and Systems 
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1.1 Solving Linear Equations 

 

Loosely speaking, a linear equation is an equality statement 

containing only addition, subtraction, multiplication, and division. It 

does not need to include all of these operations, but it cannot 

include operations beyond them, such as exponentiation. 

 

For example, these are linear equations: 

 

 

 

 

 

On the other hand, these are not linear equations: 

 

 

 

 

 

 

Solutions to Linear Equations 
 

The solution of a linear equation is the value that we can substitute 

for the variable to make the equation true. 
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Most linear equations have a single solution. We can find the 

solution by performing operations on both sides of the equation, to 

isolate the variable. 

 

Given equation  

Add  to both sides  

Subtract  from both sides  

Divide both sides by   

 

To check our solution, we can substitute it in both sides of the 

equation and check that they evaluate to the same result: 

 

 

 

 

Case of No Solutions 
 

However, some linear equations have no solutions. When we try to 

solve these equations, the variable vanishes and we are left with an 

untrue statement. 

 

Given equation  

Subtract  from both sides  

 

https://www.codecogs.com/eqnedit.php?latex=2x%0
https://www.codecogs.com/eqnedit.php?latex=8%0
https://www.codecogs.com/eqnedit.php?latex=7%0
https://www.codecogs.com/eqnedit.php?latex=3x%0
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This means that there is no number we can substitute for  to make 

the given equation true. 

 

In fact, the right-hand side will always be  more than the left-hand 

side: the left-hand side says to multiply the input by  and add , 

while the left-hand side says to multiply the input by  and add .  

 

Both sides multiply the input by , but then add different amounts! 

We can never hope to get the results to be the same. 

 

 

Case of Infinitely Many Solutions 
 

Even more interesting, some linear equations have infinitely many 

solutions. When we try to solve these equations, the variable still 

vanishes, but this time we are left with a true statement. 

 

Given equation  

Add  to both sides  

 

In other words, any number we substitute for  will make the given 

equation true. 

 

The left-hand side and the right-hand side will always come out to 

the same result: the left-hand side tells us to multiply the input by 

 and add , and the right-hand side tells us to multiply the input 

by  and then subtract it from . These are really just two ways of 

saying the same thing. 

 

 

https://www.codecogs.com/eqnedit.php?latex=2x%0
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Exercises 
 

Solve the following: 
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1.2 Slope-Intercept Form 

 

Before, we were solving linear equations in one variable. Now, let’s 

consider linear equations in two variables. A few examples are 

shown below: 

 

 

 

 

 

Solutions to Two-Variable Equations 
 

The solution to a two-variable linear equation is no longer just the 

number(s) that we can substitute for  to make the equation true, 

but rather the pair(s)  that we can substitute for  and  to 

make the equation true. 

 

Two-variable linear equations usually have infinitely many solutions, 

because we are usually able to solve for one variable in terms of the 

other. 

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
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Given equation  

Subtract  from both sides  

Subtract  from both sides  

Divide both sides by   

 

If we choose , then we can make the given equation true by 

choosing . If we choose , then we can 

make the given equation true by choosing . 

Whatever value we choose for , we can make the equation true by 

choosing  as twice that value, minus . 

 

However, although there are infinitely many solutions to the 

equation, that doesn’t mean that any random pair we pick will be a 

solution. For example, if we try the pair , then the 

left-hand side comes out to , not . 

 

 

Graphing 
 

To really see what’s going on, it helps to plot the solutions on a 

graph.  In fact, linear equations are called linear because when we 

plot them on a graph, they form a straight line 

 

To plot all the solutions of  on the graph below, we plot 

two solutions and draw a line through them. We already saw that 

one solution was , and when we substitute  we get 

, so another solution is . 

 

https://www.codecogs.com/eqnedit.php?latex=35%0
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Any point that is on the line is a solution of the original equation. 

For example, we see that the line passes through the point  -- 

and indeed, substituting  and  makes the original 

equation true. 

 

 

 

 

Slope-Intercept Form 
 

In general, when we solve for  in a linear equation of two 

variables, we end up with a result in the form  where 

 and  are constants (provided  doesn’t vanish). This is called 

slope-intercept form, and the constants  and  are called the 

slope and y-intercept of the line, respectively.  
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The y-intercept takes its name from the fact that the line crosses the 

y-axis at . For example, the graph of  shown earlier 

crossed the y-axis at . This pattern is true in general because the 

pair  is a solution of the equation : when we 

substitute , we find . 

 

The slope takes its name from the fact that  controls how steep 

the line is: for every unit the line travels right, it travels  units up 

(or down, if  is negative). For example, in the graph of 

, if we start at the point  and travel  unit right and 

 units up, we arrive at the point , which is also on the line. 

 

To graph a line  in slope-intercept form, it is easiest to 

start by plotting the intercept . Then, we can pick another 

point by going right 1 unit and up  units. For example, to plot the 

line , we can start at the intercept , and since the 

slope is , we will go right  unit and down  units to arrive at a 

second point . Then, we can connect these two points with a 

line. 

 

 

https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=1%0
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When we have a fractional slope, such as in the line , it 

is easier to go right  units and up  units, instead of going right  

unit and up  of a unit. We’re just repeating the process  times, for 

a total distance right of  and a total distance up of 

. The resulting line is shown in the graph below. 

 

 

 

 

Horizontal and Vertical Lines 
 

If the  term vanishes when we solve for , such as in the line 

 which simplifies to , then we can interpret the 

slope as being  because the line can be written . The 

resulting line has a y-intercept  and is horizontal because for 

every unit it goes to the right, it goes  units up. 
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Perhaps an easier way to think about it, though, is that the solution 

is just all the points that have a y-coordinate of , regardless of their 

x-coordinates. 

 

 

 

On the other hand, if  vanishes when we solve, such as in the line 

 which simplifies to , then we have a vertical 

line that passes through all the points having an x-coordinate of , 

regardless of their y-coordinate. 
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Finding the Equation from a Graph 
 

Now, let’s think in reverse: if we draw a particular line, how can we 

come up with its equation? 

 

If we know the y-intercept and slope of the line, then it’s easy -- we 

just substitute the slope for  and the y-intercept for  in the 

equation . 

 

For example, in the line below, we see that the y-intercept is , 

and when we go right , we go up , so the slope is . The equation 

of the line, then, is . 

 

 

 

But what if we aren’t given the slope and y-intercept, or even a 

picture of the line, and we want to write the equation of the line 

based on only two points it passes through? 
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It’s straightforward to compute the slope based on the two points -- 

we just need to find the rise, or the change in , and divide it by the 

run, or the change in . 

 

For example, if the points are  and , then we can 

compute the rise as  and the run as , 

resulting in a slope of . 

 

Or, we can compute the rise as  and the run as 

, still resulting in a slope of .  

 

Either way, we get the same slope.  

 

 

 

Substituting for  in the equation , we reach  

 

. 

 

It remains to find the y-intercept, . We can do this by substituting 

for  and  using the coordinates of one of the points that we 

know needs to be on the line, say, . 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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It really doesn’t matter which point we use -- even if we used the 

other point, , we would get the same result for . 

 

 

 

Now that we know the y-intercept is , we can write the final 

equation of the line: 
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Exercises 
 

Graph the following linear equations. 
 

  

  

  

  

 

Write the equation of the line in slope-intercept form. 
 

  

  

  

 



Justin Skycak | Algebra​ ​ ​ ​ ​     31 

  

  

 

Write the slope-intercept equation of the line that goes through 

the given point, with the given slope. 

 

  

  

 

Write the slope-intercept equation of the line that goes through 
the given points. 
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1.3 Point-Slope Form 

 

Suppose we want to write the equation of a line with a given slope 

, through a particular point . In the previous chapter, we 

substituted the given information into a slope-intercept equation 

form , solved for , and rewrote the slope-intercept 

form with  and  substituted so that  and  were the only 

variables. 

 

Slope-intercept equation form  

Substitute the given slope   

Substitute the given point   

Solve for   

Final equation  

 

However, there is an alternative form, point-slope form, that makes 

it even easier to write the equation of a line if we know the slope 

and a point  on the line. It is given by 

 

. 
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If we know that our desired line has slope  and passes 

through the point , then we can substitute directly 

into point-slope form without performing any additional 

computations: 

 

 

This is an accepted form of the equation for a line, so we don’t need 

to simplify it at all unless we’re asked to do so.  

 

But even if we actually need to find the line in slope-intercept form, 

it’s still advantageous to begin with point-slope form, because all we 

have to do is distribute the  and add  to get to slope-intercept 

form. 

 

Point-slope form  

Distribute the   

Add  to both sides to reach 
slope-intercept form 

 

 

 

Derivation 
 

The point-slope formula is easy to remember, too, because it just 

says that the slope between any point  and the reference 

point  needs to be equal to the given slope . 

 

 

https://www.codecogs.com/eqnedit.php?latex=2%0
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Moving from  to , the amount we go up is , and 

the amount we go over horizontally is , so the slope is just 

. Equating this to  and multiplying to get rid of the fraction, 

we reach point-slope form! 

 

Slope must equal   

Multiply both sides by ​
to reach point-slope form 

 

 

 

Graphing 
 

To graph a line whose equation is given in point-slope form, we 

perform the same process as we do to graph a line that is in 

slope-intercept form, except we start at the reference point rather 

than at the y-intercept. 

 

For example, consider the line , for which the 

reference point is  and the slope is . To graph this line, we 

start at , go up  and over  to the point , and draw a line 

through the two points. 
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Final Remark 
 

One thing to watch out for in point-slope form: be careful about 

negatives. 

 

For example, the point-slope form of a line with slope  that goes 

through the point  is NOT given by . This 

is the line that goes through the point , not . 

 

The line that goes through  actually involves addition 

rather than subtraction, because the negatives cancel the 

subtraction in the original formula for point-slope form. 
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Point-slope formula  

Substitute slope  and​
point  

 

Negatives cancel  

 

 

 

Exercises 
 

Write the point-slope equation of the line that goes through the 
given point, with the given slope. 
 

  

  

 

Write the point-slope equation of the line that goes through the 
given points. 
 

  

  

 

 
 

 



38​ ​ ​ ​ ​              Justin Skycak | Algebra 

Graph the following lines. 
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1.4 Standard Form 

 

The standard form of a linear equation is , where , , 

and  are all integers and  is nonnegative. 

 

For example, we can convert the equation  to standard 

form by moving  and  to the same side and multiplying to cancel 

out any fractions. 

 

Given equation  

Subtract  from both sides  

Multiply both sides by , the least​
common multiple of  and  

 

Multiply both sides by  to make​
the  coefficient positive 

 

 

 

Finding the Intercepts 
 

Standard form makes it easy to see the intercepts of the line: to get 

the x-intercept in , we divide the constant  by the 

x-coefficient , and to get the y-intercept, we divide the constant  

by the y-coefficient . 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0


40​ ​ ​ ​ ​              Justin Skycak | Algebra 

For example, the x-coefficient of  is , and the 

y-coefficient is  which simplifies to . 

 

This trick for finding the intercepts works because finding the 

intercept of a particular variable involves substituting  for the other 

variable. The x-intercept occurs at some point  where  is , 

so to solve for the x-intercept, we can substitute  for  and solve 

for . 

 

Given equation  

Substitute  for   

Simplify  

Divide by   

 

Likewise, the y-intercept occurs at some point  where  is , 

so to solve for the y-intercept, we can substitute  for  and solve 

for . 

 

Given equation  

Substitute  for   

Simplify  

Divide by   

 

 

 

https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=a(0)%2Bby%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=by%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=b%0
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Graphing 
 

To plot the line, then, all we have to do is mark the intercepts and 

then draw a line through them. 

 

For example, in the line , we computed the 

x-intercept as , or , and the y-intercept as , or . 

 

To graph the line, we just need to plot the intercepts  and 

 and draw a line through them. 
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Exercises 
 

Write the equation in standard form. (It may already be in 
standard form.) 
 

  

  

  

 

Graph the following by drawing a line through the intercepts. 
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1.5 Linear Systems 

 

A linear system consists of multiple linear equations, and the 

solution of a linear system consists of the pairs that satisfy all of the 

equations.  

 

For example, the solution to the linear system 

 

 

 

is  because substituting  for  and  for  makes both 

equations true.  

 

Graphical Interpretation 
 

Graphically, we can think of a linear system as being a set of two 

lines, and their solution as the point where they intersect. 

 

The intersection point is the solution because it is on both lines, 

meaning it makes both equations true. 
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Usually, two lines will intersect in exactly one point, and thus the 

system will have a single solution. However, when the two lines are 

parallel, meaning that they have the same slope, the lines will never 

intersect, unless they are actually the same line. 

 

If the system consists of two different parallel lines, then it will have 

no solution because there are no intersection points. But if the 

system consists of two lines that are actually the same, then the 

system will have infinitely many solutions because every point on 

the line is a solution. 
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We can sometimes tell the solution of a system by graphing the 

equations and looking for the point where they intersect. However, 

when the lines intersect at a point that doesn’t coincide with grid 

lines on the graph, it can be difficult to identify the exact 

coordinates of the intersection point. 

 

For example, can you identify the point of intersection below? If you 

think you can, would you bet your life on it? 
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Substitution 
 

There is another method for solving a system of linear equations, 

called the method of substitution, which makes it possible to solve a 

linear system without graphing it. 

 

To perform substitution, we create a third equation by solving for a 

particular variable in the first and second equations and setting the 

results equal to each other. 

 

Since the third equation has a single variable, we can solve for the 

numeric value of that variable, and then use it to find the numeric 

value of the other variable. 

 

Given system 

 

Solve for  

 

 

 

Set the results equal​
to each other  

Solve for    

 

https://www.codecogs.com/eqnedit.php?latex=y%0
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Substitute  in​
equation for  

 

 

Final solution  

 

To perform substitution even more quickly, instead of solving for a 

particular variable in both equations, we can solve for a particular 

variable in just one of the equations and then substitute the 

resulting expression where the particular variable occurs in the 

other equation. 

 

Given system 

 

Solve for  in bottom​
equation 

 

 

Substitute into top equation  

Solve for    

  

Substitute  in​
equation for  

 

 

https://www.codecogs.com/eqnedit.php?latex=y%0
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Final solution  

 

Remember that some systems have no solutions, and other 

solutions have infinite solutions -- so it shouldn’t throw us off if the 

third equation created by substitution has no solutions or infinite 

solutions. 

 

 

Elimination 
 

An even faster way to solve some linear equations is the method of 

elimination. The method of elimination also creates a third equation 

in a single variable, but it does so by adding multiples of the two 

original equations to cancel out one of the variables. 

 

Given system 

 

Add the two equations  

 cancels  

Solve for   

Substitute  in​
top equation 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
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Solve for   

  

Final solution  

 

In the previous example, one of the variables cancelled when we 

added the two equations. Other times, though, no variable will 

cancel right away, and we will first need to multiply one of the 

equations by a number so that a variable will cancel when we add 

the equations. 

 

Given system 

 

Multiply top equation​
by  

 

Add the two equations​
to cancel  

 

 

Other times still, we may need to multiply both equations by a 

different number to cancel a variable. (We can just take the least 

common multiple -- the same trick we use to add fractions with 

different denominators.) 
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Given system 

 

Multiply top equation by  
Multiply bottom equation by ​

(Least common multiple is )  

Add the two equations​
to cancel  

 

 

Again, since some systems have no solutions, and other solutions 

have infinite solutions, we should not be worried if the third 

equation created by elimination simplifies to a never-true statement 

like  (no solutions) or an always-true statement like  

(infinite solutions). 

 

 

Exercises 
 

Solve by substitution or elimination. 
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Part 2​
Quadratic Equations 
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2.1 Standard Form 

 

Quadratic equations are similar to linear equations, except that they 

contain squares of a single variable. 

 

For example, the equations below are quadratic equations: 

 

   

 

On the other hand, the equations below are not quadratic 

equations. (A quadratic equation must contain the square of one 

variable, but cannot contain squares of multiple different variables, 

and cannot contain other operations not found in linear equations, 

such as square roots.) 

 

   

 

 

Graphing 
 

As a consequence of the squared variable, the shape of the graph of 

a two-variable quadratic equation is a parabola. 
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To tell whether the graph of a quadratic equation is an upward or 

downward parabola, it is helpful to arrange the quadratic equation 

into standard form, which is given by 

 

 

 

where , , and  are constants and called coefficients. The 

coefficient on the  term, which is given by , is often called the 

leading coefficient because it is the leftmost coefficient when terms 

in the standard equation are ordered properly. 

 

Keep in mind that some coefficients may be zero -- for example, the 

quadratic equation  has  because it can be 

written as . 

 

If the leading coefficient, , is positive, then the parabola opens 

upward. Otherwise, if the leading coefficient is negative, then the 

parabola opens downward. 
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To remember this, you might think of a positive leading coefficient 

causing the parabola to smile, and a negative leading coefficient 

causing the parabola to frown. 

 

 Opens upward because leading 

coefficient  is positive 

 Opens downward because leading 

coefficient  is negative 

 

Sometimes, we may have to rearrange a quadratic equation into 

standard form. 

 

Given Equation   

Standard Form   

Leading Coefficient   

Opening Direction   

 

 

Vertex of a Parabola 
 

The standard form of a quadratic equation can also tell us about the 

parabola’s vertex, or turning point. 

 

For a quadratic equation in the form , the 

x-coordinate of the vertex is given by . 
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To find the y-coordinate of the vertex, we can substitute the 

x-coordinate of the vertex into the quadratic equation and evaluate. 

 

Standard Form   

X-Coord​
of Vertex 

  

  

Y-Coord​
of Vertex 

  

  

Vertex   

 

With a parabola’s vertex and direction of opening, we can draw a 

decent sketch of the graph. 

 

To make our graph a little more accurate, we can also make sure it 

has the correct y-intercept. Since we set  to find the 

y-intercept, the y-intercept of  is always given by 

, which evaluates simply to . 
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Exercises 
 

For the following quadratic equations: 
a.​ Write the quadratic equation in standard form. 
b.​ Using the standard form, tell whether the parabola opens 

upward or downward, and find the vertex and y-intercept. 
c.​ Finally, using the parabola’s vertex, opening direction, and 

y-intercept, draw a rough sketch of the graph of the 
equation. (If the vertex and the y-intercept are the same, 
choose some other point.) 
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2.2 Factoring 

 

Factoring is a method for solving quadratic equations. It involves 

converting the quadratic equation to standard form, then factoring 

it into a product of two linear terms (called factors), and finally 

solving for the variable values that make either factor equal to . 

 

Original quadratic equation  

Convert to standard form  

Factor  

Set each factor to   

Solve  

 

When we factor, we are rearranging the equation to say that the 

product of two numbers is . The equation is solved when either 

number is , because any number multiplied by  is . 
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How to Factor 
 

Factoring is easiest in hindsight. Multiplying through, we see that 

the factored form is equivalent to the standard form: 

 

 

 

But how can we know this to begin with? In other words, if we want 

to factor an expression  into the form , 

how do we know what  and  are? 

 

Here’s the trick:  and  need to multiply to  and add to . 

 

To factor the expression , we need to find two numbers 

that multiply to  and add to . Although  and  multiply to , 

they don’t add to . But  and  multiply to  AND add to , so 

they work! The factored form is then . 

 

Even with negatives, the method is still the same: to factor the 

expression , we need to find two numbers that multiply 

to  and add to . Although  and  multiply to , they 

don’t add to . But  and  multiply to  AND add to , so 

they work! The factored form is then . 
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Case of Many Potential Factors 
 

Factoring can become a little tricky when  has a lot of factors. In 

such cases, it can be helpful to make a factor table. 

 

For example, to factor , we can list out the factors 

of  and find which pair adds to . Since this pair is  and , 

the expression factors to . 

 

Factor Pair Sum 

  

  

  

  

  

  

  

  

 

To speed up the process, notice that the sums are automatically 

ordered from biggest to smallest -- so we don’t necessarily have to 

create the whole table. 
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We could have started with some intermediate pair, say  and , 

and realized that since the sum is too big, we need the first factor to 

be bigger than . 

 

Or, we could have noticed that sum of  and  is in the ballpark of 

, and worked our way up from the bottom of the table. 

 

 

Case of Negative Terms 
 

To deal with a negative value for , we could use the same method 

as before, except that we would have to make both factors negative.  

 

For example, since we know that  and  are factors of  that 

add to , we also know that  and  are factors of  that 

add to , so the expression  factors to 

. 

 

To deal with a negative value for , we can think about the 

difference instead of the sum. 

 

For example, to factor , we can find which factor 

pair of  has a difference of , and put a negative on the smaller 

factor to make the sum. Since this pair is  and , the expression 

factors to . 
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Factor Pair Difference 

  

  

  

  

  

  

  

  

 

If  were negative as well -- say, if we wanted to factor 

 -- then we could use the same process but put the 

negative on the bigger factor to make the sum negative. That is, we 

would put the negative on the  instead of the , and the resulting 

factored form would then be . 
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Case of a Common Factor 
 

Sometimes, we can simplify quadratic expressions by factoring out 

something that ALL the terms have in common. 

 

Original quadratic equation  

Factor a  out of all terms  

Factor the quadratic expression  

Set each factor to   

Solve  

 

This makes it easy to factor quadratic expressions where  is  -- 

just factor out the variable! 

 

Original quadratic equation  

Factor an  out of all terms  

Set each factor to   

Solve  
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Case when the Leading Coefficient is Not One 
 

Factoring out the variable works even when  is something other 

than . 

 

Original quadratic equation  

Factor an  out of all terms  

Set each factor to   

Solve  

 

But what about when  is something other than , and  is not 

zero? 

 

There’s a little trick that lets us reduce this to a factoring problem 

with  equal to . We multiply  by , replace  with , factor the 

result, divide each constant in each factor by the original , and 

move denominators onto our variables. 

 

Original quadratic equation  

Multiply  by , and​
replace  with  

 

Factor normally  

Divide each constant in​
each factor by  
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Simplify  

Move denominators onto 
variables 

 

Set each factor to   

Solve  

 

We’ll talk about why this trick works in the next chapter, when we 

cover the quadratic formula. 

 

 

Case of No Middle Term 
 

Lastly, what about when  is ? Since the factors have to add to , 

they must be negatives of each other. Since the factors have to 

multiply to , and they are the same number (except one is 

negative), they must be the positive and negative square roots of !  

 

For example,  factors to , and  factors 

to . 

 

This trick also works if  is not equal to  -- we just have to factor  

out first. 

 

Original quadratic equation  

Factor  out of all terms  
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Factor the quadratic  

Solve  

 

 

Exercises 
 

Factor the following quadratic equations. Then, use the factored 
form to find the solutions. 
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2.3 Quadratic Formula 

 

Some quadratic equations cannot be factored easily. For example, in 

the equation , we need to find two factors of  

that add to . But the only integer factors of  are  and , and they 

definitely don’t add to ! 

 

To solve these hard-to-factor quadratic equations, it’s easiest to use 

the quadratic formula given below, which tells us explicitly how to 

compute the solutions of a quadratic equation . 

 

 

 

 

Worked Example 
 

Using the quadratic formula, we can compute the solutions to the 

equation . 

 

Substitute , , and 
 in quadratic formula  

Simplify 
 

Separate the  into two 
solutions (optional) 
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These solutions look weird, but they’re correct. 

 

       

 

 

Reverse Derivation 
 

To gain some faith in the quadratic formula, we can also rearrange it 

back into the original equation to see that it must have the same 

solutions as the original equation: 
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The Discriminant 
 

Using the quadratic equation, we can see that some quadratic 

equations have 2 solutions (as usual), but other quadratic equations 

can have just 1 solution, or no solutions at all. 

 

For example, using the quadratic equation to solve , we 

find a single solution because the  part comes out to 

. 

 

 

 

Similarly, using the quadratic equation to solve , we 

find no solutions because the  part comes out to 

, and we can’t take the square root of a 

negative number. (We’ll ignore imaginary solutions and consider 

only real solutions for now.) 

 

 

 

To see how many solutions a quadratic equation has, we need only 

consider the  part of the quadratic formula, which is called 

the discriminant. If the discriminant is positive, then we have two 

solutions. If it is , then we have one solution. If it is negative, then 

we have no solution. 

 

We can also use the quadratic formula to understand the trick for 

factoring when  is not equal to  -- which was to multiply  by , 
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replace  with , factor the result, divide each constant in each 

factor by the original , and move denominators onto our variables.  

 

From the quadratic formula, we know that the solutions of 

 are given by . When we 

multiply  by  and replace  with , we have the equation 

, which has solutions . 

 

This means that if  is a solution of , then  is a 

solution of . 

 

Thus, if  factors into , then 

 factors into . 

 

Exercises 
 

Use the quadratic formula to solve the following quadratic 
equations. 
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2.4 Completing the Square 

 

Completing the square is another method for solving quadratic 

equations. Although we can use the quadratic formula to solve any 

quadratic equation, completing the square helps us gain a better 

intuition for quadratic equations and understand where the 

quadratic formula comes from. 

 

As we will see in the next chapter, completing the square will also 

help us rearrange quadratic equations into forms that are easy to 

graph. 

 

 

Demonstration 
 

The main idea behind completing the square is that every quadratic 

expression has a squared factor hidden inside of it. 

 

Original equation  

Add  to both sides  

Add  to both sides  

Factor  

Take positive/negative root  

Solve  
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General Procedure 
 

To find the squared factor, we just need to move the constant to the 

other side of the equation and add  to both sides. Then, the 

quadratic expression will factor into . 

 

Original equation  

Move the constant to the​
other side 

 

Add  to both sides  

Factor  

Take positive/negative root  

Solve  
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Hey, the solution is the same as the quadratic equation with ! 

 

 

 

Case when the Leading Coefficient is Not One 
 

To complete the square with  not equal to , we can simply divide 

by  to create an equivalent equation where  IS equal to . 

 

Original equation  

Divide by   

Add  to both sides  

Add  to both sides  

Factor  

Take positive/negative root​
and solve  
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By completing the square on the general form , 

we arrive at the quadratic equation: 

 

Original equation  

Divide by   

Move the constant to the​
other side  

Add  to​
both sides 

 

Factor  

Take positive/negative root  

Solve  

Simplify  
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Exercises 
 

Solve the following quadratic equations by completing the square. 
If there are two solutions, leave your answer in the form 

. 
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2.5 Vertex Form 

 

To easily graph a quadratic equation, we can convert it to vertex 

form: 

 

 

 

In vertex form, we can tell the coordinates of the vertex of the 

parabola just by looking at the equation: the vertex is at . We 

can also tell which way the parabola opens, by checking whether  

is positive (opens up) or negative (opens down). 

 

Equation Vertex Opens 

   

   

   

   

 

 

Converting to Vertex Form 
 

To convert a quadratic equation into vertex form, we can complete 

the square. 
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Original equation  

Divide by   

Move the constant to​
the other side 

 

Add  to both sides  

Factor  

Multiply by   

Subtract   

 

 

Exercises 
 

Write the equation in vertex form . Then, find 
the coordinates of the vertex and tell which way the parabola 
opens. 
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2.6 Quadratic Systems 

 

Systems of quadratic equations can be solved via substitution. After 

substituting, the resulting equation can itself be reduced down to a 

quadratic equation and solved by techniques covered in this chapter. 

 

Original system 

 

Substitute for   

Convert to standard form  

Solve for   

Evaluate   
 

 

Solution  

 

 

 

https://www.codecogs.com/eqnedit.php?latex=y%0
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Note that when evaluating , it doesn’t matter which equation we 

use from the original equation. In the example above, we used the 

first equation because it was easier to compute, but using the 

second equation leads us to the same solutions. 

 

 

 

 

Number of Solutions 
 

There can be , , or  points of intersection, depending on the 

arrangement of the parabolas. 
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Just like in linear equations, if the result reduces down to a true 

statement, then there are infinitely many solutions because both 

equations in the system actually represent the same parabola. 

 

Original system 

 

Substitute for   

Simplify  

Solution  

 

 

On the other hand, if the result reduces down to a false statement, 

then there are no solutions because the parabolas never intersect. 

 

Original system 

 

Substitute for   

Simplify  

Solution  

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=y%0
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Exercises 
 

Solve the following systems of quadratic equations. 
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Chapter 3​
Inequalities 
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3.1 Linear Inequalities in the Number Line 

 

An inequality is similar to an equation, but instead of saying two 

quantities are equal, it says that one quantity is greater than or less 

than another. 

 

For example, since  is greater than , we write . Likewise, 

since  is less than , we write . 

 

If we write , then we mean that  can be , , , , 

or any other positive number. If we write , then we mean that 

 can be , , , , or any other negative number. 

 

 

“Or Equal To” Inequalities 
 

We can also write  to mean that  is greater than or equal 

to . 

 

In , the number  is not a valid solution for  because  is 

not greater than , but in , the number  is a valid solution 

because  is greater than or equal to . 

 

Likewise, we can write  to mean that  is less than or equal 

to . 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
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Solving Inequalities 
 

Inequalities can be solved much like equations: we can perform 

algebraic manipulations to both sides of the equation until we 

isolate the variable. 

 

Original inequality  

Add  to both sides  

Subtract  from both sides  

Divide both sides by   

 

If we substitute any number that is greater than , it will satisfy the 

original inequality. 

 

For example, if we substitute , then the original inequality 

becomes , which is true. Likewise, if we substitute 

, then the original inequality becomes , 

which is true. 

 

On the other hand, if we substitute any number that is  or less, it 

will not satisfy the original inequality. 

 

For example, if we substitute , then the original inequality 

becomes , which is not true. Likewise, if we substitute 

, then the original inequality becomes , which is not 

true. 

 

 



Justin Skycak | Algebra​ ​ ​ ​ ​     93 

Flipping the Inequality 
 

In manipulating inequalities, there is just one catch: whenever we 

multiply or divide by a negative number, we have to flip the 

inequality. 

 

Original inequality  

Subtract  from both sides  

Subtract  from both sides  

Divide both sides by  and​
flip the inequality 

 

 

To understand why we need to flip the inequality whenever we 

multiply or divide by a negative sign, consider the example . If 

we multiply or divide by , we reach , which is not true. 

In order to keep the inequality true, we have to flip the inequality 

sign: . 

 

 

Plotting Inequalities 
 

To visualize inequalities, we can plot them on a number line. An 

open (unfilled) circle around a point means that the point itself is 

NOT a solution, while a closed (filled) circle around a point means 

that the point itself is a solution. 
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The number line can help us understand why we have to flip the 

inequality sign whenever we multiply or divide by a negative 

number. 

 

Starting with , we know that  is the bigger number that is 

further from . When we multiply or divide,  is still going to be 

further from  than  is -- but if we multiply or divide by a negative 

number, then  will be further from  in the negative direction, 

which means it will actually be the lesser number. 
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Interval Notation 
 

The number line is a great intuitive aid, but it takes a while to draw. 

To simultaneously leverage the benefit of number line intuition and 

avoid the headache of drawing actual number lines, it is common to 

use interval notation, which represents number line segments using 

parentheses for open circles and brackets for closed circles. 

 

​
  

​
  

​
  

​
  

 

 

 

http://www.texrendr.com/?eqn=-7%20%5Cleq%20x%20%5Cleq%203%0
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To indicate that a segment continues forever, we imagine it having 

an open circle at positive or negative infinity. 

 

​
  

​
  

​
  

​
  

 

 

Exercises 
 

Solve the following inequalities, writing the solutions in interval 
notation. 
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3.2 Linear Inequalities in the Plane 

 

When a linear equation has one variable, the solution covers a 

section of the number line: if our solution is , 

then the solution covers the section of the number line that lies 

right of that number; if our solution is , then 

the solution covers the section of the number line that lies left of 

that number. 

 

If equality is allowed (i.e.  or ), then we use a closed circle to 

indicate that the circled number is itself a solution; otherwise, if 

equality is not allowed (i.e.  or ), then we use an open circle. 

 

Similarly, when a linear equation has two variables, the solution 

covers a section of the coordinate plane. If our solution is 

, then the solution covers the section of the coordinate 

plane that lies above the line , whereas if our solution 

is , then the solution covers the section of the 

coordinate plane that lies below the line . 

 

If equality is allowed (i.e.  or ), then we use a solid line to 

indicate that points on the line itself are solutions. Otherwise, if 

equality is not allowed (i.e.  or ), then we use a dotted line. 
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Worked Example 
 

To illustrate, let’s solve and graph a two-variable linear inequality. 

 

Original inequality  

Simplify  

Subtract  from both sides  

Add  from both sides  

Divide by   

 

Since equality is not allowed in the solution, we draw a dotted line. 

Since the solution consists of values of  LESS THAN those on the 

line, we shade under the line. 
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We can check that any point in the shaded region is a solution: for 

example, substituting  into the original inequality yields 

, which simplifies to , 

which is true. 

 

Likewise, we can check that any point NOT in the shaded region is 

NOT a solution: for example, substituting  into the original 

inequality yields , which simplifies to 

, which is not true 

 

Any point on the line itself will not be a solution, but would be a 

solution if equality were allowed: for example, substituting the 

y-intercept  into the original inequality yields 

, which simplifies to , which 

is not a solution but would be a solution if equality were allowed 

(i.e. ). 

 

 

Case when a Variable Vanishes 
 

If  vanishes while solving the equation, then the boundary line will 

be vertical. In this case, we shade left or right of the line depending 

on whether the solution tells us that  is less than some number, or 

greater than some number. 
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Original inequality  

Simplify  

Add  to both sides  

Move  to left side  

 

Since equality is allowed in the solution, we draw a solid line. Since 

the solution consists of values of  GREATER THAN those on the 

line, we shade on the right towards higher values of . 

 

 

 

 

 

 

http://www.texrendr.com/?eqn=x%0
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Exercises 
 

Graph the solutions to the inequalities below. 
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3.3 Quadratic Inequalities 

 

Quadratic inequalities are best visualized in the plane. For example, 

to solve a quadratic inequality , we can find the 

values of  where the parabola  is positive. 

 

Since  is a downward parabola, the solution 

consists of the values of  in its midsection which arches over the 

x-axis. That is, the solution consists of all x-values between the 

solutions to . 

 

This quadratic equation factors to , so the 

parabola’s midsection is given by , or  in 

interval notation. 

 

 

 

 

Case when the Solution is a Union 
 

On the other hand, if we want to solve , then we 

need to find the values of  where the parabola   

is negative. 
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This time, the solution consists of all the values of  in the arms of 

the parabola which extend under the x-axis. That is, the solution 

consists of all x-values less than the leftmost solution or greater than 

the rightmost solution to . 

 

The solution of the inequality is then given by , 

which is  in interval notation. (The  symbol is 

called a union, and it allows us to include multiple segments in 

interval notation.) 

 

 

 

To solve , we just need to propagate the 

allowance of equality to our final answer. Thus, the solution is 

, which is  in interval notation. 
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Case when the Parabola is Never Zero 
 

When a quadratic inequality involves a parabola that is never zero, 

there is either no solution or the solution is all real numbers. 

 

For example, the parabola  has only positive y-values, so 

 has no solution and  is solved by all real 

numbers. 

 

In interval notation, we express all real numbers as the full number 

line , and we express no solution as . (The  symbol is 

called the empty set, and it represents an interval which doesn’t 

contain any numbers.) 

 

 

Exercises 
 

Solve the following inequalities, writing the solutions in interval 
notation. 
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3.4 Systems of Inequalities 

 

To solve a system of inequalities, we need to solve each individual 

inequality and find where all their solutions overlap. For example, to 

solve the system 

 

 

 

we first graph each individual inequality and darken where the 

shading overlaps. 

 

 

 

The solution to the system consists of points that satisfy BOTH 

individual inequalities, so the solution is just the overlap of the two 

shadings, which appears as the most darkened part of the graph. 
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To display the solution to the system, we erase any other shading 

and shade only the overlap. 

 

 

 

 

Including Another Inequality 
 

If we include another inequality in the system, then the solution 

region will either stay the same or shrink. 

 

For example, if we include , then the solution region will 

stay the same because it is fully contained in the shading of 

. 
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However, if we include , then the solution region will shrink 

because only part of it is contained in the shading of . 
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Quadratic Inequalities 
 

Even with quadratic inequalities, the method is the same: the 

solution is the overlap of the shading of the component inequalities. 

Some examples are shown below. 
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Exercises 
 

Graph the solutions to the systems below. 
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Part 4​
Polynomials 
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4.1 Standard Form and End Behavior 

 

Polynomials include linear expressions and quadratic expressions, 

as well as expressions adding multiples of higher exponents of the 

variable. 

 

For example, these are polynomials: 

 

   

 

On the other hand, these are not polynomials: 

 

   

 

 

Standard Form 
 

Polynomials are usually written in standard form, in which all terms 

are fully expanded and variable exponents are arranged from 

greatest to least. 

 

Original polynomial  

Simplify  
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Combine like terms  

Arrange exponents from 
greatest to least 

 

 

 

End Behavior 
 

The end behavior of a polynomial refers to how it behaves when we 

substitute extremely large positive or negative values for .  

 

If the polynomial evaluates to a very large positive number, we say it 

approaches infinity. Otherwise, if the polynomial evaluates to a very 

large negative number, we say it approaches negative infinity. 

 

For example, consider the polynomial . 

When we substitute a large positive number, such as , the 

output is a large negative number. 

 

 

 

When we substitute a large negative number, such as , 

the output is a large positive number. 
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Putting this together, we say that  goes to negative infinity as  

goes to positive infinity, and  goes to positive infinity as  goes 

to negative infinity. 

 

We can write this symbolically:  as , and 

 as . This is the end behavior of the 

polynomial . 

 

 

Graphical Interpretation 
 

Graphically, end behavior tells us whether the polynomial curves up 

or down as we travel away from the origin in the right or left 

direction. 

 

Since  as , we know that the polynomial 

curves down as we travel to the right, and since  as 

, we know that the polynomial curves up as we travel to 

the left. 
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Shortcuts 
 

Do you notice any patterns or shortcuts? It’s possible to determine 

the end behavior of a polynomial without evaluating the full 

polynomial. 

 

The term with the highest exponent controls the end behavior, 

because it makes the greatest contribution to the result. All the 

other terms make much smaller contributions -- they’re peanuts in 

comparison to the highest-exponent term. 
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But we can do even better -- we don’t actually have to evaluate 

anything at all! Within the term having the highest exponent, we 

just need to look at the exponent and sign of the coefficient. If the 

exponent is even, then the result after exponentiation will always be 

positive. Consequently, the term will evaluate to have the same sign 

as its coefficient. 

 

For example, to find the end behavior of the polynomial 

, we just need to look at the  term. Since 

the exponent is even,  will always be positive -- if we substitute 

, then , and if we substitute , then 

 again. The coefficient  is also positive, so  is 

always a positive times a positive, which makes a positive. As a 

result, we have  as  and  as 

. 

 

Likewise, to find the end behavior of the polynomial 

, we just need to look at the  

term. Since the exponent is even,  will always be positive -- if we 

substitute , then , and if we substitute 

, then  again. But the coefficient  is 

negative, so  is always a negative times a positive, which 

makes a negative. As a result, we have  as  

and  as . 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=2%0
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Examples with an Odd Exponent 
 

On the other hand, if the exponent is odd, then the result after 

exponentiation will always have the same sign as the input . 

Consequently, the term will evaluate to be positive if the coefficient 

and the input  have the same sign, and negative if they have 

opposite signs. 

 

For example, to find the end behavior of the polynomial 

, we just need to look at the  term. 

Since the exponent is odd, exponentiation will not change the sign -- 

if we substitute , then , and if we substitute 

, then . The coefficient  is positive, and 

multiplying by a positive doesn’t change the sign either. As a result, 

we have  as  and  as 

. 

Likewise, to find the end behavior of the polynomial 

, we just need to look at the 

 term. Since the exponent is odd, exponentiation will not 

change the sign -- if we substitute , then 

, and if we substitute , then 

. But the coefficient  is negative, and 

multiplying by a negative changes the sign -- if , 

then , and if , then 

. As a result, we have  as 

 and  as . 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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Exercises 
 

Convert the following polynomials to standard form. Then, write 

their end behavior symbolically:  as , and 

 as . 
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4.2 Zeros 

 

The zeros of a polynomial are the inputs that cause it to evaluate to 

zero. 

 

For example, a zero of the polynomial  is  

because . Another zero is  

because . Can you find the rest? 

 

 

Finding Zeros by Factoring 
 

One trick for finding the zeros of polynomials is to write the 

polynomial in factored form. 

 

Since we know that  and  are zeros of the polynomial, 

we know the polynomial has to have factors  and . If we 

multiply these factors together, we get a polynomial whose 

highest-exponent term is . 

 

But our original polynomial has a highest-exponent term of , so 

we need to multiply by one more factor. Consequently, the factored 

polynomial will take the form  for some 

other zero . 
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Let’s multiply out the factors and group like terms into the form of 

the original polynomial. 

 

 

 

From here, we can proceed in any of several different ways to 

discover that . 

●​ The  coefficient of the right-hand side is , and the 

 coefficient of the left-hand side is , so we need 

, which means . 

●​ The  coefficient of the right-hand side is , and the 

 coefficient of the left-hand side is , so we need 

, which means . 

●​ The constant coefficient of the right-hand side is , and the 

constant coefficient of the left-hand side is , so we need 

, which means . 

 

Indeed, checking our answer, we find that substituting  makes 

the polynomial evaluate to . 
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Fundamental Theorem of Algebra 
 

Through this example, we’ve learned an important thing about the 

zeros of polynomials: the number of zeros of a polynomial is no 

more than its degree. 

 

Each zero comes from a factor, and the degree of a polynomial limits 

the amount of factors it has, which in turn limits the amount of 

zeros it has. A third-degree polynomial can’t have more than  

factors, so it has at most  zeros. A tenth-degree polynomial can’t 

have more than  factors, so it has at most  zeros. 

 

Some polynomials look like they have fewer zeros than their degree 

-- for example, the polynomial  doesn’t appear to have any 

zeros, because there is no solution to . But if we allow the 

use of the imaginary unit , then it does have two zeros: 

 and . 

 

Likewise, the polynomial  factors to  and thus 

appears to have only one zero, . But since this factor is 

squared, we can think of counting the  zero twice, i.e. it has 

a multiplicity of two. 

 

This is the fundamental theorem of algebra: the number of zeros of 

a polynomial is equal to its degree, provided we allow the use of the 

imaginary unit and count zeros according to their multiplicity. 
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Solving a Polynomial Equation 
 

Finding zeros of polynomials is important because of its generality: 

every polynomial equation reduces to finding the zeros of some 

polynomial. 

 

For example, consider the polynomial equation 

, for which we can see that  is a 

solution because . Subtracting  

from both sides, we reach . Now, the 

problem is to find the zeros of the polynomial​
. 

 

The polynomial has degree , so we are looking for  zeros, each of 

which corresponds to a factor of the polynomial. We know one of 

the zeros is , which corresponds to a factor , and we 

know the other two factors need to multiply to a quadratic 

. 

 

By multiplying out  and comparing 

coefficients to the original polynomial, we can solve for  and . 

Then, we can solve the quadratic to find the remaining zeros. 
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Equating  coefficients, we see that , so . Finally, 

by equating the constants  and , we see that . The 

polynomial can then be written as 

 

. 

 

Solving the quadratic  leads us to the two 

remaining zeros:  and . 

 

We check to ensure that these zeros are indeed solutions of the 

original equation: 

 

 

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D(-4)%5E3%2B5(-4)%5E2%26%3D11(-4)-(-4)%5E3-4%20%5C%5C%2016%20%26%3D%2016%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3%2B5%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E2%26%3D11%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)-%5Cleft(%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3-4%20%5C%5C%20%5Cfrac%7B11%7D%7B8%7D%20%26%3D%20%5Cfrac%7B11%7D%7B8%7D%5Cend%7Balign*%7D%0
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Exercises 
 

For each of the following polynomials, use the given zero(s) to find 
the remaining zero(s). 
 

 

 

 

 

 

For each of the following equations, use the given solution(s) to 
find the remaining solution(s). 
 

 

 

 



Justin Skycak | Algebra​ ​ ​ ​ ​     131 
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4.3 Rational Roots and Synthetic Division 

 

In the previous chapter, we learned how to find the remaining zeros 

of a polynomial if we are given some zeros to start with. But how do 

we get those initial zeros in the first place, if they’re not given to us 

and aren’t obvious from the equation? 

 

 

Rational Roots Theorem 
 

The rational roots theorem can help us find some initial zeros 

without blindly guessing. It states that for a polynomial with integer 

coefficients, any rational number (i.e. any integer or fraction) that is 

a root (i.e. zero) of the polynomial can be written as some factor of 

the constant coefficient, divided by some factor of the leading 

coefficient. 

 

For example, if the polynomial  

has a rational root, then it is some positive or negative fraction 

having numerator  or  and denominator  or . 

 

The possible roots are then , , , or . We test each of 

them below. 

 

    

    

 

https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=3%0
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We see that  and  are indeed zeros of the polynomial.  

 

Therefore, the polynomial can be written as  

 

 

 

for some constants  and , which we can find by expanding and 

matching up coefficients. 

 

 

 

We find that  and . 

 

The remaining quadratic factor becomes , which has zeros 

. 

 

Thus, the zeros of the polynomial are , , , and . 

 

 

Synthetic Division 
 

To speed up the process of finding the zeros of a polynomial, we can 

use synthetic division to test possible zeros and update the 

polynomial’s factored form and rational roots possibilities each time 

we find a new zero. 
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Given the polynomial , the rational 

roots possibilities are , , , and . 

 

To test whether, say,  is a zero, we can start by setting up a 

synthetic division template which includes  at the far left, followed 

by the coefficients of the polynomial (in the order that they appear 

in standard form). 

 

      

      

      

We put a  under the first coefficient (in this case, ) and add down 

the column. 

 

Then, we multiply the result by the leftmost number (in this case, ) 

and put it under the next coefficient (in this case, ). 

 

We repeat the same process over and over until we finish the final 

column. 

 

      

      

      

 

The bottom-right number is the remainder when we divide the 

polynomial by the factor corresponding to the zero being tested. 

Therefore, if the bottom-right number is , then the top-left number 
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is indeed a zero of the polynomial, because its corresponding factor 

is indeed a factor of the polynomial. 

 

In this case, though, the bottom-right number is not  but , so 

 is NOT a zero of the polynomial. 

 

However, when we repeat synthetic division with , the 

bottom-right number comes out to  and we conclude that  is a 

zero of the polynomial.  

 

      

      

      

 

Then  is a factor of the polynomial, and the bottom row gives 

us the coefficients in the sub-polynomial that multiplies  to 

yield the original polynomial. 

 

 

 

The next factor will come from , so the rational 

roots possibilities are just  and .  

 

 

 

https://www.codecogs.com/eqnedit.php?latex=0%0
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We use synthetic division to test whether  is a zero of 

. 

 

     

     

     

 

Since the bottom-right number is  rather than , we see that 

 is not a zero of . However,  is! 

 

     

     

     

 

Using the bottom row as coefficients, we update the factored form 

of our polynomial. 
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Now that we’re down to a quadratic, we can solve it directly. 

 

 

 

Thus, the zeros of the polynomial are , , , and , and 

the factored form of the polynomial is  

 

. 

 

 

Final Remarks 
 

In this example, the polynomial factored fully into linear factors. 

However, if the last factor were , which does not have any 

zeros, we would leave it in quadratic form. The zeros of the 

polynomial would be just  and , and the fully factored form of 

the polynomial would be . 

 

One last thing about synthetic division: be sure to include ALL 

coefficients of the original polynomial in the top row of the synthetic 

division setup, even if they are . For example, the polynomial 

 is really , so the top row in the 

synthetic division setup should read   . 
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Exercises 
 

For each polynomial, find all the zeros and write the polynomial in 
factored form. 
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4.4 Sketching Graphs 

 

In the previous chapters, we learned how to find end behavior, 

zeros, and factored forms of polynomials. In this chapter, we will put 

all this information together to sketch graphs of polynomials. 

 

 

End Behavior 
 

End behavior tells us whether the polynomial goes up or down as 

we move away from the origin. 

 

For example, if the end behavior is  as  and 

 as , then we know that the polynomial goes 

down as we go right, and up as we go left. 
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Similarly, if the end behavior is  as  and 

 as , then we know that the polynomial goes 

down as we go right, and down as we go left. 

 

 

 

 

Zeros 
 

The zeros tell us where the polynomial crosses the x-axis, and the 

factored form tells us whether the polynomial crosses or doubles 

back at each zero: if the exponent of the factor is odd, then the 

polynomial crosses; if the exponent of the factor is even, then the 

polynomial doubles back. 

 

For example, if the factored form of polynomial is 

, then the polynomial crosses the x-axis at 

 and , and doubles back at . Combining this information with 
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the end behavior, which is  as  and 

 as , we can draw a rough sketch of the 

polynomial. 

 

 

 

 

Demonstration 
 

Let’s sketch a rough graph of the following polynomial: 

 

 

 

We first find the leading coefficient, , 

which tells us the end behavior:  as , and 

 as . 

 

Then, we can look at the factors and their exponents to find the 

zeros and tell whether the polynomial crosses the x-axis or doubles 

back at each zero. 
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Factor Zero Cross or Double Back 

   

   

   

   

 

To sketch the graph, we draw our end behavior, plot the zeros on the 

x-axis, and then connect them with the correct crossing or doubling 

back behavior. 
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Exercises 
 

Sketch a rough graph of each polynomial. 
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Chapter 5​
Rational Functions 
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5.1 Polynomial Long Division 

 

A rational function is a fraction whose numerator and denominator 

are both polynomials. Rational functions are usually written in 

proper form, where the numerator is of a smaller degree than the 

denominator. (The degree of a polynomial is its highest exponent.) 

 

Methods for Converting to Proper Form 
 

Sometimes, we can convert to proper form simply by splitting up the 

fraction. 

 

 

 

 
 

Other times, we can convert to proper form by factoring part of the 

numerator so that it cancels with the denominator. 
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We can also use synthetic division, a fast algorithm for division of a 

linear factor that was introduced in the previous part on 

polynomials. 

 

To divide  by , we set up a template with 

 (the zero of ) on the far left, and the coefficients of 

 along the top row. 

 

After filling in an initial , we repeatedly add down the columns, 

multiplying each result by  before placing it in the next column. 
 

      

      

      

 

The bottom row then tells us the coefficients and remainder in the 

proper form. 

 

 

 

However, synthetic division only works with linear factors, so what 

do we do when a factor isn’t linear? 
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Polynomial Long Division 
 

When faced with more complicated rational functions, we can turn 

to polynomial long division, which works the same way as the long 

division algorithm that’s familiar from simple arithmetic. 

 

To divide  by , we set up a template with 

 on the outside and  on the inside. 

 

On the inside, we write out all coefficients, including those which 

are  (and thus aren’t written in the condensed expression). 

         

         

 

We begin by multiplying the divisor  by  to yield , 

which cancels the interior  term when we subtract. 

 

         

         

         

         

 

Then, we multiply  by  to yield , which 

cancels the next interior term  when we subtract. 
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We repeat this process until the degree of the leftover terms is less 

than the degree of , in which case the leftover terms become 

the remainder and appear as the numerator in the remaining 

fraction. 

 

      
  

         

         

         

         

         

         

         

         

         

 

The top row gives the result in proper form: 
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Exercises 
 

Find the proper form of each rational function. 
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5.2 Horizontal Asymptotes 

 

Like polynomials, rational functions can have end behavior that goes 

to positive or negative infinity. However, rational functions can also 

have another form of end behavior in which they become flat, 

approaching (but never quite reaching) a horizontal line known as a 

horizontal asymptote. 

 

 

Demonstration 
 

For example, consider the rational function . As we 

input larger and larger numbers in the positive direction, the 

function output becomes closer and closer to . 

 

 

 

 

 

The same thing happens as we input larger and larger numbers in 

the negative direction: the function output becomes closer and 

closer to . 
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As a result, we say that the function  has a horizontal asymptote at 

.  

 

 

Why Horizontal Asymptotes Occur 
 

To understand why this happens, take a look at the function in 

proper form, . 

 

When we input a very large positive or negative number, remainder 

fraction’s denominator becomes much larger than its numerator, 

causing the remainder fraction to shrink to . 

 

On the other hand, the  term persists, which causes the output to 

be close to  or . 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=r%0
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Perhaps even more intuitively, notice that when we input very large 

values of  into , the leading (highest degree) terms in the 

numerator and denominator become so much larger than the other 

terms, that the other terms cease to matter. The fraction then 

becomes approximately the ratio of the leading terms, , which 

simplifies to , or  in decimal form. 

 

 

Case when the Denominator has Greater 

Degree 
 

Now consider the case when the denominator is of a greater degree 

than the numerator -- say, when .  

 

Again, when we input very large values of  into the function, the 

leading terms in the numerator and denominator become the only 

terms that matter. The fraction then becomes approximately , 

which simplifies to . 

 

When we input very large values for , the denominator becomes 

very large while the numerator stays the same, causing the fraction 

to shrink to . 

 

As a result, the function has a horizontal asymptote at . We can 

confirm this by evaluating the function. 
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Case when the Numerator has Greater Degree 
 

Lastly, consider a rational function whose numerator is of greater 

degree than its denominator -- say, .  

 

Taking the ratio of leading terms, we have , which simplifies to 

. This expression grows without bound when we input large 

values of , so the function has no horizontal asymptote. 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
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We can confirm this by evaluating the function. 

 

  

  

  

 

 

 

 

 

Exercises 
 

Find the horizontal asymptote, if any, of each rational function. 
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Justin Skycak | Algebra​ ​ ​ ​ ​     161 

5.3 Vertical Asymptotes 

 

Unlike polynomials, rational functions can “blow up” to positive or 

negative infinity even for relatively small input values. Such input 

values are called vertical asymptotes, because they represent 

vertical lines that the function approaches but never quite reaches. 

 

 

Demonstration 
 

For example, consider the rational function . As we 

input numbers closer and closer to  while staying greater than , 

the function output blows up to positive infinity. 

 

 

 

 

 

On the other hand, as we input numbers closer and closer to  

while staying less than , the function output blows up to negative 

infinity. 
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As a result, we say the function  has a vertical asymptote at . 

 

 

 

To understand why this happens, notice that as our inputs become 

closer and closer to , the denominator becomes closer and closer 

to , while the numerator becomes closer and closer to . 

 

As a result, we end up dividing a fairly constant numerator by a 

smaller and smaller denominator, which yields a bigger and bigger 

result.  
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When the input is greater than , the denominator is positive, 

which makes the result positive. When the input is less than , the 

denominator is negative, which makes the result negative. 

 

 

Case of Multiple Vertical Asymptotes 
 

In general, vertical asymptotes occur when the denominator is zero 

and the numerator is nonzero. In the above example, when we input 

, the denominator is , but the numerator is . 

 

There can also be multiple vertical asymptotes -- for example, in the 

rational function , inputting  makes the denominator 

 while the numerator is , and inputting  makes the 

denominator  while the numerator is . 

 

We confirm that  and  are indeed asymptotes by 

evaluating the function. 
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Case of No Vertical Asymptote 
 

On the other hand, if the denominator is zero and the numerator is 

also zero, then the input is not necessarily a vertical asymptote of 

the function. 

 

For example, inputting  to  makes the 

denominator , but it also makes the numerator , and the result is 

that the fraction does not blow up to infinity. 
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To understand this behavior, notice that provided  is not equal to​
, the function can simplify. 

 

 

 

When we input an  that is not equal to , the  factors in the 

numerator and denominator cancel each other out, and we are left 

with . 

 

As a result, the graph of  is just the graph of  with a hole 

at  (where it is undefined).  
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Exercises 
 

Find the vertical asymptote(s), if any, of each rational function. 
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5.4 Graphing with Horizontal and Vertical 

Asymptotes 

 

The horizontal and vertical asymptotes of a rational function can 

give us insight into the shape of its graph. 

 

For example, consider the function , which has a 

horizontal asymptote  and a vertical asymptote .  

 

 

 

If we choose one input on each side of the vertical asymptote, we 

can tell which section of the plane the function will occupy. 

 

On the left side, we evaluate , which indicates the 

section below the  asymptote. On the right side, we evaluate 

, which indicates the section above the  

asymptote. 
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Case of Multiple Vertical Asymptotes 
 

When there are multiple vertical asymptotes, we just have to 

choose test points on the sides of each asymptote. 

 

For example, to graph the function  which has vertical 

asymptotes  and , we can evaluate 

, , , and . 
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Exercises 
 

Use horizontal and vertical asymptotes to graph the following 
rational functions. 
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5.5 Graphing with Slant and Polynomial​
Asymptotes 

 

A horizontal asymptote is a horizontal line that arises from a 

constant whole number term in the proper form of a rational 

function. 

 

Likewise, a slant asymptote is a slanted line that arises from a linear 

term in the proper form of a rational function. 

 

Demonstration 
 

For example, the proper form of  is given by 

, which has  as its whole number term.  

 

As a result,  has a slant asymptote at , which appears 

in the graph of  below. 
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In general, the whole number part of the proper form is an 

asymptote. If the whole number part is of a higher degree, say 

 with proper form , then  

has a polynomial asymptote at . 

 

The graph of  approaches this asymptote just like it would 

approach any other horizontal or slant asymptote. 
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Existence and Degree 
 

In general, a rational function has a horizontal, slant, or polynomial 

asymptote if the degree of the denominator is less than the degree 

of the numerator. The degree of the asymptote is given by the 

difference in degrees of the numerator and denominator. 

 

For example,  has a difference in degrees 

of , so we should expect an asymptote of degree . 

Indeed, the proper form of the function is 

 which indicates a polynomial 

asymptote of . 
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Big Picture 
 

Zooming out of the previous graphs, we can see the big picture of 

rational functions: they look like their whole number part (i.e. their 

polynomial asymptotes), except at the singularities (vertical 

asymptotes), when the denominator of the fractional part becomes 

extremely small and the fraction blows up to positive or negative 

infinity. 
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Exercises 
 

Use vertical and horizontal/slant/polynomial asymptotes to graph 
the following rational functions. 
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Part 6​
Non-Polynomial Functions 
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Justin Skycak | Algebra​ ​ ​ ​ ​     179 

6.1 Radical Functions 

 

A radical function is a function that involves roots: square roots, 

cube roots, or any kind of fractional exponent in general. We can 

often infer what their graphs look like by sandwiching them 

between polynomial functions. 

 

For example, the radical function  can be written as 

, and its exponent  is between  and , so the graph 

of  lies between the graphs of  and . 

 

 

 

 

Negative Inputs 
 

However, there is one caveat:  is not defined for 

negative values of . If we try to input a negative number, we end 
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up taking the root of a negative number, which is undefined in the 

real numbers. 

 

 

 

As a consequence, the graph of  remains blank for negative values 

of , left of the -axis. 

 

That being said, other radical functions can sometimes accept 

negative inputs, which are converted to positive numbers before the 

radical is applied. 

 

For example,  is a valid input to  because the 

operation inside the root converts the negative input to a positive, 

and we can take the root of positive numbers. 

 

 

 

But the operation also converts positive inputs to negatives, so the 

positive section of the graph disappears. 
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Cube Root Functions 
 

Unlike square root functions, cube root functions like  

can accept both positive and negative inputs because cube roots are 

defined for both positive and negative numbers. 
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In general, whether a radical function covers the whole graph or just 

part of the graph depends on whether the root is an even root or an 

odd root. 

●​ Even roots are NOT defined for negative numbers, so the 

graph is left blank for any input  that makes the inside of the 

root negative. 

●​ Odd roots ARE defined for negative numbers, so the graph 

exists for any input , even if it makes the inside of the root 

negative. 

 

Just remember that whether an x-value is a valid input to a root 

function does not depend solely on the sign of the x-value, but 

rather on what the function does to the input x-value before 

applying the root.  

 

 

Extraneous Solutions 
 

When solving radical equations, valid algebraic steps can sometimes 

lead us to solutions that aren’t actually correct. 

 

For example, squaring both sides of the equation  yields 

. However, when we input  into the equation to check 

the solution, we reach , which simplifies to , 

which is incorrect. 

 

Therefore, we say that the solution  is extraneous, and the 

equation  actually has no solutions in the real numbers. 
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Squaring both sides of an equation can introduce extraneous 

solutions because it introduces an additional solution that 

corresponds to the negative root. 

 

It’s easiest to see this if we forget about radicals for a moment -- for 

example, if we start with  and square both sides, we reach 

, which is solved by . Squaring both sides 

introduced a negative solution , and although  is not 

true,  is true. Likewise, although  is not a solution 

to , it is a solution to  because 

. 

 

A similar problem occurs when we raise both sides of an equation to 

the fourth, sixth, eighth, or any even power -- raising to an even 

power turns negative numbers to positives, so it introduces an 

additional solution that corresponds to the negative root. 

 

On the other hand, raising both sides of an equation to the third, 

fifth, seventh, or any odd power does not change the sign of any 

numbers, so it won’t lead to any extraneous solutions. 

 

The main takeaway is that whenever we raise both sides of an 

equation to an even power, we need to double-check the solutions 

to make sure that they actually satisfy the equation. 

 

Solving Radical Equations 
 

In general, the best way to solve a complicated radical equation is to 

isolate the radical and exponentiate to cancel the radical. 
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Original equation  

Isolate the radical  

Cube both sides  

Set polynomial equal to   

Factor polynomial  

Solve  

Remove extraneous​
solutions 

 

 

When there are multiple radicals in an equation, we first need to 

reduce the number of radicals in the equation until there is a single 

radical. 

 

We can do this by repeatedly rearranging and exponentiating both 

sides of the equation. 

 

Original equation  

Rearrange  

Square  

Rearrange  

Square  
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Simplify  

Solve 
 

Remove extraneous 
solutions  

 

 

Exercises 
 

Graph the following radical functions. 
 

  

  

  

 

Solve the following radical equations. 
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6.2 Exponential and Logarithmic Functions 

 

Exponential functions have variables as exponents, e.g. .  

 

Their end behavior consists of growing without bound to infinity in 

one direction, and decaying to a horizontal asymptote of  in 

the other direction. 

 

The size of the number that is exponentiated, called the base, 

governs which direction corresponds to which end behavior. 

 

 

Exponential Growth 
 

If the magnitude of the base is bigger than , then as  increases, 

the function is repeatedly multiplied by a number bigger than  and 

consequently grows without bound to infinity. For this reason, such 

functions are called exponential growth functions. 

 

By the same token, as  decreases, the function is repeatedly 

divided by a number bigger than  and consequently decays to a 

horizontal asymptote of . 

 

For example, for the exponential growth function , each 

unit increase in  causes the output to be doubled, and each unit 

decrease in  causes the output to be halved. 

 

 

https://www.codecogs.com/eqnedit.php?latex=1%0
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Exponential Decay 
 

On the other hand, if the magnitude of the base is smaller than , 

then as  increases, the function is repeatedly multiplied by a 

number smaller than  and consequently decays to a horizontal 

asymptote of . For this reason, such functions are called 

exponential decay functions. 

 

By the same token, as  decreases, the function is repeatedly 

divided by a number smaller than  and consequently grows 

without bound to infinity. 

 

For example, for the exponential growth function , 

each unit increase in  causes the output to be halved, and each 

unit decrease in  causes the output to be doubled. 
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Logarithms 
 

Equations involving exponential terms can be solved with the help 

of logarithmic functions, which cancel out exponentiation. 

 

For example, the equation  is solved by , the 

logarithm base-  of , which evaluates to roughly  via 

calculator. 

 

If your calculator does not allow you to input a base for a logarithm, 

you can compute  as . This is called the change-of-base 

formula. 

 

Logarithmic graphs look similar to square-root graphs, except they 

cross the x-axis at  and extend downward towards an asymptote at 

. 

 

 

https://www.codecogs.com/eqnedit.php?latex=1%0
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Logarithmic graphs cross the x-axis at  because raising any number 

to the power of  results in . That is, any logarithm  

solves the equation , which we already know is solved by 

. 

 

Also, logarithmic graphs extend to negative infinity as  approaches 

, because a number (greater than one) gets smaller and smaller as 

its exponent gets more and more negative. 

 

   

   

 

Lastly, the base of the logarithm tells us where the y-value is  -- 

that is, the function  has . This is because 

 is the exponent we have to raise  to, to get . 

 

 

https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%0
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When the base of the logarithm is smaller than one, the graph flips 

over the x-axis. 

 

In this case, the graph extends to positive infinity as  approaches 

, because a number smaller than  gets closer and closer to  as its 

exponent increases. 

 

Likewise, as  increases, the graph becomes more and more 

negative because a negative exponent is needed to flip the 

fractional base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=0%0
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Properties of Logarithms 
 

Expressions consisting of multiple logarithms of the same base can 

be simplified by using two properties of logarithms: 

1.​ Addition outside two logarithms with the same base turns into 

multiplication inside a single logarithm. For example, 

, and in general, 

. 

2.​ Multiplication outside two logarithms with the same base 

turns into exponentiation inside a single logarithm. For 

example, , and in general, 

. 

 

A particularly noteworthy consequence of the second rule is that 

negative outside a log turns into reciprocal inside the log: 

 

 

 

Additionally, logarithms of different bases can sometimes be 

converted to logarithms of the same base. For example,  is 

the same as . In general,  provided both 

logarithms exist. 
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Below is an example of simplifying a logarithmic expression using all 

of the properties that we have discussed: 

 

Original expression  

Rewrite using addition  

Convert multiplication​
to exponentiation 

 

Simplify  

Square base and​
argument 

 

Simplify  

Convert addition​
to multiplication 

 

Simplify  

 

 

Exercises 
 

Graph the following exponential functions. 
 

  

  

 

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20f(x)%3D3%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20f(x)%3D5%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=3)%20%5Chspace%7B.5cm%7D%20f(x)%3D%5Cleft(%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=4)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B1%7D%7B5%7D%20%5Cright)%5Ex%0
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Use logarithms to solve the following exponential equations. 
 

  

  

  

 

Graph the following logarithmic functions. Use logarithm rules to 
simplify the expression, if needed. 
 

  

  

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=5)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=6)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright)%5Ex%0
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6.3 Absolute Value 

 

An absolute value function represents the magnitude of a number, 

i.e. its distance from .  

 

For example, the absolute value of  is , and the absolute value 

of  is . We write this as , and . 

 

In effect, absolute value just removes the negative sign from a 

number, if there is a negative sign to begin with. 

 

 

Graphs 
 

Absolute value graphs are very straightforward -- they look similar to 

the graph of , except the the outputs of negative  are 

turned positive. 
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Solving Equations by Splitting 
 

Absolute value equations are similar to square root equations, in 

that we have to consider both positive and negative solutions. For 

example, the solutions to the equation  are .  

 

We can usually solve more complicated absolute value equations by 

isolating the absolute value and then breaking it up into positive and 

negative equations. 

 

Original equation  

Isolate the absolute value  

Split into positive and​
negative equations 

 
 

 

Solve  

 

 

Extraneous Solutions 
 

One caveat to solving absolute value equations this way is that if the 

original equation tells us that the absolute value equals a negative 

number, we will get the same solutions as if it were a positive 

number, but none of them will be correct because absolute value 

can never have a negative output. 
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Original equation  

Split into positive and​
negative equations 

 
 

 

Solve  

Check solutions  

 

 

 

 
 

 

 

 

 

 

Remove extraneous​
solutions 

 

 

Whenever an equation tells us that the output of some absolute 

value is a negative number, the equation will have no solution. 

 

That being said, if an equation tells us that the output of some 

absolute value is a negative variable expression, the equation might 

have a solution, because the variable expression itself might be 

negative at times. 
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In these cases, it’s usually best to solve the absolute value using the 

conventional method of splitting up into positive and negative 

equations, and then check the answers afterward to remove any 

extraneous solutions.  

 

Original equation  

Split into positive and​
negative equations 

 
 

 

Solve  

Check solutions  
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Remove extraneous​
 solutions 

 

 

 

Case of Multiple Absolute Value Terms 
 

When there are multiple absolute value terms, we need to split the 

equation into positive and negative equations for each absolute 

value term, one after the other. 

 

Original equation  

Split into positive and​
negative equations 

 

Isolate remaining​
absolute value 
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Split into positive and​
negative equations 

 

Simplify 

 

Solve 

 

Combine solutions 
 

Remove extraneous​
solutions 

 

 

 

Exercises 
 

Solve the following absolute value equations. 
 

  

 



Justin Skycak | Algebra​ ​ ​ ​ ​     201 
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6.4 Trigonometric Functions 

 

Trigonometric functions represent the relationship between sides 

and angles in right triangles. 

 

There are three main “trig” functions: sine, cosine, and tangent, and 

a mnemonic often used to remember what they represent is 

SohCahToa: 

●​ The SINE of an angle is the ratio of the lengths of the 

OPPOSITE side and the HYPOTENUSE. 

●​ The COSINE of an angle is the ratio of the lengths of the 

ADJACENT side and the HYPOTENUSE. 

●​ The TANGENT of an angle is the ratio of the lengths of the 

OPPOSITE side and the ADJACENT side. 
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For example, in the triangle below, we have , , 

and . 

 

 

 

 

Solving for a Side 
 

Trig functions can be used to solve for unknown side lengths in right 

triangles. For example, if we know that an angle is , the opposite 

side has a length of , and we want to find the hypotenuse, we can 

set up and solve an equation using sine. 
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Sine equation  

Solve  

Evaluate via calculator  

 

To find the remaining side, we can use any of three methods: 

Pythagorean theorem, cosine, or tangent. 

 

No matter which technique we use, we will end up with the same 

result (though if we use our approximation of , we might 

be slightly off due to rounding error). 
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Pythagorean theorem  

 
 

Cosine  
 

 

Tangent  

 
 

 

 

Solving for an Angle 
 

Similarly, using inverse trig functions, we can solve for unknown 

angles in right triangles. 
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For example, if we know that the adjacent side is  and the opposite 

side is , we can set up an equation with tangent and then use 

inverse tangent to find the angle. 

 

 

 

Tangent equation  

Inverse tangent  

Evaluate via calculator  

 

To find the remaining angle, we can use any of three methods: sum 

of degrees in a triangle, tangent, or Pythagorean theorem followed 

by sine or cosine. Regardless of which method we choose, we will 

end up with the same result. 
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Sum of degrees in triangle  
 

Inverse tangent  

 
 

Pythagorean theorem  

 

Inverse sine 
 

 
 

Inverse cosine 
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The Unit Circle 
 

To gain a better understanding of trig functions, we can imagine 

putting a triangle inside of a circle on the coordinate plane. 

 

 

 

The coordinates of the corner point  on the circle then tell us 

the other two sides of the triangle: the horizontal side has length  

and the vertical side has length . If we make the circle have radius 

, then the hypotenuse of the triangle is , and we have  

 

 

 

 

and our point  can be written as . 
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Immediately, we notice two important things. First, using the 

Pythagorean theorem on the triangle, we see that  

 

. 

 

This is a handy equation that can be useful in simplifying 

trigonometric expressions. For example, the expression 

 is actually just equivalent to . 

 

 

 

Second, angles repeat every , since going  around the 

circle brings us back to the starting point of . 
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That means, for example, that  and  are both 

equivalent to . 

 

 

 

Special Angles 
 

For most angles, a calculator is needed to compute the 

corresponding trig function values. However, at particular angle 

measures, the trig functions have simple, exact values: 

 

   

   

  
 

   

   

 

We can remember which values correspond to which angles and 

which trig functions by thinking about them visually in the unit circle 

and mentally pairing  with . 

●​ At , the x-coordinate is bigger than the y-coordinate, so 

the x-coordinate must be  and the y-coordinate must be .  

●​ At , this is reversed. 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20390%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20%5C%5C%20-330%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20-%20360%5E%5Ccirc%20%5Cend%7Balign*%7D%0
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●​ At , the x-coordinate and y-coordinate are the same, so 

they both are . 

●​ At , we’re on the x-axis, so the x-coordinate is  and the 

y-coordinate is . 

●​ At , we’re on the y-axis, so the y-coordinate is  and the 

x-coordinate is . 

 

To get tangent, we can just take the ratio of the y-coordinate to the 

x-coordinate. 
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Using symmetry, we can label angles in the other three quadrants of 

the circle. 

 

 

 

 

Derivation of Special Angles 
 

You might be wondering where the values , , and  come 

from in the first place. 

 

To see where  comes from, we can construct a right triangle with 

a hypotenuse of  and an angle of . 

 

The other angle must also be , so the triangle’s two legs must be 

equal in length, and we can use the Pythagorean theorem to 

discover that the length of each leg is . 
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Pythagorean theorem  

Simplify  

Solve  

 

Simplify 
 

 

 

Likewise, to see where  and  come from, we can construct a 

right triangle with a hypotenuse of  and an angle of . 

 

The other angle must be , which is exactly half -- consequently, 

we can combine two of these triangles to form an equilateral 

triangle whose side lengths are all equal to the hypotenuse of . 
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The shortest sides of the two triangles together make up a side of 

the equilateral triangle, which we know has length , so the shortest 

sides of the two triangles must each be . Using the Pythagorean 

theorem, we find that the length of the other leg is . 

 

 

 

 

Pythagorean theorem 
 

Simplify  

Solve  

 
 

Simplify 
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Graphs 
 

The graphs of sine, cosine, and tangent are drawn below. They 

repeat every , since  is one full revolution around the unit 

circle and thus brings us full-circle back to the starting point.  

 

Tangent actually repeats twice every  (or once every ) 

because it goes from positive to negative from the first to second 

quadrant, and again positive to negative from the third to fourth 

quadrant. 

 

To make sense of the shapes of the graphs, try to trace out the trig 

function values while following around the unit circle. 
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Radians 
 

The standard way to measure angles is actually not in degrees -- 

rather, it is in radians. One radian is equivalent to the angle whose 

arc is equal to one radius of a circle. 
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Since the full arc length (circumference) of the circle is  times the 

radius, a full  around the circle is equivalent to  radians.  

 

Below is a copy of the unit circle, using radians instead of degrees. 
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The trig functions are graphed in terms of radians below. Nothing 

changes, except for the units of the x-axis. 

 

 

 

 

 

Reciprocal Trigonometric Functions 
 

There are three other trig functions: secant, cosecant, and 

cotangent. They are just the reciprocals of cosine, sine, and tangent.  

 



220​ ​ ​ ​ ​              Justin Skycak | Algebra 

Consequently, they can be understood by thinking about the 

properties of cosine, sine, and tangent. We will not explore them 

further, but we include their graphs below. 
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Exercises 
 

Use trigonometry to find the missing sides and angles of the 
triangles. 
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Use the unit circle to find the exact values of the following 
trigonometric expressions. 
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6.5 Piecewise Functions 

 

A piecewise function is pieced together from multiple different 

functions. 

 

For example, the absolute value function is a piecewise function 

because it consists of the line  for negative , and  

for positive . 

 

 

 

 

Case Notation 
 

More generally, piecewise functions can be defined using case 

notation, which tells which functions to use as pieces and where to 

use them as pieces. 
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The absolute value function, for example, can be written in case 

notation as follows: 

 

 

 

This case notation just tells us that for negative inputs ( ) we 

should use the function  to calculate the function output, 

and for nonnegative inputs ( ) we should use the function 

 to calculate the function output. 

 

Two more equivalent case notation forms for the absolute value 

function are shown below. 
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Sometimes, piecewise functions have breaks in them. For example, 

if we modify the case notation of the absolute value function so that 

the right piece is elevated, the graph has a break in it. This looks 

unusual, but it is a perfectly valid function. 

 

 

 

 

Many Function Types 
 

There is no limit to what types of functions a piecewise function can 

consist of. For example, the equation and graph of a more 

complicated piecewise function are shown below. 

 

 

 

 



226​ ​ ​ ​ ​              Justin Skycak | Algebra 

 

 

 

Many Cases 
 

Likewise, there is no limit to the number of pieces a piecewise 

function can have. For example, rounding is an example of a 

piecewise function with infinitely many pieces.  
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Exercises 
 

Graph the following piecewise functions. 
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Chapter 7​
Transformations of Functions 
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7.1 Shifts 

 

When a function is shifted, all of its points move vertically and/or 

horizontally by the same amount. The function’s size and shape are 

preserved -- it is just slid in some direction, like sliding a book across 

a table. 

 

 

Shifts Outside the Function 
 

Shifts occur when a constant term is added in a function. When the 

constant term is added on the outside of a function, e.g. when 

 is transformed into , the function shifts up 

by that many units. (If a negative term is added, the function moves 

down.) 
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Shifts Inside the Function 
 

On the other hand, when the constant term is added on the inside 

of a function, e.g. when  is transformed into 

, the function shifts left by that many units. (If a 

negative term is added, the function moves right.) 

 

 

 

 

Intuition 
 

Vertical shifts are very intuitive: if we add a number to a function, 

that number is added to every output of the function. If the number 

is positive, every output y-value is increased by that amount. If the 

number is negative, every output y-value is decreased by that 

amount. 
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The intuition behind horizontal shifts is a little less straightforward, 

because ADDING a number inside a function moves it left in the 

NEGATIVE direction along the x-axis. 

 

But think about it this way: when we transform  into 

, the output originally at  is now at , 

because  is the same as . Similarly, the output originally 

at  is now at , because  is the same as . 

Every input needs to move  units left, to keep its output the same. 

 

Combining Shifts 
 

When we have both vertical and horizontal shifts, it doesn’t matter 

which we perform first. 

 

For example, to transform  into , 

we can either shift it left  units and then up  units, or up  units 

and then left  units. Either way, we get the same result. 
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Exercises 
 

Use shifts to graph the following functions. 
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7.2 Rescalings 

 

When a function is rescaled, it is stretched or compressed along one 

of the axes, like a slinky. The function’s general shape is preserved, 

but it might look a bit thinner or fatter afterwards. 

 

 

Rescalings Outside the Function 
 

Rescalings occur when a constant term is multiplied in a function. 

When the constant term is multiplied on the outside of a function, 

the function stretches or compresses along the y-axis. 

 

For example, multiplying outside by  with the transformation 

 

 

 

stretches the function outward vertically, away from the x-axis. 

 

On the contrary, multiplying outside by  with the transformation 

 

 

 

compresses the function inward vertically, towards the x-axis. 
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Rescalings Inside the Function 
 

On the other hand, when the constant term is multiplied on the 

inside of a function, the function stretches or compresses 

horizontally along the x-axis. 

 

For example, multiplying inside by  with the transformation 

 

 

 

compresses the function inward horizontally, towards the y-axis. 

 

On the contrary, multiplying inside by  with the transformation 

 

 

 

stretches the function outward horizontally, away from the y-axis. 
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For functions that are more linear than curvy, such as , 

vertical and horizontal rescalings can have similar effects on the 

graph. 
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Intuition 
 

Similar to vertical shifts, vertical rescalings are very intuitive: if we 

multiply a function by a number, every output of the function is 

multiplied by that number. 

 

If the number is greater than , every output y-value is increased by 

the multiplier. If the number is less than , every output y-value is 

decreased by the multiplier. 

 

Similar to horizontal shifts, the intuition behind horizontal rescalings 

is not as straightforward. Multiplying a BIG number inside a function 

COMPRESSES it, rather than stretching it. 

 

Think about it this way: when we transform  into 

, the output originally at  is now at , 

because  is the same as . Similarly, the output originally 

at  is now at , because  is the same thing as 

. Every input needs to be divided by , to keep its output 

the same. 

 

 

Combining Rescalings and Shifts 
 

When we have both vertical and horizontal rescalings, it doesn’t 

matter which we perform first. 
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However, when dealing with rescalings and shifts simultaneously, it’s 

important to perform horizontal shifts first, then rescalings, and 

lastly vertical shifts. This way, horizontal shifts are themselves 

rescaled, and vertical shifts are not. 

 

To see why horizontal shifts themselves need to be rescaled, 

consider the function transformation of  into 

. 

 

In the original function, we have . If we rescale first and then 

shift  right, then the input  is rescaled to  and shifted 

to . 

 

When we input the transformed input into the transformed 

function, it should produce the same result as the original input in 

the original function -- but this is not the case for . 

 

 

 

On the other hand, if we first shift  right and then rescale, then the 

input  is shifted to  and rescaled to . 

 

Indeed,  produces the same result as the original input in the 

original function. 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=1%0
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Exercises 
 

Use rescalings (followed by shifts) to graph the following functions. 
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7.3 Reflections 

 

When a function is reflected, it flips across one of the axes to 

become its mirror image.  

 

Reflections occur when a function is made negative -- when the 

negative is outside the function, the reflection is over the y-axis; and 

when the negative is inside the function, the reflection is over the 

x-axis. 

 

 

 

The intuition behind reflections is that, depending where it is 

placed, the negative sign switches positive and negative values of 

the  or  variable. 

 

If the negative is outside the function, then the output y-value 

switches sign, essentially reflecting every point over the x-axis. 
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On the other hand, if the negative is inside the function, then the 

input x-value switches sign, essentially reflecting every point over 

the y-axis. 

 

 

Order of Function Transformations 
 

When we have both vertical and horizontal reflections, it doesn’t 

matter which we perform first. Likewise, when dealing with 

reflections and rescalings simultaneously, it doesn’t matter which 

we perform first. 

 

However, when dealing with reflections and shifts simultaneously, 

it’s important to perform horizontal shifts first, then reflections, and 

lastly vertical shifts. 

 

We are left with an order of function transformations, similar to the 

concept of order of operations in arithmetic, but different in actual 

order:  

1.​ Horizontal shifts 

2.​ Rescalings and reflections (interchangeable) 

3.​ Vertical shifts 
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Exercises 
 

Use reflections and rescalings (followed by shifts) to graph the 
following functions. 
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7.4 Inverse Functions 

 

Inverting a function entails reversing the outputs and inputs of the 

function. 

 

For example, if inputting  into a function  produces an 

output , then inputting  into the inverse function 

 results in the output . 

 

 

Computing Inverse Functions 
 

We can compute inverse functions by switching  and  in the 

equation for a function, and then solving for  again. 

 

Original function  

Replace  with   

Switch  and   

Solve for   

Replace  with   

 

Testing our inverse function on a few sample inputs, we see that it 

does indeed reverse the outputs and inputs of the original function. 
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Graphing Inverse Functions 
 

Graphing inverse functions is even easier than computing them: we 

just have to reflect the original function over the line . 

 

This makes sense, intuitively, since computing the inverse function 

involves switching  and . 

 

 

 

 

Case when No Inverse Exists 
 

Graphically, we can see that some functions don’t have inverse 

functions. If reflecting the graph over the line  causes multiple 
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y-values to be associated with a single x-value, then this breaks the 

definition of a function, and the resulting graph is not a function.  

 

Algebraically, an inverse function is supposed to take original 

outputs back to original inputs, but it can’t do this if it can’t 

distinguish which input x-value caused the output y-value. 

 

For example, the function  has , so 

when a supposed inverse function takes an output of , it will not 

know whether the output came from the input  or . Therefore, 

no inverse function can be constructed for . 

 

 

 

 

Domain Restrictions 
 

That being said, inverse functions can be created if we restrict the 

domain, the set of allowed inputs. 
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For example, if we restrict the domain of  to only positive 

inputs, then the inverse function would know that an output of  

comes from an input of . 

 

We can also see this graphically -- if we graph  only for 

positive values of , then no x-value has multiple y-values when we 

reflect the graph over the line . 

 

 

 

 

Exercises 
 

Sketch the original function and the graph of the supposed inverse 
by reflecting the original function  over the line . Then, if 

the inverse function  exists, use algebra to find its equation. 
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7.5 Compositions 

 

Compositions of functions consist of multiple functions linked 

together, where the output of one function becomes the input of 

another function. 

 

 

Demonstration 
 

For example, the function  can be thought of as the composition 

of two functions: the first function squares the input, and then the 

second function doubles the input. 

 

Using formal notation, we can define the first function that squares 

the input as , and the second function that doubles the 

input as . 

 

Then the composition can be computed by using the output of  as 

the input to . Starting at the end, we can compute the composition 

by evaluating  in terms of , and then evaluating  in terms of . 

 

 

 

Or, we can start at the beginning, computing  in terms of  and 

then evaluating  in terms of the result. Either way, we end up with 

the same formula for the composition. 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%202f(x)%20%3D%202x%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%20g(x%5E2)%20%3D%202x%5E2%0
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Order of Composition 
 

The order of composition is very important and is not 

interchangeable. 

●​ The function computed above is , which applies  first 

and then . 

●​ On the other hand, the function  applies  first and then 

, and consequently evaluates to something different: 

. 

 

 

Compositions of Many Functions 
 

For compositions of more than two functions, we can compute one 

step at a time. 

 

Given functions 

 

Input  into   

Input  into   

Input  into   

 

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df(x)%26%3D%5Csin%20x%20%5C%5C%20g(x)%26%3Dx%5E2%20%5C%5C%20h(x)%26%3D5x%2B1%20%5C%5C%20p(x)%26%3D%5Csqrt%7Bx%7D%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20%5Csin%5E2%20x%0
https://www.codecogs.com/eqnedit.php?latex=g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=h%0
https://www.codecogs.com/eqnedit.php?latex=(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%205%5Csin%5E2%20x%20%2B%201%0
https://www.codecogs.com/eqnedit.php?latex=h%20%5Ccirc%20g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=(p%20%5Ccirc%20h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Csqrt%7B5%5Csin%5E2%20x%20%2B%201%7D%0
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Exercises 
 

Find the expression for the indicated composition. 
 

  

 
 

  

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D1)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3Dx%2B5%20%5C%5C%20%26g(x)%3D2x%5E2%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D2)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D5%5Ex%20%5C%5C%20%26g(x)%3D%7C4-x%7C%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D3)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D-2%5Ex%20%5C%5C%20%26g(x)%3D%7Cx%2B4%7C%20%5C%5C%20%26h(x)%3D%5Csqrt%7Bx%7D%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D4)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D2x%20%5C%5C%20%26g(x)%3D%5Cfrac%7Bx%7D%7Bx-1%7D%20%5C%5C%20%26h(x)%3D%5Csin%20x%20%5Cend%7Balign*%7D%0
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Solutions​
to Exercises 
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Part 1 

 

Chapter 1.1 

 

  

  

  

  

  

 

Chapter 1.2 
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Chapter 1.3 
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Chapter 1.4 

 

  

  

  

 



262​ ​ ​ ​ ​              Justin Skycak | Algebra 

  

  

  

  

 

Chapter 1.5 
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Part 2 

 

Chapter 2.1 
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Chapter 2.2 

 

  

  

  

  

  

  

  

  

 

Chapter 2.3 
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Chapter 2.4 

 

  

  

 
 

  

 
 

 

Chapter 2.5 
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Part 3 

 

Chapter 3.1 

 

  

  

  

  

  

 

Chapter 3.2 
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Chapter 3.3 
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Part 4 

 

Chapter 4.1 
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Chapter 4.4 
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Part 5 

 

Chapter 5.1 
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Chapter 5.2 
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Chapter 5.4 
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Part 6 

 

Chapter 6.1 

 

   

  

  

  

 

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0
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Chapter 6.2 

 

   

  

  

  

 

https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0
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Chapter 6.4 
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Part 7 

 

Chapter 7.1 
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Chapter 7.2 
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Chapter 7.3 
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Chapter 7.4 
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