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Part 1
Linear Equations and Systems
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1.1 Solving Linear Equations

Loosely speaking, a linear equation is an equality statement
containing only addition, subtraction, multiplication, and division. It
does not need to include all of these operations, but it cannot
include operations beyond them, such as exponentiation.

For example, these are linear equations:
5c+9 =05

142 — 6 = 3x + 2

—Sr+2+T7rxr=3r+8—=z
On the other hand, these are not linear equations:

502 4+9=5
14z — 6 = 3/x + 2

—5sin(z) + 24 7z = 3|z| + 8

Solutions to Linear Equations

The solution of a linear equation is the value that we can substitute
for the variable to make the equation true.
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Most linear equations have a single solution. We can find the
solution by performing operations on both sides of the equation, to
isolate the variable.
Given equation | 5z + 8 = —2x + 22
Add 2z to both sides | 7z + 8 = 22
Subtract 8 from both sides | 7z = 14
Divide both sidesby 7 | z = 2

To check our solution, we can substitute it in both sides of the
equation and check that they evaluate to the same result:

5(2) +8 = —2(2) + 22
10 4+ 8 = —4 + 22
18 = 18

Case of No Solutions

However, some linear equations have no solutions. When we try to
solve these equations, the variable vanishes and we are left with an
untrue statement.

Given equation | 3z +1 =243z

Subtract 3z from both sides | 1 = 2


https://www.codecogs.com/eqnedit.php?latex=2x%0
https://www.codecogs.com/eqnedit.php?latex=8%0
https://www.codecogs.com/eqnedit.php?latex=7%0
https://www.codecogs.com/eqnedit.php?latex=3x%0
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This means that there is no number we can substitute for £ to make
the given equation true.

In fact, the right-hand side will always be 1 more than the left-hand
side: the left-hand side says to multiply the input by 3 and add 1,
while the left-hand side says to multiply the input by 3 and add 2.

Both sides multiply the input by 3, but then add different amounts!
We can never hope to get the results to be the same.

Case of Infinitely Many Solutions

Even more interesting, some linear equations have infinitely many
solutions. When we try to solve these equations, the variable still
vanishes, but this time we are left with a true statement.

Given equation | 2z +1=1-2z

Add 2z to bothsides | 1 =1

In other words, any number we substitute for « will make the given
equation true.

The left-hand side and the right-hand side will always come out to
the same result: the left-hand side tells us to multiply the input by
—2 and add 1, and the right-hand side tells us to multiply the input
by 2 and then subtract it from 1. These are really just two ways of
saying the same thing.


https://www.codecogs.com/eqnedit.php?latex=2x%0

20

Justin Skycak | Algebra

Exercises

Solve the following:

1)

2)

9)

10)

2r+3=11

—3rx+7=6—2x
—orx+12=3z-2—-=x

-9 +2=2x—-1-Tx

—3x — 17— 122 = —Hx + 13
18—2+1=10x+19 — 11z
8(x+4)+12(x —4) = 84

42z +3) —x =312z +4) + =
543z +1) —3(3z +2)] +25=—75

32 +1)—(z+2)] =3z+1
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1.2 Slope-Intercept Form

Before, we were solving linear equations in one variable. Now, let’s
consider linear equations in two variables. A few examples are
shown below:

3z +2y =1
8y — 5+ 3z = 10x

15y —2x4+3=3(x+y)—4

Solutions to Two-Variable Equations

The solution to a two-variable linear equation is no longer just the
number(s) that we can substitute for = to make the equation true,
but rather the pair(s) (Z,9) that we can substitute for 2 and ¥ to
make the equation true.

Two-variable linear equations usually have infinitely many solutions,
because we are usually able to solve for one variable in terms of the
other.


https://www.codecogs.com/eqnedit.php?latex=x%0
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Given equation | 10z — 5y + 15 =35
Subtract 15 from both sides | 10z — 5y = 20
Subtract 10z from both sides | —5y = —10x + 20

Divide both sidesby —5 | ¥ = 22 — 4

If we choose = = 2, then we can make the given equation true by
choosing ¥ = 2(2) =4 =0_1f we choose = — 10, then we can
make the given equation true by choosing ¥ = 2(10) —4 =16,
Whatever value we choose for x, we can make the equation true by
choosing ¥ as twice that value, minus 4.

However, although there are infinitely many solutions to the
equation, that doesn’t mean that any random pair we pick will be a

solution. For example, if we try the pair (z,y) = (2, 1), then the
left-hand side comes out to 10(2) - 5(1> +15 = 30, not 35.

Graphing

To really see what’s going on, it helps to plot the solutions on a
graph. In fact, linear equations are called linear because when we
plot them on a graph, they form a straight line

To plot all the solutions of ¥ = 22 — 4 on the graph below, we plot
two solutions and draw a line through them. We already saw that

one solution was (27 0), and when we substitute x = 0 we get
y=2(0)—4= _4, so another solution is (0; —4).


https://www.codecogs.com/eqnedit.php?latex=35%0
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Yy y=2x—4

Any point that is on the line is a solution of the original equation.

For example, we see that the line passes through the point (4,4)
and indeed, substituting z = 4 and ¥ = 4 makes the original
equation true.

10z — 5y + 15 = 35
10(4) — 5(4) + 15 = 35
40 — 20 + 15 = 35

35 =35

Slope-Intercept Form

In general, when we solve for ¥ in a linear equation of two
variables, we end up with a result in the form ¥ = mz + b where
m and b are constants (provided ¥ doesn’t vanish). This is called
slope-intercept form, and the constants m and b are called the
slope and y-intercept of the line, respectively.
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The y-intercept takes its name from the fact that the line crosses the
y-axis at b. For example, the graph of ¥ = 22 — 4 shown earlier
crossed the y-axis at —4. This pattern is true in general because the

pair (0,0) is a solution of the equation ¥ = mx + b: when we
substitute 2 = 0, we find ¥ = m(0) +b =10,

The slope takes its name from the fact that m controls how steep
the line is: for every unit the line travels right, it travels m units up
(or down, if m is negative). For example, in the graph of

y =2z — 4 if we start at the point (2:0) and travel 1 unit right and

2 units up, we arrive at the point (3, 2), which is also on the line.

To graph a line ¥ = mx + b in slope-intercept form, it is easiest to
start by plotting the intercept (0,0). Then, we can pick another
point by going right 1 unit and up m units. For example, to plot the
line ¥ = —5% + 2, we can start at the intercept (0;2), and since the
slope is —5, we will go right 1 unit and down 5 units to arrive at a
second point (1,-3). Then, we can connect these two points with a
line.



https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=1%0
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_ 4
When we have a fractional slope, such as in the line ¥ = 7% — 5, it

is easier to go right 7 units and up 4 units, instead of going right 1

4
unit and up 7 of a unit. We’re just repeating the process 7 times, for
a total distance right of (1)(7) = 7 and a total distance up of

4 _
(7) (7) = 4. The resulting line is shown in the graph below.

1l
|
ot

Horizontal and Vertical Lines

If the  term vanishes when we solve for ¥, such as in the line
Yy + 2 = 2+ x which simplifies to ¥ = 2, then we can interpret the
slope as being 0 because the line can be written ¥ = 02 + 2, The

resulting line has a y-intercept (0,2) and is horizontal because for
every unit it goes to the right, it goes 0 units up.
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Perhaps an easier way to think about it, though, is that the solution
is just all the points that have a y-coordinate of 2, regardless of their
x-coordinates.

On the other hand, if ¥ vanishes when we solve, such as in the line

Yy —x =y + 3 which simplifies to 2 = —3, then we have a vertical
line that passes through all the points having an x-coordinate of —3,
regardless of their y-coordinate.
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Finding the Equation from a Graph

Now, let’s think in reverse: if we draw a particular line, how can we
come up with its equation?

If we know the y-intercept and slope of the ling, then it’s easy -- we
just substitute the slope for m and the y-intercept for b in the
equation ¥ = mz + b,

For example, in the line below, we see that the y-intercept is —6,
2
and when we go right 3, we go up 2, so the slope is 3. The equation

_ 2
of the line, then, is ¥ = 32 — 6,

But what if we aren’t given the slope and y-intercept, or even a
picture of the line, and we want to write the equation of the line
based on only two points it passes through?
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It’s straightforward to compute the slope based on the two points --
we just need to find the rise, or the change in ¥, and divide it by the
run, or the change in x.

For example, if the points are (—10, 3) and (57 2), then we can

compute the rise as 2 — 3 = —1 and the run as 5—(-10) = 15,
-1 1

resulting in a slope of " = 15 = T 15.

Or, we can compute the rise as 3 — 2 = 1 and the run as

_ 1 _
—10 — 5 = —15, still resulting in a slope of "* = =15 =

L
15.

Either way, we get the same slope.

(-10,3) ~15
S *
—1 . +1
¥ ey

+15 (52)

Substituting for m in the equation ¥ = m + b, we reach
_ 1 b
y=—1r+b
It remains to find the y-intercept, . We can do this by substituting

for & and ¥ using the coordinates of one of the points that we

know needs to be on the line, say, (5,2).


https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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yz—%x—i—b
92— 1—15(5)+b
2= -2+

7
"=3

It really doesn’t matter which point we use -- even if we used the

other point, (—10, 3), we would get the same result for b.

1
= —— b
Y 1533+
1
3=——(—10 b
15( )+
2
3==-+b
3+
—
3
b=1

Now that we know the y-intercept is 3, we can write the final

equation of the line:

Wi

y=—g7+
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Exercises

Graph the following linear equations.

1) y=3x-5 2) y=—4r+6
3) y=32z+42 4) y=4-2z
5) 8y =16—4z 6) 2z=2z+y)+1
7) 4z +10 =2(z + 2y) 8) 2(1—y)=8(x—2)

Write the equation of the line in slope-intercept form.

9) 10)
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11) 12)

Write the slope-intercept equation of the line that goes through
the given point, with the given slope.

13) (0,-2) m=3 14) (1,4 m=-2

15) (=2,-4) m=3 16) (1,—-6) m=—

~Jjot

Write the slope-intercept equation of the line that goes through
the given points.

17)  (0,3) (2,0) 18) (1,1) (-3,2)

19) (—4,-5) (6,7 20) (-8,5) (2,5)
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1.3 Point-Slope Form

Suppose we want to write the equation of a line with a given slope
m = 2, through a particular point (3,5). In the previous chapter, we
substituted the given information into a slope-intercept equation
form ¥y = mx + b, solved for b, and rewrote the slope-intercept
form with m and b substituted so that & and ¥ were the only
variables.

Slope-intercept equation form | ¥ = mx +b
Substitute the given slope m =2 | ¥y =22+
Substitute the given point (3,5) | 5=2(3) +b
Solvefor b | b= —1
Final equation | ¥ =2z — 1

However, there is an alternative form, point-slope form, that makes
it even easier to write the equation of a line if we know the slope m

and a point (20, Y0) on the line. It is given by

Y —yo = m(x — x0),
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If we know that our desired line has slope m = 2 and passes
through the point (z0,0) = (3, 5), then we can substitute directly
into point-slope form without performing any additional

computations:
y—5=2(z—3)

This is an accepted form of the equation for a line, so we don’t need
to simplify it at all unless we’re asked to do so.

But even if we actually need to find the line in slope-intercept form,
it’s still advantageous to begin with point-slope form, because all we
have to do is distribute the 2 and add 5 to get to slope-intercept
form.

Point-slope form | y — 5 = 2(x — 3)
Distributethe 2 | ¥ =5 =22 —6

Add 5 to both sides toreach | ¥ = 2z — 1
slope-intercept form

Derivation

The point-slope formula is easy to remember, too, because it just
says that the slope between any point (Z,9) and the reference

point (20, Y0) needs to be equal to the given slope m.


https://www.codecogs.com/eqnedit.php?latex=2%0
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Moving from (z0,%0) to (z, ?J), the amount we go up is ¥ — Y0, and
the amount we go over horizontally is  — Zo, so the slope is just
Y—Y%o

z—xo . Equating this to m and multiplying to get rid of the fraction,

we reach point-slope form!

Slope must equal m | ;= =m

Multiply both sides by = — zo | y — yo = m(x — x9)
to reach point-slope form

Graphing

To graph a line whose equation is given in point-slope form, we
perform the same process as we do to graph a line that is in
slope-intercept form, except we start at the reference point rather
than at the y-intercept.

_ 3
For example, consider the line ¥ — 4=35(x— 1), for which the

3
reference point is (1,4) and the slope is 2. To graph this line, we
start at (1, 4), go up 3 and over 2 to the point (3, 7), and draw a line
through the two points.
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Y y—4=:

(x—1)

[N]

Final Remark

One thing to watch out for in point-slope form: be careful about
negatives.

For example, the point-slope form of a line with slope 2 that goes
through the point (=3, —5) is NOT given by ¥ — 5 = 2(z — 3)  This
is the line that goes through the point (3, 5), not (=3, =5).

The line that goes through (=3,-5) actually involves addition
rather than subtraction, because the negatives cancel the
subtraction in the original formula for point-slope form.
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Point-slope formula | ¥ — yo = m(x — xg)

Substitute slope 2 and | ¥ — (—5) = 2(z — (—3))
point (=3,-5)

Negatives cancel | ¥ + 5 = 2(z + 3)

Exercises

Write the point-slope equation of the line that goes through the
given point, with the given slope.

) (1,5) m=2 9) (~2,3) m=S8

Write the point-slope equation of the line that goes through the
given points.

5 (2,-1) (1,1) 6) (1,8) (—4,-7)

7 (L3) (1,4 8 (-13)
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Graph the following lines.

Justin Skycak | Algebra



Justin Skycak | Algebra 39

1.4 Standard Form

The standard form of a linear equation is @z + by = ¢, where a, b,
and c are all integers and a is nonnegative.

For example, we can convert the equation ¥ = 5 3 to standard
form by moving = and ¥ to the same side and multiplying to cancel
out any fractions.

Given equation | y = %q; + 1_30

3
Subtract 57 from both sides

Multiply both sides by 15, the least | —92 + 15y = 50
common multiple of 5 and 3

Multiply both sides by —1 to make | 92 — 15y = —50
the x coefficient positive

Finding the Intercepts

Standard form makes it easy to see the intercepts of the line: to get
the x-intercept in az + by = ¢, we divide the constant ¢ by the
x-coefficient a, and to get the y-intercept, we divide the constant ¢
by the y-coefficient b.


https://www.codecogs.com/eqnedit.php?latex=x%0
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50
For example, the x-coefficient of 92 — 15y = —50 js ~ 79, and the

-50 10
y-coefficient is =15 which simplifies to 3 .

This trick for finding the intercepts works because finding the
intercept of a particular variable involves substituting 0 for the other

variable. The x-intercept occurs at some point (,0) where ¥ is 0,
so to solve for the x-intercept, we can substitute 0 for ¥ and solve
for .

Given equation | az +by =¢
Substitute 0 for ¥ | ax + b(0) = ¢
Simplify | ax = ¢
Divideby a | * =
Likewise, the y-intercept occurs at some point (0,9) where z is 0,

so to solve for the y-intercept, we can substitute 0 for  and solve
for ¥.

Given equation | ar +by =c¢
Substitute 0 for = | a(0) + by = ¢
Simplify | by = ¢

Divideby b | ¥y =}


https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=a(0)%2Bby%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=by%3Dc%0
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Graphing

To plot the line, then, all we have to do is mark the intercepts and
then draw a line through them.

For example, in the line 92 — 15y = —50 we computed the
. 50 _55 . 10 gl
x-interceptas — 9, or ~ 9, and the y-interceptas 3, or 3

5
To graph the line, we just need to plot the intercepts (_55’ 0) and

1
(0’ 35) and draw a line through them.

y 9z — 15y =
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Exercises

Write the equation in standard form. (It may already be in
standard form.)

1) y=3z-1 2) —2r+3y=4

3) zr—y=2 4) br—4y=1
— 1

5 y+tr=2 6) dr+y=3

Graph the following by drawing a line through the intercepts.

7 3x+2y=9 8) x—2y=4

9) 8r4+y=-8 10) 2z —5y=—10
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1.5 Linear Systems

A linear system consists of multiple linear equations, and the
solution of a linear system consists of the pairs that satisfy all of the
equations.

For example, the solution to the linear system
y=2x+1
y=x+3

is (2,5) because substituting 2 for = and 5 for ¥ makes both
equations true.

Graphical Interpretation

Graphically, we can think of a linear system as being a set of two
lines, and their solution as the point where they intersect.

The intersection point is the solution because it is on both lines,
meaning it makes both equations true.
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y y=2r+ »_y\=1+3

one solution

Usually, two lines will intersect in exactly one point, and thus the
system will have a single solution. However, when the two lines are
parallel, meaning that they have the same slope, the lines will never
intersect, unless they are actually the same line.

If the system consists of two different parallel lines, then it will have
no solution because there are no intersection points. But if the
system consists of two lines that are actually the same, then the
system will have infinitely many solutions because every point on
the line is a solution.
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2y =2x+6

no solution infinitely many solutions

We can sometimes tell the solution of a system by graphing the
equations and looking for the point where they intersect. However,
when the lines intersect at a point that doesn’t coincide with grid
lines on the graph, it can be difficult to identify the exact
coordinates of the intersection point.

For example, can you identify the point of intersection below? If you
think you can, would you bet your life on it?

4y =5

x + 4y = 23
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Substitution

There is another method for solving a system of linear equations,
called the method of substitution, which makes it possible to solve a
linear system without graphing it.

To perform substitution, we create a third equation by solving for a
particular variable in the first and second equations and setting the
results equal to each other.

Since the third equation has a single variable, we can solve for the

numeric value of that variable, and then use it to find the numeric
value of the other variable.

Given system 3z + 4y = 23
3r —4y =5

Solve for ¥ {4y — 37 +23

—4y = —-3x+5
y:—%x-f-%l—?’
y=3v-3%

Set the results equal
to each other

Solve for z | 2 = Sz


https://www.codecogs.com/eqnedit.php?latex=y%0
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. =14
Substitute ** — 3 in
equation for ¥

Final solution

z=14
y=1(
y=13

(5.9

i
SN—""

ot
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To perform substitution even more quickly, instead of solving for a
particular variable in both equations, we can solve for a particular
variable in just one of the equations and then substitute the

resulting expression where the particular variable occurs in the

other equation.

Given system

Solve for ¥ in bottom
equation
Substitute into top equation
Solve for x

14

Substitute T = 3 in
equation for ¥

3x + 4y = 23
3r—4y =5

—dy = -3z +5

<
I
INI3Y

—~
ol

| Ot
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y:

e}

Final solution | (4 9)

Remember that some systems have no solutions, and other
solutions have infinite solutions -- so it shouldn’t throw us off if the
third equation created by substitution has no solutions or infinite
solutions.

Elimination

An even faster way to solve some linear equations is the method of
elimination. The method of elimination also creates a third equation
in a single variable, but it does so by adding multiples of the two
original equations to cancel out one of the variables.

Given system 3z + 4y = 23
3r —4y =5

Add the two equations | 3¢ + 3z + 4y —4dy =23 +5
Y cancels | 62 = 28

Solvefor x | o = 14

_ 14 14 _
Substitute © = 3 in | 3 () T4y =23
top equation


https://www.codecogs.com/eqnedit.php?latex=x%0
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Solve for ¥ | 14 +4y = 23

[ Ne)

y:

Final solution | (4 9)

In the previous example, one of the variables cancelled when we
added the two equations. Other times, though, no variable will
cancel right away, and we will first need to multiply one of the
equations by a number so that a variable will cancel when we add
the equations.

Given system

Multiply top equation
by —2

Add the two equations | x = —7
to cancel ¥

Other times still, we may need to multiply both equations by a
different number to cancel a variable. (We can just take the least
common multiple -- the same trick we use to add fractions with
different denominators.)
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Given system 20+ 3y =1

3z + 5y =2

Multiply bottom equation by 2 62 + 10y = 4

Multiply top equation by —3 {—6:1: —9y=-3
(Least common multiple is 6)

Add the two equations | ¥ =1
to cancel =

Again, since some systems have no solutions, and other solutions
have infinite solutions, we should not be worried if the third
equation created by elimination simplifies to a never-true statement
like 2 = 1 (no solutions) or an always-true statement like 1 = 1
(infinite solutions).

Exercises

Solve by substitution or elimination.

) {y:2x—3 2 {y:5x+1

y=z—1

2 - 2 =
3) {3:+y 5 " {5x+ y=9
r—y=4
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N
7>{
9>{

3x 44y =2
152 + 20y = 10

or — 3y =4
40y + 10z = 31

13=x+4y
T—Yy=2>5

20 =3
6) y + 2x
rz+2y=3

10z = 2 3
8) { T Y+
y = bz

5+2y="7
10) ey =T
z+ 3y =10

51
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Part 2
Quadratic Equations

53
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2.1 Standard Form

Quadratic equations are similar to linear equations, except that they
contain squares of a single variable.

For example, the equations below are quadratic equations:

22 —22="5 5 = 42 y+2r =22

On the other hand, the equations below are not quadratic
equations. (A quadratic equation must contain the square of one
variable, but cannot contain squares of multiple different variables,
and cannot contain other operations not found in linear equations,
such as square roots.)

r+2=3 2 -5=2/r+z 22+’ =4

Graphing

As a consequence of the squared variable, the shape of the graph of
a two-variable quadratic equation is a parabola.
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ownward pa

upward parabola

To tell whether the graph of a quadratic equation is an upward or
downward parabola, it is helpful to arrange the quadratic equation
into standard form, which is given by

y=ax’+bx+c

where a, b, and ¢ are constants and called coefficients. The
coefficient on the 22 term, which is given by a, is often called the
leading coefficient because it is the leftmost coefficient when terms
in the standard equation are ordered properly.

Keep in mind that some coefficients may be zero -- for example, the

quadratic equation ¥ = 32% 4+ 1 has b = 0 because it can be
written as ¥ = 322 + 0z + 1,

If the leading coefficient, a, is positive, then the parabola opens
upward. Otherwise, if the leading coefficient is negative, then the
parabola opens downward.
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To remember this, you might think of a positive leading coefficient
causing the parabola to smile, and a negative leading coefficient
causing the parabola to frown.

y = 222 + x — 3 | Opens upward because leading
coefficient (2) is positive

y = —5x? + 2 | Opens downward because leading
coefficient (—5) is negative

Sometimes, we may have to rearrange a quadratic equation into
standard form.

Given Equation y=1+4+2>—4z | -3=y+ 22>+ 62

Standard Form y=a>—4dx+1 | y=—-222—-6x+3

Leading Coefficient 1 -2
Opening Direction up down

Vertex of a Parabola

The standard form of a quadratic equation can also tell us about the
parabola’s vertex, or turning point.

For a quadratic equation in the form ¥ = ar® +br + ¢ the

b
x-coordinate of the vertex is given by ~ 2a.
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To find the y-coordinate of the vertex, we can substitute the
x-coordinate of the vertex into the quadratic equation and evaluate.

Standard Form | y = 22 — 4z + 1 y=—2x>—6z+3

—4 —6
X-Coord 0] PIE))
of Vertex
2 -4
Y-Coord 22 —4(2) +1 —2(=3)?—6(-3)+3
of Vertex
-3 %
Vertex (2,-3) (-3,5)

With a parabola’s vertex and direction of opening, we can draw a
decent sketch of the graph.

To make our graph a little more accurate, we can also make sure it
has the correct y-intercept. Since we set = 0 to find the

y-intercept, the y-intercept of ¥ = ax? +bx + ¢ i always given by
a(0)* 4+ b(0) + ¢, which evaluates simply to c.



Justin Skycak | Algebra 59

y=a%—4dx+1 y=—222 —6x+3

Exercises

For the following quadratic equations:

a. Write the quadratic equation in standard form.

b. Using the standard form, tell whether the parabola opens
upward or downward, and find the vertex and y-intercept.

c. Finally, using the parabola’s vertex, opening direction, and
y-intercept, draw a rough sketch of the graph of the
equation. (If the vertex and the y-intercept are the same,
choose some other point.)

1) y=1+2? 2) y=2zr+2>-3
3) y=22x—1)—2? 4) y=2z(x+4)

5) =9r —3(2?+1) -1 6) y=4-—>5x(x+1)
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7)

9)

y—6x—2=x(zx+1)

3(y—a?—4x) =13 +2y

8)

10)

Justin Skycak | Algebra

10x + y = 10z(z + 2)

x(Bx+4)=1—y
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2.2 Factoring

Factoring is a method for solving quadratic equations. It involves
converting the quadratic equation to standard form, then factoring
it into a product of two linear terms (called factors), and finally
solving for the variable values that make either factor equal to 0.
Original quadratic equation | 2 + 22 = —3x
Convert to standard form | 22 + 3z +2 =0
Factor | (x +1)(z+2)=0
Set eachfactorto 0 | t+1=0o0rax+2=0

Solve | x = —1oraxz= -2

When we factor, we are rearranging the equation to say that the

product of two numbers is 0. The equation is solved when either
number is 0, because any number multiplied by 0 is 0.
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How to Factor

Factoring is easiest in hindsight. Multiplying through, we see that
the factored form is equivalent to the standard form:

(x+1)(x4+2)=0
z(x+2)+1(z+2)=0
? +2r+1x4+2=0
2 +324+2=0

But how can we know this to begin with? In other words, if we want

to factor an expression 22 + bx + ¢ into the form (Z +m)(x +n),
how do we know what m and n are?

Here’s the trick: m and n need to multiply to ¢ and add to ».

To factor the expression 2% 4 b + 4, we need to find two numbers
that multiply to 4 and add to 5. Although 2 and 2 multiply to 4,
they don’t add to 5. But 1 and 4 multiply to 4 AND add to 5, so

they work! The factored form is then (Z + 1)(z +4).

Even with negatives, the method is still the same: to factor the
expression =2 — 2z — 3, we need to find two numbers that multiply
to —3 and add to —2. Although —1 and 3 multiply to —3, they
don’t add to —2. But 1 and —3 multiply to —3 AND add to —2, so

they work! The factored form is then (z+1)(z -3,
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Case of Many Potential Factors

Factoring can become a little tricky when ¢ has a lot of factors. In
such cases, it can be helpful to make a factor table.

For example, to factor 22 4 262 + 144, we can list out the factors
of 144 and find which pair adds to 26. Since this pairis 8 and 18,

the expression factors to (Z + 8)(z + 18).

Factor Pair Sum
1 and 144 145
2 and 72 74
3 and 48 51
4 and 36 40
6 and 24 30
8 and 18 26
9 and 16 25
12 and 12 24

To speed up the process, notice that the sums are automatically
ordered from biggest to smallest -- so we don’t necessarily have to
create the whole table.
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We could have started with some intermediate pair, say 6 and 24,
and realized that since the sum is too big, we need the first factor to
be bigger than 6.

Or, we could have noticed that sum of 12 and 12 is in the ballpark of
26, and worked our way up from the bottom of the table.

Case of Negative Terms

To deal with a negative value for b, we could use the same method
as before, except that we would have to make both factors negative.

For example, since we know that 8 and 18 are factors of 144 that
add to 26, we also know that —8 and —18 are factors of 144 that
add to —26, so the expression 22 — 26z + 144 factors to

(x — 8)(z — 18).

To deal with a negative value for ¢, we can think about the
difference instead of the sum.

For example, to factor x? + 322 — 144, we can find which factor
pair of 144 has a difference of 32, and put a negative on the smaller
factor to make the sum. Since this pairis 4 and 36, the expression

factors to (z — 4)(z + 36)
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Eactor Pair Difference
1 and 144 143

2 and 72 70

3 and 48 45

4 and 36 32

6 and 24 18

8 and 18 10

9 and 16 7

12 and 12 0

If b were negative as well -- say, if we wanted to factor

x? — 322 — 144 -- then we could use the same process but put the
negative on the bigger factor to make the sum negative. That is, we
would put the negative on the 36 instead of the 4, and the resulting

factored form would then be (* +4)(z — 36),
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Case of a Common Factor

Sometimes, we can simplify quadratic expressions by factoring out
something that ALL the terms have in common.

Original quadratic equation | 322 — 152 + 18 = 0
Factor a 3 out of all terms | 3(2% — 52 +6) =0
Factor the quadratic expression | 3(x — 2)(x —3) =0

Seteachfactorto 0 | + —2=0o0rz—3=0

Solve | x =2o0raxz=3

This makes it easy to factor quadratic expressions where ¢ is 0 --
just factor out the variable!

Original quadratic equation | 22 + 72 = 0
Factoran = outofallterms | z(z+7) =0

Seteachfactorto0 | t=0o0rz+7=0

Solve | x =0o0r oz = —7
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Case when the Leading Coefficient is Not One

Factoring out the variable works even when a is something other
than 1.
Original quadratic equation | 222 — 52 = 0
Factor an x out of all terms | z(2z —5) =0
Set eachfactorto 0 | x =0o0r 2z —5=0

Solve :E:()orx:%

But what about when a is something other than 1, and c is not
zero?

There’s a little trick that lets us reduce this to a factoring problem
with a equal to 1. We multiply ¢ by a, replace a with 1, factor the
result, divide each constant in each factor by the original a, and
move denominators onto our variables.

Original quadratic equation | 622 + 112 +3 =0

Multiply 3 by 6, and | 22 + 11z +18 =0
replace 6 with 1

Factor normally | (z +9)(x +2) =0

Divide each constant in (a: + %) (:v 4 %) =0
each factor by 6
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Simplify | (z+3) (z+3) =0

Move denominators onto | (22 +3)(3xz +1) =0
variables

Seteachfactorto 0 | 2e4+3=0o0r3x+1=0

Solve {L‘:—%Orm:—

=

We'll talk about why this trick works in the next chapter, when we
cover the quadratic formula.

Case of No Middle Term

Lastly, what about when b is 0? Since the factors have to add to b,
they must be negatives of each other. Since the factors have to
multiply to ¢, and they are the same number (except one is
negative), they must be the positive and negative square roots of ¢!

For example, z2 — 4 factors to (Z +2)(Z —2), and 22 — 9 factors
to (z +3)(x —3),

This trick also works if a is not equal to 1 -- we just have to factor a
out first.

Original quadratic equation | 322 — 48 =0

Factor 3 out of all terms | 3(z2 — 16) = 0
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Factor the quadratic | 3(z +4)(x —4) =0

Solve | x = —4orx=4

Exercises

Factor the following quadratic equations. Then, use the factored
form to find the solutions.

1) 2?2+4+7z+12=0 2) 22+9x+14=0
3) 22—Tx=-10 4) 22 4+18=09z

5 2?+2r=38 6) 21 —d4xr =22

7)) 3x+10 = 2? 8) 2% —5r=36

9) 4a? = 52z 10)  —8z%+ 64z =0
11) 22-25=0 12) 22-144=0
13) 1222 4 11z = -2 14) 1022 =27z -5

15) 5z =4— 622 16) 212% —10 = —29x
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2.3 Quadratic Formula

Some quadratic equations cannot be factored easily. For example, in
the equation 2?2 4+ 3z + 1 = 0, we need to find two factors of 1
that add to 3. But the only integer factors of 1 are 1 and 1, and they
definitely don’t add to 3!

To solve these hard-to-factor quadratic equations, it’s easiest to use
the quadratic formula given below, which tells us explicitly how to
compute the solutions of a quadratic equation az? + bz + ¢ = 0.

—b+ Vb2 — 4ac
€r =
2a

Worked Example

Using the quadratic formula, we can compute the solutions to the
equation #2 + 3z +1 = 0.

Substitute @ = 1,b = 3, and —_— (3)2—4(1)(1)
¢ = 1 in quadratic formula 2(1)

Simplify | , — =3£V6

Separate the & intotwo | ; — =3+v5 . . — =3—V5
solutions (optional)
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These solutions look weird, but they’re correct.

x2+3x+1:0
2
—34++5 3 —34+5 11=0
2 2
9—6\/3+5+—9+3\/5+1:0
4 2
7 =4 — =4
7 3\/3+ 9+3\6+1:0
2 2
-2
—~Z41=0
5+
0=0

Reverse Derivation

(

2
-3-+5 -3-—
2 ) +3< 2

9+6vV5+5 -9
V5 5,

4
7+3V5 | -9
v

2

22 +324+1=0
=4
ﬁ>+1:o

— 35
‘/3+1:0
2

_3‘/3+1=0
2
-2
2 411=0
>+

0=0

To gain some faith in the quadratic formula, we can also rearrange it
back into the original equation to see that it must have the same

solutions as the original equation:

2ax

2ax +b

—b++/b? — 4dac

2a
—b+ /b2 —4dac
++/b2% — dac

(2ax + b)? = <:l: b? — 4ac>2
4a?2? 4 4abx + b* = b* — 4ac
4a’2? 4 4abx + dac = 0
4a(ax2—|—bx+c) =0
ar’ +br+c=0
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The Discriminant

Using the quadratic equation, we can see that some quadratic
equations have 2 solutions (as usual), but other quadratic equations
can have just 1 solution, or no solutions at all.

For example, using the quadratic equation to solve 22+ 2x+ 1, we

find a single solution because the £V b? — 4ac part comes out to
+0.

_o—2Ey/22-4()(1) 240 _
T = 2(1) =5 =-1

Similarly, using the quadratic equation to solve =% + 2z + 2, we
find no solutions because the £v/b? — 4ac part comes out to

+/negative number, and we can’t take the square root of a

negative number. (We’ll ignore imaginary solutions and consider

only real solutions for now.)

v —2+ ;?1—)4(1)(2) _ *2i2\/j4 = no solution

To see how many solutions a quadratic equation has, we need only
consider the b® — 4ac part of the quadratic formula, which is called
the discriminant. If the discriminant is positive, then we have two
solutions. If it is 0, then we have one solution. If it is negative, then
we have no solution.

We can also use the quadratic formula to understand the trick for
factoring when a is not equal to 1 -- which was to multiply ¢ by a,
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replace a with 1, factor the result, divide each constant in each
factor by the original a, and move denominators onto our variables.

From the quadratic formula, we know that the solutions of

_ =bEtvb2—4
ax? + bx + c = 0 are given by ¥ = -

multiply ¢ by a and replace a with 1, we have the equation
—b+tVb%2—4ac
2 .

. When we

2% 4+ bz + ac = 0, which has solutions £ =

This means that if z is a solution of 22 + bx + ac = 0, then ax isa
solution of ax? + bz + c.

Thus, if 22 + bz + ac factors into (T +m)(T + 1) then
az?® + br + ¢ factors into @ (T + %) (z + %),

Exercises

Use the quadratic formula to solve the following quadratic
equations.

1) 2243z-7=0 2) 422 -122+9=0
3) —2224+4r4+6=0 4) 322 —z+5=0
5) —25x2 —20zx =4 6) 322=22+3

7) 42z = 922 + 49 8) 82 +5=3z

9) 1+ 3z =522 10) 154z = 12122 + 49
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2.4 Completing the Square

Completing the square is another method for solving quadratic
equations. Although we can use the quadratic formula to solve any
guadratic equation, completing the square helps us gain a better
intuition for quadratic equations and understand where the
guadratic formula comes from.

As we will see in the next chapter, completing the square will also
help us rearrange quadratic equations into forms that are easy to
graph.

Demonstration

The main idea behind completing the square is that every quadratic
expression has a squared factor hidden inside of it.

Original equation | 22 4+ 22 —5 =0
Add 5 to both sides | 22 +2z =5
Add 1 to bothsides | 22 +2x+1=6

Factor | (z +1)2=6
Take positive/negative root | * + 1 = +/6

Solve | x = —1j:\/5
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General Procedure

To find the squared factor, we just need to move the constant to the

b 2
other side of the equation and add (5) to both sides. Then, the

b2
guadratic expression will factor into (5'j + 5) .

Original equation | 22 4+ bx 4+ c =0

Move the constant to the | z2 + bx = —c¢
other side

2 2 2
Add (%) to both sides | ©° + bz + (%) = (%) - ¢
Factor (a:+g)2 = (%)z—c
Take positive/negative root | = + & = + (%)2 —c

—_b 2
Solve | x = zj: T —¢C
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Hey, the solution is the same as the quadratic equation with a = 1!

b b2
:L“——§:l: 7€
b b2 — 4c
Ty 4
b b2 — 4c
:r:—i:l: 5
bV —4e
T 2
b E /B —4(1)c
’ 2(1)

Case when the Leading Coefficient is Not One

To complete the square with a not equal to 1, we can simply divide
by a to create an equivalent equation where a IS equal to 1.

Original equation
Divide by 3

1
Add 3 to both sides

_ 2
Add (76) =9 to both sides

Factor

Take positive/negative root
and solve

322 -18x—1=0

2 28
_ 28
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By completing the square on the general form ax? +br+c=0,

we arrive at the quadratic equation:

Original equation

Divide by a

Move the constant to the
other side

b/a)? _ (b2
Add( 2 ) - (2“) to
both sides

Factor

Take positive/negative root
Solve

Simplify

ar?+br+c=0

x2+§x+§:0

—__b 2 c
T = "2 = 4a? a
r=—2b & b2—4dac

~  2a 4a?

b vb2—4ac
+ 2a

¢ — =bkvPP—dac
- 2a
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Exercises

Solve the following quadratic equations by completing the square.
If there are two solutions, leave your answer in the form

number + v/ other number,

1) 22+43x—-1=0 2) 22—x-2=0

3) —22422+3=0 4) -2 -4z +7=0
5 22=1-Tx 6) 3r=22+5

7) 322 -3=22 8) 1=>52%+3z

9) 2z-22%=5 10) 3—-T2?=2
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2.5 Vertex Form

To easily graph a quadratic equation, we can convert it to vertex
form:

y=alr—h)®+k

In vertex form, we can tell the coordinates of the vertex of the

parabola just by looking at the equation: the vertex is at (hy k). we
can also tell which way the parabola opens, by checking whether a
is positive (opens up) or negative (opens down).

Equation Vertex Opens
y=(z—-2)2+1 (2,1) up
y=—2(x—5)? -3 (5,—3) down
y="T(x—1)7%+3 (1,3) P
ym Yot | (R | dow

Converting to Vertex Form

To convert a quadratic equation into vertex form, we can complete
the square.
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Original equation
Divide by 2

Move the constant to
the other side

)
Add (72) = 1 {0 both sides

Factor
Multiply by 2

Subtract 7

Exercises

Justin Skycak | Algebra

y=2x>—4x -5

[

Nl

2 _ 5
=z 2x — 3

+%::c2—2x

+%:x2—2m+1
+I=(z-1)?
+7=2(zx—1)?
=2(z-1)>2-7

Write the equation in vertex form ¥ = a(r —h)* +k, Then, find
the coordinates of the vertex and tell which way the parabola

opens.

1) y=22+2r+3
3) y=222+20x-5
5 y=22%-2zx-1

7)) y=322-22+3

y=122—6z+4
y=—32%+ 62 +1
y:—%m2—2x—10

y:—%x2—8x—17
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2.6 Quadratic Systems

Systems of quadratic equations can be solved via substitution. After
substituting, the resulting equation can itself be reduced down to a
guadratic equation and solved by techniques covered in this chapter.

Original system | [y =222 — ¢
{y =22 -3x+3
Substitute for ¥ | 222 — 2z = 22 — 32 + 3
Convert to standard form | 22 +2x —3 =0
Solveforx | = —-3orz=1
Evaluate ¥ | y = 2(—3)? — (—3) =21
y=21)?%-1=1

Solution | (—3,21) or (1,1)


https://www.codecogs.com/eqnedit.php?latex=y%0
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Note that when evaluating ¥, it doesn’t matter which equation we
use from the original equation. In the example above, we used the
first equation because it was easier to compute, but using the
second equation leads us to the same solutions.

y=(-3)%-3(-3)+3=21

y=(1)%*-31)+3=1

Number of Solutions

There can be 2, 1, or 0 points of intersection, depending on the
arrangement of the parabolas.

2 solutions 2 solutions
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no solution no solution
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Just like in linear equations, if the result reduces down to a true
statement, then there are infinitely many solutions because both
equations in the system actually represent the same parabola.

Original system y=a2+42x—3
2y =222 +4x — 6
Substitute for ¥ | 2(2% + 2z —3) =222 + 47— 6

Simplify | 0=10
Solution | all points on

y=a>+2x—3

On the other hand, if the result reduces down to a false statement,
then there are no solutions because the parabolas never intersect.

Original system y=a2+1
y=a2—-1
Substitute for ¥ | 22 +1 =22 —1
Simplify | 1 = —1

Solution | no solution


https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=y%0
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Exercises

Solve the following systems of quadratic equations.

1) y=2>+3x+6 2) y=2x%+6x+3
y=—2>4+13x -6 y=2x? 45 —2

y=3>+7x+9
y=2x>+7x+10

) | 0 |
o fronrer e !
0 {; R

y =22+ 37+ 2
y=—-224+2-5

:—:c —T7x — 10

= —222 — 142 — 20
y—5:z: —x+7 =22 — 10z + 10
=22 +2x+1 =—a’4+2-5
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Chapter 3
Inequalities

89
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3.1 Linear Inequalities in the Number Line

An inequality is similar to an equation, but instead of saying two
quantities are equal, it says that one quantity is greater than or less
than another.

For example, since 1 is greater than 0, we write 1 > 0. Likewise,
since 0 is less than 1, we write 0 < 1.

If we write x > 0, then we mean that 2 can be 1, 2, m, 0.000001,
or any other positive number. If we write x < 0, then we mean that
x canbe —1, —2, —m, —0.000001, or any other negative number.

“Or Equal To” Inequalities

We can also write = 0 to mean that x is greater than or equal
to 0.

In £ > 0, the number 0 is not a valid solution for & because 0 is
not greater than 0, butin Z = 0, the number 0 is a valid solution
because 0 is greater than or equal to 0.

Likewise, we can write Z < 0 to mean that x is less than or equal
to 0.


https://www.codecogs.com/eqnedit.php?latex=x%0
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Solving Inequalities

Inequalities can be solved much like equations: we can perform
algebraic manipulations to both sides of the equation until we
isolate the variable.

Original inequality | 4z —2 > 2z 48
Add 2 to both sides | 42 > 2z + 10
Subtract 2z from both sides | 22 > 10

Divide both sidesby 2 | * > 5

If we substitute any number that is greater than 5, it will satisfy the
original inequality.

For example, if we substitute = = 6, then the original inequality
becomes 22 > 20, which is true. Likewise, if we substitute

x = 5.001, then the original inequality becomes 18.004 > 18.002,
which is true.

On the other hand, if we substitute any number that is 5 or less, it
will not satisfy the original inequality.

For example, if we substitute = = 5, then the original inequality
becomes 18 > 18, which is not true. Likewise, if we substitute

x = 4, then the original inequality becomes 14 > 16, which is not
true.
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Flipping the Inequality

In manipulating inequalities, there is just one catch: whenever we
multiply or divide by a negative number, we have to flip the
inequality.

Original inequality | =+ 1> 5z -7
Subtract 1 from both sides | x > 5x — 8
Subtract 5z from both sides | —4z > —8

Divide both sides by —4 and | * < 2
flip the inequality

To understand why we need to flip the inequality whenever we
multiply or divide by a negative sign, consider the example 1 < 2. If
we multiply or divide by —1, we reach —1 < —2, which is not true.
In order to keep the inequality true, we have to flip the inequality
sign: —1 > =2,

Plotting Inequalities

To visualize inequalities, we can plot them on a number line. An
open (unfilled) circle around a point means that the point itself is
NOT a solution, while a closed (filled) circle around a point means
that the point itself is a solution.
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r >3 | | , . .
—-10 =5 0 5 10

10 =5 0 5 10

3
x <3 } : — b :
—10 =5 0 5 10

8

N
w
oo

10 -5 0 5 10

The number line can help us understand why we have to flip the
inequality sign whenever we multiply or divide by a negative
number.

Starting with 5 < 10, we know that 10 is the bigger number that is
further from 0. When we multiply or divide, 10 is still going to be
further from 0 than 5 is -- but if we multiply or divide by a negative
number, then 10 will be further from O in the negative direction,
which means it will actually be the lesser number.
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Interval Notation

The number line is a great intuitive aid, but it takes a while to draw.
To simultaneously leverage the benefit of number line intuition and
avoid the headache of drawing actual number lines, it is common to
use interval notation, which represents number line segments using
parentheses for open circles and brackets for closed circles.

—T<x<3 _;—i’
(-7,3) —10 =5 0 5 10
—T<z<3 _% 3
[-7,3) 10 -5 0 5 10
—T<x<3 _;—i
(—7,3] ~10 =5 0 5 10
7<z<3 ‘H

[—7,3] 10 o5 0 5 10


http://www.texrendr.com/?eqn=-7%20%5Cleq%20x%20%5Cleq%203%0
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To indicate that a segment continues forever, we imagine it having
an open circle at positive or negative infinity.

r>3 | : —

(3,00) —-10 =5 0 5 10
3

:E 2 3 - - } 'II }

[3,00) 10 =5 0 5 10

r <3 . . . i ‘

(—00,3) 10 =5 0 5 10
r <3 3

+ } + él }

(—00,3] 10 =5 0 5 10

Exercises

Solve the following inequalities, writing the solutions in interval
notation.

1) 4x—-1<3z+1 2) 4>4-2
3) —2x<6x+24 4) 10 —-5x >3 —4x

5 10—-Tx<3z-5 6) 22z+2<16x
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7)

9)

—4dr—-T7<2-5x 8)
9z > 11(x — 2) — bz

3—dx >4(1—-22)+92 -5

— 3z < 4(zx +3)

97
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3.2 Linear Inequalities in the Plane

When a linear equation has one variable, the solution covers a
section of the number line: if our solution is > some number,
then the solution covers the section of the number line that lies
right of that number; if our solution is * < some number, then
the solution covers the section of the number line that lies left of
that number.

If equality is allowed (i.e. > or <), then we use a closed circle to
indicate that the circled number is itself a solution; otherwise, if
equality is not allowed (i.e. > or <), then we use an open circle.

Similarly, when a linear equation has two variables, the solution
covers a section of the coordinate plane. If our solution is

Yy > mx + b, then the solution covers the section of the coordinate
plane that lies above the line ¥ = Mx + b, whereas if our solution
is Yy <mzx+ b, then the solution covers the section of the

coordinate plane that lies below the line ¥ = mz + b,

If equality is allowed (i.e. > or <), then we use a solid line to
indicate that points on the line itself are solutions. Otherwise, if
equality is not allowed (i.e. > or <), then we use a dotted line.
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Worked Example
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To illustrate, let’s solve and graph a two-variable linear inequality.

Original inequality

Simplify

Subtract 9Y from both sides
Add x from both sides

Divide by —2

3y—xz>5y—x)+6
3y —x > 5y —5xr+6
—2y—x > —5xr+6
—2y > —4x+6

y<22x—3

Since equality is not allowed in the solution, we draw a dotted line.
Since the solution consists of values of ¥ LESS THAN those on the

line, we shade under the line.

y Yy<2z-3




Justin Skycak | Algebra 101

We can check that any point in the shaded region is a solution: for
example, substituting (5» _10) into the original inequality yields
3(=10) =5 > 5(—10 — 5) + 6 which simplifies to —35 > —69,
which is true.

Likewise, we can check that any point NOT in the shaded region is
NOT a solution: for example, substituting (0, 0) into the original
inequality yields 3(0) =0>5(-0—-0) + 6, which simplifies to
0 > 6, which is not true

Any point on the line itself will not be a solution, but would be a
solution if equality were allowed: for example, substituting the

y-intercept (07 _3) into the original inequality yields

3(=3) = 0> 5(=3 —0) + 6, which simplifies to —9 > —9, which
is not a solution but would be a solution if equality were allowed
(i,e. 92> —9).

Case when a Variable Vanishes

If ¥ vanishes while solving the equation, then the boundary line will
be vertical. In this case, we shade left or right of the line depending
on whether the solution tells us that x is less than some number, or
greater than some number.
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Original inequality | —(y+2) <z —y
Simplify | —y —2<z—y
Add ¥ to both sides | —2 <

Move z to left side | © > —2

Since equality is allowed in the solution, we draw a solid line. Since
the solution consists of values of * GREATER THAN those on the
line, we shade on the right towards higher values of x.

x> -2 vy



http://www.texrendr.com/?eqn=x%0
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Exercises

Graph the solutions to the inequalities below.

y < —3x+8 2) yS%x—?
y=>5(z+4) -2 4) y<-3(x-2+3
2x +14 > 11 6) 3z —d4y <12

— by —Tz >8x —25
2 +3y+2) <z+6y+2

%(xnt 2y) < %(16 +22) 10) x> i(8y+30)

103
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3.3 Quadratic Inequalities

Quadratic inequalities are best visualized in the plane. For example,
to solve a quadratic inequality —2% + = + 2 > 0, we can find the

values of & where the parabola ¥ = —2? +x+2 is positive.

Since ¥ = —2% + & + 2 is a downward parabola, the solution
consists of the values of x in its midsection which arches over the
x-axis. That is, the solution consists of all x-values between the
solutionsto —x2 +x +2 = 0.

This quadratic equation factors to —(z-2)(z+1)= 0, so the

parabola’s midsection is givenby —1 < z < 2, or (=1,2) in
interval notation.

2 -1 o0 1 2

Case when the Solution is a Union

On the other hand, if we want to solve —z? + x + 2 < 0, then we

need to find the values of z where the parabola ¥ = 2% + x4 2
is negative.
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This time, the solution consists of all the values of x in the arms of
the parabola which extend under the x-axis. That is, the solution
consists of all x-values less than the leftmost solution or greater than
the rightmost solution to —2? + 2 +2 =0,

The solution of the inequality is then given by * < —1 or x > 2,

which is (=00, =1) U (2, 00) in interval notation. (The U symbol is
called a union, and it allows us to include multiple segments in
interval notation.)

To solve —2% + x +2 < 0, we just need to propagate the
allowance of equality to our final answer. Thus, the solution is

x < —1lorx>2 whichis (=00, =1] U [2,00) in interval notation.
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Case when the Parabola is Never Zero

When a quadratic inequality involves a parabola that is never zero,
there is either no solution or the solution is all real numbers.

2 .
For example, the parabola ¥ = % + 9 has only positive y-values, so
22 +5 < 0 has no solution and 22 + 5 > 0 is solved by all real
numbers.

In interval notation, we express all real numbers as the full number

line (—o0, OO), and we express no solution as 0. (The 0 symbol is
called the empty set, and it represents an interval which doesn’t
contain any numbers.)

Exercises

Solve the following inequalities, writing the solutions in interval
notation.

1) 22-4>0 2) 224+1>0
3) —322+27<0 4) 22-9x+14<0
5 2?+x+1<0 6) 222>T7r+15

7)) x+1< 62>

8) —a2?2—Tr+30>2%+7x—30



108 Justin Skycak | Algebra

9) 10x(x—3) <7+ 3z

10)  (3z+5)%2>3(2%2 —1)+7(z — 11)
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3.4 Systems of Inequalities

To solve a system of inequalities, we need to solve each individual
inequality and find where all their solutions overlap. For example, to
solve the system

y>—x+2
y<2x—1

we first graph each individual inequality and darken where the
shading overlaps.

>—x+2 y y<2x—1

The solution to the system consists of points that satisfy BOTH
individual inequalities, so the solution is just the overlap of the two
shadings, which appears as the most darkened part of the graph.
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To display the solution to the system, we erase any other shading
and shade only the overlap.

Including Another Inequality

If we include another inequality in the system, then the solution
region will either stay the same or shrink.

For example, if we include x > —5, then the solution region will
stay the same because it is fully contained in the shading of x > —5
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y>—x+2 y y<2x—1 y>—x+2 y y<2x-—1

However, if we include x < 5, then the solution region will shrink
because only part of it is contained in the shading of x < 5.

y>-—x+2 y y<2x—1 y>—x+2 y y<2x—1

xr <5 . ' x<5
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Quadratic Inequalities

Even with quadratic inequalities, the method is the same: the

solution is the overlap of the shading of the component inequalities.
Some examples are shown below.

Yy
1o B
|
\:
{
y>22-9 "'“'.'...L‘\\ el
2 RRRRSSRRRERT e @
y<z+ RN [
v e
b \ /
Yy
RN N
L L
| e

it

y>a2—9
y< —a?4+4r+5

Frdndcbge
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y<a:2—9
y>—2?4+4r+5

Exercises

113

Graph the solutions to the systems below.

1) y>3x—7
y< —2x+1

> 2 1
3) y > 2x +
y <38

r+y<l
5) Jy<x—3
20 -3)> =

1
2) y<§x—3
y< —=bx+5

x> —=b
4) y>x—3
y <0

y>ax?—4
6) y<1l0—=x
y—x >0
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2y + 5% < 20
y+9 > a?
20 —y >4
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y < x?
y+az2>5
y > 2(x —5)
z>1
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Part 4
Polynomials
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4.1 Standard Form and End Behavior

Polynomials include linear expressions and quadratic expressions,
as well as expressions adding multiples of higher exponents of the
variable.

For example, these are polynomials:

x® — 42?2 + 1 3zt + (x4 1)3 204+ (22 -1+ +1

On the other hand, these are not polynomials:

2?4+ .z +1 sin(z) + 23 — 2 || +2° +23 -1

Standard Form

Polynomials are usually written in standard form, in which all terms
are fully expanded and variable exponents are arranged from
greatest to least.

Original polynomial | x(5 + 22%)(x — 1) + 3(4 + 23)

Simplify | 2(5x — 5 + 223 — 22?) + 12 + 323
522 — 5z + 22* — 223 + 12 + 323
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Combine like terms | 522 — 5x + 2x* + 23 + 12

Arrange exponents from | 2z* + 23 + 522 — 5z + 12
greatest to least

End Behavior

The end behavior of a polynomial refers to how it behaves when we
substitute extremely large positive or negative values for x.

If the polynomial evaluates to a very large positive number, we say it
approaches infinity. Otherwise, if the polynomial evaluates to a very
large negative number, we say it approaches negative infinity.

. . _ 3 2
For example, consider the polynomial p(z) = —22° + 2+ 5z — 3,
When we substitute a large positive number, such as « = 100, the
output is a large negative number.

p(100) = —2(100)? + (100)* 4 5(100) — 3
—2(1000000) + 10000 + 500 — 3
= —2000000 + 10000 + 500 — 3

= —1989503

When we substitute a large negative number, such as = —100,
the output is a large positive number.
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p(—100) = —2(—100)® 4 (—~100)? + 5(—100) — 3
= —2(—1000000) + 10000 — 500 — 3
= 2000000 + 10000 — 500 — 3
= 2009497

Putting this together, we say that p(z) goes to negative infinity as x
goes to positive infinity, and p(z) goes to positive infinity as « goes
to negative infinity.

We can write this symbolically: p(x) = =00 a5 = — 400, and
p(z) = 400 as z — —o0. This is the end behavior of the

polynomial p(x),

Graphical Interpretation

Graphically, end behavior tells us whether the polynomial curves up
or down as we travel away from the origin in the right or left
direction.

Since P(¥) = —00 as 2 — ~+o0, we know that the polynomial
curves down as we travel to the right, and since p(z) = +00 3¢
r — —00, we know that the polynomial curves up as we travel to
the left.
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Shortcuts

Do you notice any patterns or shortcuts? It’s possible to determine
the end behavior of a polynomial without evaluating the full
polynomial.

The term with the highest exponent controls the end behavior,
because it makes the greatest contribution to the result. All the
other terms make much smaller contributions -- they’re peanuts in
comparison to the highest-exponent term.

p(100) ~ —2(100)> = —2000000
p(—100) ~ —2(—100)> = 2000000



Justin Skycak | Algebra 121

But we can do even better -- we don’t actually have to evaluate
anything at all! Within the term having the highest exponent, we
just need to look at the exponent and sign of the coefficient. If the
exponent is even, then the result after exponentiation will always be
positive. Consequently, the term will evaluate to have the same sign
as its coefficient.

For example, to find the end behavior of the polynomial

p(x) = 22% — 3z + 4 we just need to look at the 222 term. Since
the exponent is even, x? will always be positive -- if we substitute
x = 100, then 22 = 10000, and if we substitute z = —100, then
22 = 10000 again. The coefficient 2 is also positive, so 222 is
always a positive times a positive, which makes a positive. As a
result, we have P(Z) = +00 35 z — +00 and P(T) = +00 3¢

T — —00.

Likewise, to find the end behavior of the polynomial

p(z) = =5zt + 723 — 2 — 2 ywe just need to look at the —5z2
term. Since the exponent is even, z* will always be positive -- if we
substitute = = 100, then z* = 100000000, and if we substitute

x = —100, then z* = 100000000 again. But the coefficient —5 is
negative, so —5z% is always a negative times a positive, which
makes a negative. As a result, we have p(z) = =0 a5 2 — +o0
and P(T) = —00 a5 7 — —00.


https://www.codecogs.com/eqnedit.php?latex=2%0
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Examples with an Odd Exponent

On the other hand, if the exponent is odd, then the result after
exponentiation will always have the same sign as the input .
Consequently, the term will evaluate to be positive if the coefficient
and the input & have the same sign, and negative if they have
opposite signs.

For example, to find the end behavior of the polynomial

p(x) = 42® — 5a? — 22 + 1 we just need to look at the 4z term.

Since the exponent is odd, exponentiation will not change the sign --
if we substitute z = 100, then 22 = 1000000, and if we substitute

x = —100, then 22 = —1000000. The coefficient 4 is positive, and
multiplying by a positive doesn’t change the sign either. As a result,

we have P(Z) = +00 35 2 — 400 and P(T) = —00 a5 2 — —0

Likewise, to find the end behavior of the polynomial

p(z) = —32° + Tzt + 322 — 10z | we just need to look at the
—32° term. Since the exponent is odd, exponentiation will not
change the sign -- if we substitute = 100, then

2% = 10000000000, and if we substitute z = —100, then

2% = —10000000000. But the coefficient —3 is negative, and
multiplying by a negative changes the sign -- if 2° = 10000000000,
then —3z°> = —30000000000, and if 2° = —10000000000, then
— 325 = 30000000000. As a result, we have P(T) — —00 a5

z — +00 and P(T) = +0 a5 # = —o0.


https://www.codecogs.com/eqnedit.php?latex=x%0
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Exercises

Convert the following polynomials to standard form. Then, write

their end behavior symbolically: p(x) = __ asx— +o00, and
p(®) > asz — —oc.

10)
11)

12)

p(x) = 3z* — 7o + 823
p(x) =1 -2z + 23
p(z) =2+ 323 — 26 — 924
p(x) = —102? — 23 + 5zt — 22
p(z) = 62> —4a° +1 -2z
p(z) =1+ 423 — 52 + 24
p(z) = 8x — 1 + 2* — 520 — 62°
p(z) = —o* + 211 — 328 4+ 2
p(@) = (@ +1)(@+1)
p(x) = —(z = 1)(z + 1)(z = 3)
p(x) = (22° +1)(a® - 2)

p(x) = 22(3 — 22%) (v + 2)
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4.2 Zeros

The zeros of a polynomial are the inputs that cause it to evaluate to
zero.

For example, a zero of the polynomial 23 — 222 — 52 + 6 is = = 1
because (1)? =2(1)* =5(1) + 6 = 0. Another zerois z = —2
because (—2)? = 2(-2)* = 5(-2) + 6 = 0. can you find the rest?

Finding Zeros by Factoring

One trick for finding the zeros of polynomials is to write the
polynomial in factored form.

Since we know that x = 1 and x = —2 are zeros of the polynomial,
we know the polynomial has to have factors  — 1 and = + 2. If we
multiply these factors together, we get a polynomial whose

highest-exponent term is z2.

But our original polynomial has a highest-exponent term of z3, so
we need to multiply by one more factor. Consequently, the factored

polynomial will take the form (z — D(z +2)(z — a) for some
other zero z = a.

23 =222 — 52+ 6=(x—1)(x+2)(x —a)
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Let’s multiply out the factors and group like terms into the form of

the original polynomial.

a3 —22% —5x4+6=(z—1)(z+2)(z —a)
= (2 +2-2)(z—a)
= 2%+ 2% —ax® — 22 —ax + 2a
=23 —(a—1)2? - (a+2)z+ 2a

From here, we can proceed in any of several different ways to
discover that a = 3.

e The 22 coefficient of the right-hand side is —(a— 1), and the
22 coefficient of the left-hand side is —2, so we need
—(a—1)= _2, which means a = 3.

® The x coefficient of the right-hand side is —(a+ 2), and the
x coefficient of the left-hand side is —5, so we need
—(a+2) = —5 which means a = 3.

® The constant coefficient of the right-hand side is 2a, and the
constant coefficient of the left-hand side is 6, so we need
2a = 6, which means a = 3.

Indeed, checking our answer, we find that substituting = 3 makes
the polynomial evaluate to 0.

(32 —2(3)2-53)+6=0
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Fundamental Theorem of Algebra

Through this example, we’ve learned an important thing about the
zeros of polynomials: the number of zeros of a polynomial is no
more than its degree.

Each zero comes from a factor, and the degree of a polynomial limits
the amount of factors it has, which in turn limits the amount of
zeros it has. A third-degree polynomial can’t have more than 3
factors, so it has at most 3 zeros. A tenth-degree polynomial can’t
have more than 10 factors, so it has at most 10 zeros.

Some polynomials look like they have fewer zeros than their degree
-- for example, the polynomial =2 + 1 doesn’t appear to have any
zeros, because there is no solution to 22 = —1. But if we allow the

use of the imaginary unit ¢ = V' —1, then it does have two zeros:

r=1¢and z = —1.

Likewise, the polynomial 22 + 22+ 1 factors to (7 + 1)2 and thus
appears to have only one zero, x = —1. But since this factor is
squared, we can think of counting the z = —1 zero twice, i.e. it has
a multiplicity of two.

This is the fundamental theorem of algebra: the number of zeros of
a polynomial is equal to its degree, provided we allow the use of the
imaginary unit and count zeros according to their multiplicity.
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Solving a Polynomial Equation

Finding zeros of polynomials is important because of its generality:
every polynomial equation reduces to finding the zeros of some
polynomial.

For example, consider the polynomial equation

23 + 522 = 11z — 23 — 4, for which we can see that z = 1 is a
solution because 1 +5 =11 — 1 — 4, Subtracting 11z — 23 — 4
from both sides, we reach 222 + 522 — 112 + 4 = 0. Now, the
problem is to find the zeros of the polynomial

203 4+ 522 — 11z + 4.,

The polynomial has degree 3, so we are looking for 3 zeros, each of
which corresponds to a factor of the polynomial. We know one of
the zeros is x = 1, which corresponds to a factor x — 1, and we
know the other two factors need to multiply to a quadratic

222 + bz + c.

By multiplying out (Z — 1)(222 4 bz + ¢) and comparing
coefficients to the original polynomial, we can solve for b and c.
Then, we can solve the quadratic to find the remaining zeros.

223 4+ 522 — 11z + 4 = (x — 1)(22% + bz + ¢)
=223 + bz +cx — 22% —bx — ¢

=223+ (b—2)22 +(c—b)z —c
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Equating z coefficients, we seethat 5 = b — 2, s0 b = 7. Finally,
by equating the constants 4 and —c, we see that ¢ = —4. The
polynomial can then be written as

(x—1)(22% + 72 —4)

Solving the quadratic 222 + 7z — 4 = 0 leads us to the two

- _1
remaining zeros: x = —4 and ¥ = 2.

We check to ensure that these zeros are indeed solutions of the
original equation:

(—4)% +5(=4)%2 = 11(—4) — (—4)> —4

16 = 16
3 2 3
1 1 1 1
= ) =112} —(=2) -4
(5) +2(5) -1 (2)-()
11 11

8 8


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D(-4)%5E3%2B5(-4)%5E2%26%3D11(-4)-(-4)%5E3-4%20%5C%5C%2016%20%26%3D%2016%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3%2B5%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E2%26%3D11%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)-%5Cleft(%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3-4%20%5C%5C%20%5Cfrac%7B11%7D%7B8%7D%20%26%3D%20%5Cfrac%7B11%7D%7B8%7D%5Cend%7Balign*%7D%0
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Exercises

For each of the following polynomials, use the given zero(s) to find
the remaining zero(s).

) pla)=223—22—22+1

given zeros: 1, —1

2)  p(x) = 42® — 82 — 59z + 63

given zero: 1

3)  p(z) =32t — 2223 + 4122 4+ 22 — 24

given zeros: 1,3

4)  p(z) = 492° — 13321 + 1527 + 14527 — 642 — 12

given zeros: 1,—1,2

For each of the following equations, use the given solution(s) to
find the remaining solution(s).

5) 2%+ 17z = 822 + 10
given solutions: 1,2

6) x(z?—11) =2(2* - 6)

given solution: 1
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7)  da® 4 26z + 52t = 6327 — 88

given solutions: — 1,2

8) x(x' + 144z — 47) = 2(3z* + 1323 + 105)

given solutions: —1,2,3
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4.3 Rational Roots and Synthetic Division

In the previous chapter, we learned how to find the remaining zeros
of a polynomial if we are given some zeros to start with. But how do
we get those initial zeros in the first place, if they’re not given to us
and aren’t obvious from the equation?

Rational Roots Theorem

The rational roots theorem can help us find some initial zeros
without blindly guessing. It states that for a polynomial with integer
coefficients, any rational number (i.e. any integer or fraction) that is
a root (i.e. zero) of the polynomial can be written as some factor of
the constant coefficient, divided by some factor of the leading
coefficient.

. . _ 9.4 3 2
For example, if the polynomial P(z) = 22% +2° — 72* — 3z + 3
has a rational root, then it is some positive or negative fraction
having numerator 1 or 3 and denominator 1 or 2.

1 3
The possible roots are then ii, +1, ii, or +3. We test each of
them below.


https://www.codecogs.com/eqnedit.php?latex=1%0
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_ 1
We see that ¥ = 2 and = = —1 are indeed zeros of the polynomial.
Therefore, the polynomial can be written as

(z — %) (x +1)(222 + bz + ¢)

for some constants b and ¢, which we can find by expanding and
matching up coefficients.

1
20 + 2% — 72 —3r + 3= (xfi) (z +1)(22% + bz + ¢)

:2x4+(1+b).’103+(c-{—%—l):ﬁ-{-(%—g)l’—g

We find that b = 0 and ¢ = —6.

The remaining quadratic factor becomes 222 — 6, which has zeros

r =43,

1
Thus, the zeros of the polynomial are —\/g, -1, 2,and V3.

Synthetic Division

To speed up the process of finding the zeros of a polynomial, we can
use synthetic division to test possible zeros and update the
polynomial’s factored form and rational roots possibilities each time
we find a new zero.



Justin Skycak | Algebra 135

Given the polynomial z* + 322 — 522 — 21x — 14, the rational
roots possibilities are +1, +2, +7, and +14.

To test whether, say, 2 is a zero, we can start by setting up a
synthetic division template which includes 2 at the far left, followed
by the coefficients of the polynomial (in the order that they appear
in standard form).

We put a 0 under the first coefficient (in this case, 1) and add down
the column.

Then, we multiply the result by the leftmost number (in this case, 2)
and put it under the next coefficient (in this case, 3).

We repeat the same process over and over until we finish the final
column.

2 | 1 3 -5 —21 —14
| 0 2 10 10 —22
1 ) 5 —11 —36

The bottom-right number is the remainder when we divide the
polynomial by the factor corresponding to the zero being tested.
Therefore, if the bottom-right number is 0, then the top-left number
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is indeed a zero of the polynomial, because its corresponding factor
is indeed a factor of the polynomial.

In this case, though, the bottom-right number is not 0 but —36, so
2 is NOT a zero of the polynomial.

However, when we repeat synthetic division with —2, the
bottom-right number comes out to 0 and we conclude that —2 is a
zero of the polynomial.

—2 | 1 3 -5 —21 —14
| 0 —2 —2 14 14
1 1 -7 -7 0

Then = + 2 is a factor of the polynomial, and the bottom row gives
us the coefficients in the sub-polynomial that multiplies = + 2 to
yield the original polynomial.

ot 4+ 323 — 522 — 21x — 14 = (v 4+ 2)(12® + 12° — 7w — 7)
=(z+2) (2 +2? -T2z -7)

The next factor will come from 2 4+ 22 — 72 — 7, so the rational
roots possibilities are just &1 and +7.


https://www.codecogs.com/eqnedit.php?latex=0%0
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We use synthetic division to test whether x = 1 is a zero of
A e ¢

| 0 1 2 -5
1 2 -5 —12

Since the bottom-right number is —12 rather than 0, we see that

x = 1 is not a zero of 2% + 22 — Tz — 7. However, x = —1 is!
—1 | 1 1 -7 -7
| 0 —1 0 7
1 0 -7 0

Using the bottom row as coefficients, we update the factored form
of our polynomial.

a4+ 32% — 5% — 21z — 14 = (x4 2)(«® + 22 — Tz = 7)
= (z+2)(z+1)(12® + 0z - 7)
= (z+2)(z+1)(2* - 7)
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Now that we’re down to a quadratic, we can solve it directly.

22 —7=0
22 =7

xz:l:ﬁ

Thus, the zeros of the polynomial are —2, —1, \/7, and —\/7, and
the factored form of the polynomial is

(x4 2)(z + 1)(z + VT7)(xz — V7).

Final Remarks

In this example, the polynomial factored fully into linear factors.
However, if the last factor were x? + 7, which does not have any
zeros, we would leave it in quadratic form. The zeros of the
polynomial would be just —2 and —1, and the fully factored form of

the polynomial would be (z +2)(z + 1)(z? +7),

One last thing about synthetic division: be sure to include ALL
coefficients of the original polynomial in the top row of the synthetic
division setup, even if they are 0. For example, the polynomial

3zt + 27 is really 3z% + 022 + 022 + 22 + 0, so the top row in the
synthetic division setup shouldread 3 0 0 2 0.
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Exercises

For each polynomial, find all the zeros and write the polynomial in
factored form.

)

373 4 1822 + 33z + 18 2) 223 —52%—4r+3

2t — 423 + 322+ 40 —4  4) 2t —323+ 522 -9 46
at — 223 — 2% + 42— 2 6) 2%+ 723+ 622 -2 -2
224 — 823 + 1022 — 162 + 12

212° + 162* — 7423 — 6122 — 402 — 12
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4.4 Sketching Graphs

In the previous chapters, we learned how to find end behavior,
zeros, and factored forms of polynomials. In this chapter, we will put
all this information together to sketch graphs of polynomials.

End Behavior

End behavior tells us whether the polynomial goes up or down as
we move away from the origin.

For example, if the end behavior is p(x) = —00 35 2 — +o00 and
p() = 400 35 2 — —o0, then we know that the polynomial goes

down as we go right, and up as we go left.

p(x) = +00 y

'

T — —00 T — 400
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Similarly, if the end behavior is P(Z) = =0 as & — 400 and
p(r) = —00 35 7 — —00, then we know that the polynomial goes
down as we go right, and down as we go left.

p(r) = +oo y

T — —00 T — +00

Zeros

The zeros tell us where the polynomial crosses the x-axis, and the
factored form tells us whether the polynomial crosses or doubles
back at each zero: if the exponent of the factor is odd, then the
polynomial crosses; if the exponent of the factor is even, then the
polynomial doubles back.

For example, if the factored form of polynomial is

p(z) =z(z + 2)(z — 1)2, then the polynomial crosses the x-axis at
0 and —2, and doubles back at 1. Combining this information with
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the end behavior, which is p(x) = 400 35 2 — +o00 and
p(x) = 400 35 7 — —00, we can draw a rough sketch of the
polynomial.

Demonstration

Let’s sketch a rough graph of the following polynomial:
p(x) = (22 + 15)(z + v2)3 (@ — V2)*(z — 5)°

We first find the leading coefficient, —(237)(35)3(1)3(1)6 = —21’13,
which tells us the end behavior: P(Z) = =0 a5 2 — +o0, and
p(r) = +0 35 2 — —0c0.

Then, we can look at the factors and their exponents to find the
zeros and tell whether the polynomial crosses the x-axis or doubles
back at each zero.
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Zero r rD le Back

— 5 Cross

- \/5 Cross
V2 Cross

5 double back

To sketch the graph, we draw our end behavior, plot the zeros on the
x-axis, and then connect them with the correct crossing or doubling

back behavior.
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Exercises

Sketch a rough graph of each polynomial.

1)

2)

p(x) = (z - 1)*(z +2)*(z - 3)

p(z) = (z+5)*(z — V3)*(z + V3)?

p(x) =—2z+3)*(z +5)(xz —7)8

p(z) = (x4 2)(x — 1)(3z — 8)

p(z) = 2?(x + 3)*(x — 3)*

p(z) = —(da + 3)12(3 — z)%(z — 2)1°

p(z) = (3z — 4)°(8z + 7)" (z — 1)3! (z — 2)'8

p(x) = =292z — 1) (z — 3) (42 + 7)32(z — 1)%(x — 7)*
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Chapter 5
Rational Functions



148 Justin Skycak | Algebra



Justin Skycak | Algebra 149

5.1 Polynomial Long Division

A rational function is a fraction whose numerator and denominator
are both polynomials. Rational functions are usually written in
proper form, where the numerator is of a smaller degree than the
denominator. (The degree of a polynomial is its highest exponent.)

Methods for Converting to Proper Form

Sometimes, we can convert to proper form simply by splitting up the
fraction.

z+1

x
_'_
+

= 88
R~ ]|

Other times, we can convert to proper form by factoring part of the
numerator so that it cancels with the denominator.

x2+32+5
z+1
(22432+2)+3
41
(z4+1)(xz+2)+3
r+1

(a+1)(@+2) | 3
x+1 + x+1

x+2+f%
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We can also use synthetic division, a fast algorithm for division of a
linear factor that was introduced in the previous part on
polynomials.

To divide z* + 323 + 22 — 5 by = 4 2, we set up a template with
—2 (the zero of = + 2) on the far left, and the coefficients of
x* + 323 + 022 + 22 — 5 along the top row.

After filling in an initial 0, we repeatedly add down the columns,
multiplying each result by —2 before placing it in the next column.

-2 | 1 3 0 2 -5
| 0 -2 —2 4 —12
1 1 —2 6 —17

The bottom row then tells us the coefficients and remainder in the
proper form.

z44323422—5 _ .3 2 17
12 7 +x _2x+6_3:_+2

However, synthetic division only works with linear factors, so what
do we do when a factor isn’t linear?
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Polynomial Long Division

When faced with more complicated rational functions, we can turn
to polynomial long division, which works the same way as the long
division algorithm that’s familiar from simple arithmetic.

To divide =7 — 325 — 523 + 1 by 22 + 2, we set up a template with
23 + 2 on the outside and 7 — 325 — 523 + 1 on the inside.

On the inside, we write out all coefficients, including those which
are 0 (and thus aren’t written in the condensed expression).

3 +2| 27 —325 +02° +0x* —5x3 +0z2 +0z +1

We begin by multiplying the divisor =3 + 2 by z* to yield =7 + 224,
which cancels the interior 7 term when we subtract.

23 4+2| 27 =325 +0z° +02% —5x3 +022 +0x +1

x7 224

—326  +4+0z° —22% —52% 4022 +0r +1

Then, we multiply =3 + 2 by —323 to yield —32% — 623, which
cancels the next interior term —3z5 when we subtract.
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We repeat this process until the degree of the leftover terms is less

than the degree of 23 + 2, in which case the leftover terms become

the remainder and appear as the numerator in the remaining

fraction.
e S
23 +2| 27 =325 +02° +02* —5x3 4022 +0xr +1
z’ 2z
—326  +0z° —22% —5x3 4022 +0z +1
—3x5 —6a3
—2z% 423 4022 +0z +1
—2z4 —4x
423 4022 +4x +1
+a3 +2
+dr -1

The top row gives the result in proper form:

7 —32%—513+1

342

=24 - 323 — 22 +1+

x—1
x3+2
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Exercises

Find the proper form of each rational function.

1)
2)

3)

11)

8x®+7x2+6
422

—929+4327 — 225423 +1
3zt

242z+1
z+3

622—5x—4
2x2+3z+1

2x54+3z% 422 —x+5

r+2

—4atta44r—4
2rx—1

32442022 4+22+22
245

—327 426 —8x°+5x% — 523432242
x3+2x—1

27 —226— 254223 —22—62—3
xo+x+1

628 4+427+3254221— 923 — 62241

3x342x2

21342104629 17254824 — 1523 —22+14

T(I) - 26 —4x342

153
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_ —18z1242211 425294428 — 274325 2325422241 — 23
12) T(l’) == Ot —x3+x+1
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5.2 Horizontal Asymptotes

Like polynomials, rational functions can have end behavior that goes
to positive or negative infinity. However, rational functions can also
have another form of end behavior in which they become flat,
approaching (but never quite reaching) a horizontal line known as a
horizontal asymptote.

Demonstration

For example, consider the rational function 4z+1. As we

input larger and larger numbers in the positive direction, the
function output becomes closer and closer to 0.75.

r(10) = 2% ~ 0.683
r(100) = 228 ~ 0.743

7(1000) = 2298 ~ 0.749

The same thing happens as we input larger and larger numbers in
the negative direction: the function output becomes closer and
closer to 0.75.
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r(—10) = =2 ~ 0.821
r(—100) = =532 ~ 0.757

r(—1000) = =332 ~ 0.751

As a result, we say that the function 7 has a horizontal asymptote at
y=0.75,

Why Horizontal Asymptotes Occur

To understand why this happens, take a look at the function in
_ 3, 11/4
proper form, "(%) = 1+ &1,

When we input a very large positive or negative number, remainder
fraction’s denominator becomes much larger than its numerator,
causing the remainder fraction to shrink to 0.

3
On the other hand, the 1 term persists, which causes the output to

3
be close to 1 or 0.75.

11/4

3
r(large number) = - large number
3
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Perhaps even more intuitively, notice that when we input very large

3x—2
values of x into 4z+1, the leading (highest degree) terms in the
numerator and denominator become so much larger than the other
terms, that the other terms cease to matter. The fraction then

3
becomes approximately the ratio of the leading terms, ﬁ, which

3
simplifies to 1, or 0.75 in decimal form.

Case when the Denominator has Greater
Degree

Now consider the case when the denominator is of a greater degree

_ 2z+1
than the numerator -- say, when r(x) = 257

Again, when we input very large values of x into the function, the

leading terms in the numerator and denominator become the only

2x
terms that matter. The fraction then becomes approximately z?2,

2
which simplifies to z.

When we input very large values for x, the denominator becomes
very large while the numerator stays the same, causing the fraction
to shrink to 0.

As a result, the function has a horizontal asymptote at 0. We can
confirm this by evaluating the function.
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r(10) = 25 ~ 0.212 r(—10) = % ~ —0.192
7(100) = 29 ~ 0.020 r(—100) = 5359 ~ —0.019

7(1000) = 52000- 2~ 0.002  7(—1000) = goees ~ —0.002

Case when the Numerator has Greater Degree

Lastly, consider a rational function whose numerator is of greater

(.’E) 3x3422+1

degree than its denominator -- say, " 5r—2

33
Taking the ratio of leading terms, we have 5z, which simplifies to

3,.2
52" This expression grows without bound when we input large

values of x, so the function has no horizontal asymptote.
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We can confirm this by evaluating the function.

r(10) =~ 63 r(—10) =~ 58
7(100) ~ 6025 r(—100) ~ 5976
7(1000) ~ 600240 r(—1000) ~ 599760
Yy
-+ 1000000
1 10
71{000 —100=71(=)__=10 100 10100 *
—100
—1000000 +
Exercises

Find the horizontal asymptote, if any, of each rational function.

3 _ 7 6 2
1) r(x)=%35582 2) r(x)= S0
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5 — —8x7 4zt —722
3)  r(x) =t 4) 1) = =

$2 $5 a:2
5)  7(2) = Gorbeers)

2—3x2) (23 —222+5
6) r(z)= ((2:U+3)()a:(2+1)(:c2—1))

_ (z41)(z—2)(z+3)
) r(e) = ERAEDE

X 3 £C2 X
8)  ria) = BTG

_ (x+5)2%(22+3)3
9) r(r)= (322—2)(325+5)

ZE—ZIISJT
10) () = Gpear
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5.3 Vertical Asymptotes

Unlike polynomials, rational functions can “blow up” to positive or
negative infinity even for relatively small input values. Such input
values are called vertical asymptotes, because they represent
vertical lines that the function approaches but never quite reaches.

Demonstration

. . . T(m) — 342
For example, consider the rational function — =—5 .As we

input numbers closer and closer to 5 while staying greater than 5,
the function output blows up to positive infinity.

r(5.1) = 43 =173

r(5.01) = 428 = 1703

r(5.001) = 1903 — 17003

On the other hand, as we input numbers closer and closer to 5
while staying less than 5, the function output blows up to negative

infinity.
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r(4.9) = 1867 = —167

r(4.99) = 4697 — 1697

7(4.999) = 18997 — 16997

As a result, we say the function 7 has a vertical asymptote at x = 5.

Yy
-+ 20000

+10000 i

ot

—10 —

—10000

—20000 +

To understand why this happens, notice that as our inputs become
closer and closer to 5, the denominator becomes closer and closer
to 0, while the numerator becomes closer and closer to 17.

As a result, we end up dividing a fairly constant numerator by a
smaller and smaller denominator, which yields a bigger and bigger

result.



Justin Skycak | Algebra 163

When the input is greater than 5, the denominator is positive,
which makes the result positive. When the input is less than 5, the
denominator is negative, which makes the result negative.

Case of Multiple Vertical Asymptotes

In general, vertical asymptotes occur when the denominator is zero
and the numerator is nonzero. In the above example, when we input
5, the denominator is 0, but the numeratoris 17.

There can also be multiple vertical asymptotes -- for example, in the

. . ’,"(:1:) = 23’)—}'1 . . .
rational function z2—4, inputting 2 makes the denominator

0 while the numerator is 5, and inputting —2 makes the
denominator 0 while the numerator is —3.

We confirm that x = 2 and x = —2 are indeed asymptotes by
evaluating the function.

r(1.99) ~ —125 r(—1.99) ~ 75
7(1.9999) ~ —12500 r(—1.9999) ~ 7500
7(2.01) ~ 125 r(—2.01) ~ 75

7(2.0001) ~ 12500 r(—2.0001) ~ —7500
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—10000 |

—20000

Case of No Vertical Asymptote

On the other hand, if the denominator is zero and the numerator is
also zero, then the input is not necessarily a vertical asymptote of
the function.

. . r(m) = z?—z—2
For example, inputting —1 to z+1 makes the
denominator 0, but it also makes the numerator 0, and the result is
that the fraction does not blow up to infinity.

r(=1.01) = —3.01 r(—0.99) = —2.99

r(—1.0001) = —3.0001 r(—0.9999) = —2.9999
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To understand this behavior, notice that provided x is not equal to
—1, the function can simplify.

When we input an x that is not equal to 1, the = + 1 factors in the
numerator and denominator cancel each other out, and we are left
with z — 2.

As a result, the graph of 7 is just the graph of ¥ = — 2 with a hole
at x = —1 (where it is undefined).
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Exercises

Find the vertical asymptote(s), if any, of each rational function.

r(z) = % 2) r(x)= ?,f;—;é
r(z) = 258 4) (@) = 2
r(r) = &g

r(r) = (x2f€2))_|z3:a26;:105—12)

r(e) = S

r(@) = it

r(z) = m3—3§313x—27

2x—3
r(z) = (32—2)(822—22—3)




Justin Skycak | Algebra 167

5.4 Graphing with Horizontal and Vertical
Asymptotes

The horizontal and vertical asymptotes of a rational function can
give us insight into the shape of its graph.

_ 3 .
For example, consider the function r(z) = ﬁ, which has a
horizontal asymptote ¥ = 3 and a vertical asymptote = = 1.

—50 % §
=1

If we choose one input on each side of the vertical asymptote, we
can tell which section of the plane the function will occupy.

On the left side, we evaluate r(0.9) = _27, which indicates the
section below the ¥ = 3 asymptote. On the right side, we evaluate
7’(1-1) = 33, which indicates the section above the ¥ = 3
asymptote.



168 Justin Skycak | Algebra

—25-+§

50|

Case of Multiple Vertical Asymptotes

When there are multiple vertical asymptotes, we just have to
choose test points on the sides of each asymptote.

_ X
For example, to graph the function r(r) = z2—4 which has vertical

asymptotes x = —2 and = = 2, we can evaluate r(—2.1) = —5.12
r(—=1.9) ~4.87 r(1.9) = —4.87 gnd r(2.1) = 5.12,
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Exercises

Use horizontal and vertical asymptotes to graph the following
rational functions.

) (@) == 2) (@) =575,
_ 3,4 2 5
3) ()= SRR 4) r(2) = S
31,2 1
5) r(x)=-LFL=rl 6)  r(2) = srg.re
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5.5 Graphing with Slant and Polynomial
Asymptotes

A horizontal asymptote is a horizontal line that arises from a
constant whole number term in the proper form of a rational
function.

Likewise, a slant asymptote is a slanted line that arises from a linear
term in the proper form of a rational function.

Demonstration

r(z) = 2&2=3 .
For example, the proper form of z—1 is given by

_ 1
r(r) =2z —1-— z—1, which has 2z — 1 as its whole number term.

As a result, 7 has a slant asymptote at ¥ = 2z — 1, which appears
in the graph of r below.
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gy =2x—1

In general, the whole number part of the proper form is an

asymptote. If the whole number part is of a higher degree, say

_ z3—ax?42 ) 2
r(@) = =52 with proper form "(#) = "+ 2+ 25 then r

has a polynomial asymptote at ¥ = z? + 2,

The graph of r approaches this asymptote just like it would
approach any other horizontal or slant asymptote.

T oy=a242
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Existence and Degree

In general, a rational function has a horizontal, slant, or polynomial
asymptote if the degree of the denominator is less than the degree
of the numerator. The degree of the asymptote is given by the
difference in degrees of the numerator and denominator.

20 —142%+4922-30 . .
z2-9 has a difference in degrees

of 6 — 2 = 4, so we should expect an asymptote of degree 4.
Indeed, the proper form of the function is

_ 4 2 6
r(z) =a% = 52" +4+ z2—9 which indicates a polynomial

asymptote of ¥ = 2% — 5z? 4+ 4,

For example, r(z) =

‘ ) 4 y=at—5224+4

Vo "
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Big Picture

Zooming out of the previous graphs, we can see the big picture of
rational functions: they look like their whole number part (i.e. their
polynomial asymptotes), except at the singularities (vertical
asymptotes), when the denominator of the fractional part becomes
extremely small and the fraction blows up to positive or negative
infinity.

r(r) =2z —1— =

1
T—
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2
T($):x2—+—2+m

r(r) =2t — 5% + 4+

6
z2-9

175

f y=a*—5z2+4

x
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Exercises

Use vertical and horizontal/slant/polynomial asymptotes to graph
the following rational functions.

423 —28x24+562—35
1) r()= w2a:2—x11t:+f2

4 3_ 2_
2) T(:L') _ 4x +4mw2_+2_g60:c_6 2x+13

—2%4+1023+100
3) rlx)= x3m—;a;2f4;+20

4)  r(z) = —2x4;rx52xj§rx1f:§2—3o

5)  r(x) = —PATedllal4s

_ —62%—T2%+80x%+70x3 —25412
6) r(zr)= 622 +75—20
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Part 6
Non-Polynomial Functions
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6.1 Radical Functions

A radical function is a function that involves roots: square roots,
cube roots, or any kind of fractional exponent in general. We can
often infer what their graphs look like by sandwiching them
between polynomial functions.

For example, the radical function f(x) = VZ? can be written as

3
f(z) = 903/2, and its exponent 2 is between 1 and 2, so the graph

of / lies between the graphs of ¥ = % and ¥ = a?,

Yy f(z) = Va3

Negative Inputs

However, there is one caveat: f(x) = Va3 s not defined for
negative values of x. If we try to input a negative number, we end
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up taking the root of a negative number, which is undefined in the
real numbers.

f(=4) = /(-4)* = V=64

As a consequence, the graph of / remains blank for negative values
of x, left of the ¥-axis.

That being said, other radical functions can sometimes accept
negative inputs, which are converted to positive numbers before the
radical is applied.

For example, x = —4 is a valid input to f(z) = V=2 because the
operation inside the root converts the negative input to a positive,
and we can take the root of positive numbers.

f(=4)=~(-4) = vi=2

But the operation also converts positive inputs to negatives, so the
positive section of the graph disappears.
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NoYy=-w

Cube Root Functions

Unlike square root functions, cube root functions like flz) =z
can accept both positive and negative inputs because cube roots are
defined for both positive and negative numbers.
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In general, whether a radical function covers the whole graph or just
part of the graph depends on whether the root is an even root or an
odd root.

e Even roots are NOT defined for negative numbers, so the
graph is left blank for any input = that makes the inside of the
root negative.

e Odd roots ARE defined for negative numbers, so the graph
exists for any input x, even if it makes the inside of the root
negative.

Just remember that whether an x-value is a valid input to a root
function does not depend solely on the sign of the x-value, but
rather on what the function does to the input x-value before
applying the root.

Extraneous Solutions

When solving radical equations, valid algebraic steps can sometimes
lead us to solutions that aren’t actually correct.

For example, squaring both sides of the equation Vo= -2 yields
x = 4. However, when we input = = 4 into the equation to check

the solution, we reach Vi = —2, which simplifies to 2 = —2,
which is incorrect.

Therefore, we say that the solution = = 4 is extraneous, and the

equation Vo = -2 actually has no solutions in the real numbers.
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Squaring both sides of an equation can introduce extraneous
solutions because it introduces an additional solution that
corresponds to the negative root.

It’s easiest to see this if we forget about radicals for a moment -- for
example, if we start with = = 2 and square both sides, we reach

22 = 4, which is solved by © = £v/4 = 2. Squaring both sides
introduced a negative solution x = —2, and although —2 = 2 is not

true, (—2)2 = 2? is true. Likewise, although = = 4 is not a solution
to VT = —2, it is a solution to (\/5)2 = (—2)2 because
(2)? = (-2)°,

A similar problem occurs when we raise both sides of an equation to
the fourth, sixth, eighth, or any even power -- raising to an even
power turns negative numbers to positives, so it introduces an
additional solution that corresponds to the negative root.

On the other hand, raising both sides of an equation to the third,
fifth, seventh, or any odd power does not change the sign of any
numbers, so it won’t lead to any extraneous solutions.

The main takeaway is that whenever we raise both sides of an

equation to an even power, we need to double-check the solutions
to make sure that they actually satisfy the equation.

Solving Radical Equations

In general, the best way to solve a complicated radical equation is to
isolate the radical and exponentiate to cancel the radical.
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Original equation | 22 — /222 + 2 =0

Isolate the radical | /222 + 2z = 2z

Cube both sides | 222 + z = 83

Set polynomial equalto 0 | 823 — 222 — 2 =0

Factor polynomial | z(2z — 1)(4dx +1) =0

Remove extraneous
solutions

Solve

8
I
=
N|—=
\
e

8
I
=
Nl

When there are multiple radicals in an equation, we first need to
reduce the number of radicals in the equation until there is a single

radical.

We can do this by repeatedly rearranging and exponentiating both

sides of the equation.

Original equation
Rearrange
Square
Rearrange

Square

Vit+vVr—1-vr+1=0
VT+vVr—1=+vz+1

r+2y/x(x—1)+x—-—1=a+1
2y/x(x —1)=2—=x

dr(x—1)=22—4x+4
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Simplify | 322 —4 =0

Solve x::t\/g

Remove extraneous | . _ \/E
solutions 3

Exercises

Graph the following radical functions.

1) flz) = Vb 2)  f(z)= Va?
3)  f(x)= Va3 4)  f(z) = Vat
5 flz)=v—a® 6) flz)= Vall

Solve the following radical equations.

) VT+1=2 8) 2—Yz=5
9) Vad=-1 10) Vzt+az=1
11) Va2 -3=z+2 12) V3x—2=2

13) V222 +3=3 14) 22 —4—x=2
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15) Va?+2z—z=x-—1

16) V2r+3=V3zx+2+1
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6.2 Exponential and Logarithmic Functions

Exponential functions have variables as exponents, e.g. f(x) =27

Their end behavior consists of growing without bound to infinity in
one direction, and decaying to a horizontal asymptote of ¥ = 0 in
the other direction.

The size of the number that is exponentiated, called the base,
governs which direction corresponds to which end behavior.

Exponential Growth

If the magnitude of the base is bigger than 1, then as x increases,
the function is repeatedly multiplied by a number bigger than 1 and
consequently grows without bound to infinity. For this reason, such
functions are called exponential growth functions.

By the same token, as x decreases, the function is repeatedly
divided by a number bigger than 1 and consequently decays to a
horizontal asymptote of ¥ = 0,

For example, for the exponential growth function fz) = 2$, each
unit increase in x causes the output to be doubled, and each unit
decrease in & causes the output to be halved.


https://www.codecogs.com/eqnedit.php?latex=1%0
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y flz) =27

Exponential Decay

On the other hand, if the magnitude of the base is smaller than 1,
then as x increases, the function is repeatedly multiplied by a
number smaller than 1 and consequently decays to a horizontal
asymptote of ¥ = 0. For this reason, such functions are called
exponential decay functions.

By the same token, as x decreases, the function is repeatedly
divided by a number smaller than 1 and consequently grows
without bound to infinity.

_ (1\*
For example, for the exponential growth function flz) = (5) ,
each unit increase in @ causes the output to be halved, and each
unit decrease in o causes the output to be doubled.
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@) =3)" y

Logarithms

Equations involving exponential terms can be solved with the help
of logarithmic functions, which cancel out exponentiation.

For example, the equation 2% = 5 is solved by © = 10825 the
logarithm base-2 of 5, which evaluates to roughly 2.32 via
calculator.

If your calculator does not allow you to input a base for a logarithm,
log 5

2
you can compute logy 5 as log2. This is called the change-of-base
formula.

Logarithmic graphs look similar to square-root graphs, except they
cross the x-axis at 1 and extend downward towards an asymptote at

x=0.
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v f@)=logo

Logarithmic graphs cross the x-axis at 1 because raising any number
to the power of 0 results in 1. That is, any logarithm * = log 1
solves the equation »* = 1, which we already know is solved by

x=0.

Also, logarithmic graphs extend to negative infinity as © approaches
0, because a number (greater than one) gets smaller and smaller as
its exponent gets more and more negative.

271 = 272=1 273 =

1 1
2 8

logQ% =-1 log, %1 = -2 log, % =-3
Lastly, the base of the logarithm tells us where the y-value is 1 --

that is, the function f(z) =log,x has fb) = L. This is because
logy, b s the exponent we have to raise b to, to get b.


https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%0
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When the base of the logarithm is smaller than one, the graph flips
over the x-axis.

In this case, the graph extends to positive infinity as = approaches
0, because a number smaller than 1 gets closer and closer to 0 as its
exponent increases.

Likewise, as x increases, the graph becomes more and more
negative because a negative exponent is needed to flip the
fractional base.

1 2 3

(3)' -4 (3~ 3 -4
logéézl log%%:2 log%%:3
(3) =2 (3) " =4 (3) =8
log%Z:—l log%4:—2 10g%8:—3
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Properties of Logarithms

Expressions consisting of multiple logarithms of the same base can
be simplified by using two properties of logarithms:
1. Addition outside two logarithms with the same base turns into
multiplication inside a single logarithm. For example,
logy 4 + logy 8 = logy 32 and in general,
logy, x + log, y = log, zy
2. Multiplication outside two logarithms with the same base
turns into exponentiation inside a single logarithm. For
example, 310824 = logy 4% = log, 64, and in general,
alogy, x = log, %

A particularly noteworthy consequence of the second rule is that
negative outside a log turns into reciprocal inside the log:

—logyx = (—1)log, = = log, ! = log, %
Additionally, logarithms of different bases can sometimes be
converted to logarithms of the same base. For example, logy 4 js
the same as 1084 16 |n general, 108y» ™ = log;, « provided both
logarithms exist.
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Below is an example of simplifying a logarithmic expression using all
of the properties that we have discussed:
Original expression | logy x — log, @
Rewrite using addition | log, x + (—1) log,

Convert multiplication | log,  + log, z~!
to exponentiation

Simplify | log, « + logy %

Square base and | logy: 2% + log, £
argument

Simplify | log, 2 + log, %

Convert addition | log, (22 - 1)
to multiplication

Simplify | logy x

Exercises

Graph the following exponential functions.


https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20f(x)%3D3%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20f(x)%3D5%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=3)%20%5Chspace%7B.5cm%7D%20f(x)%3D%5Cleft(%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=4)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B1%7D%7B5%7D%20%5Cright)%5Ex%0
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7)) 3=10 8) 5T =7
99 () =1 10)  (3)" =3
1) (3)"=9 12)  (3)" =3

Graph the following logarithmic functions. Use logarithm rules to
simplify the expression, if needed.

13)  f(x) = logya 14)  f(z) = logs
15)  f(x) = log% x 16)  f(x) = log% x
17) (@) =logy /&

18)  f(x) = logjga® —logjg

19)  f(x) =3logg 1+ 3logg

20)  f(z) =logyz —2log, vz


https://www.codecogs.com/eqnedit.php?latex=5)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=6)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright)%5Ex%0
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6.3 Absolute Value

An absolute value function represents the magnitude of a number,
i.e. its distance from 0.

For example, the absolute value of —3 is 3, and the absolute value
of 4 is 4. We write thisas | — 3| = 3, and [4] = 4,

In effect, absolute value just removes the negative sign from a
number, if there is a negative sign to begin with.

Graphs

Absolute value graphs are very straightforward -- they look similar to
the graph of ¥ = Z, except the the outputs of negative x are
turned positive.
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Solving Equations by Splitting

Absolute value equations are similar to square root equations, in
that we have to consider both positive and negative solutions. For

example, the solutions to the equation 2| =2 are 7 = 2.

We can usually solve more complicated absolute value equations by
isolating the absolute value and then breaking it up into positive and
negative equations.

Original equation | |22 — 3| —1 =0
Isolate the absolute value |:1:2 —-3l=1
Split into positiveand | 22 — 3 = 1

negative equations | or

Solve | z = +2, +/2

Extraneous Solutions

One caveat to solving absolute value equations this way is that if the
original equation tells us that the absolute value equals a negative
number, we will get the same solutions as if it were a positive
number, but none of them will be correct because absolute value
can never have a negative output.



Justin Skycak | Algebra

Original equation

Split into positive and
negative equations

Check solutions

Remove extraneous
solutions

Solve

197

|22 — 3] = —1
2 —3=-1
or
2—-3=1
T =+V2, 42

r=+V2
|(£V2)2 - 3| = —1

|2-3|=-1
|—1]=-1
1=-1 (invalid)
T ==£2

|(£2)? — 3] = —1
|4 -3 =-1

1] =-1

1=-1 (invalid)

no solution

Whenever an equation tells us that the output of some absolute
value is a negative number, the equation will have no solution.

That being said, if an equation tells us that the output of some
absolute value is a negative variable expression, the equation might
have a solution, because the variable expression itself might be

negative at times.
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In these cases, it’s usually best to solve the absolute value using the
conventional method of splitting up into positive and negative
equations, and then check the answers afterward to remove any
extraneous solutions.

Original equation | |2? — 3| = —2z

Split into positiveand | 72 — 3 = —92
negative equations | or

Solve | © = &1, +£3

Check solutions | x =
[(1)? = 3] = —2(1)
I1—3]=-2
|- 2= -2
2=-2 (invalid)

r=-—1

[(=1)* = 3] = —2(-1)
[1—3]=2

| —2| =2

2=2 (valid)

=3

(3)* = 3] = —2(3)
9—-3]=-6

6] = —6

6 =—6 (invalid)
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T =-3

[(=3)* = 3| = —2(=3)

9-3/=6

6] =6

6=6 (valid)
Remove extraneous | © = —1,—3

solutions

Case of Multiple Absolute Value Terms

When there are multiple absolute value terms, we need to split the
equation into positive and negative equations for each absolute
value term, one after the other.

Original equation | |z — 1| = 2% — 1] + 1

Split into positive and r—1=|22—-1]+1
negative equations | | . _ a2 -1 -1

absolute value

Isolate remaining |22 — 1| =z —2
|22 — 1] = —=x
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Split into positive and
negative equations

Simplify

Solve

Combine solutions

Remove extraneous
solutions

Exercises

Justin Skycak | Algebra

2

2 —r+1=0
2?2 +2-3=0
??4+r—1=0

LmQ—x—lzo

no solution

— —1£V13
T=""7
= —1§¢5
_ 1+V5
\ 7 2
o= —14+v13 —1+V5 1+V5
- 2 7 2 2
o= —1—vV5 1-5
- 2 0 2

Solve the following absolute value equations.

1) Jz-3l=4

2) 345z —-7=0
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3) |zr—4/+3=0
5 |22 +2z| =38

7 222+ 1 =x+1
9) |r+1|= ||

11) |22 —4|=z| -2

13)  |z|+ |z +1] = |z —1]

201

4) |22 +1]+2=4
6) [2z—-2=z

8) [3—4a?|+x=2
10) |22 —1|=1—|z|
12)  |z? —1| =2z| -1

14) o] + |22 = |o + 1
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6.4 Trigonometric Functions

Trigonometric functions represent the relationship between sides
and angles in right triangles.

There are three main “trig” functions: sine, cosine, and tangent, and
a mnemonic often used to remember what they represent is
SohCahToa:
e The SINE of an angle is the ratio of the lengths of the
OPPOSITE side and the HYPOTENUSE.
® The COSINE of an angle is the ratio of the lengths of the
ADJACENT side and the HYPOTENUSE.
e The TANGENT of an angle is the ratio of the lengths of the
OPPOSITE side and the ADJACENT side.

§inf — hopp081te
ypotenuse
hypotenuse opposite adjacent
cosf = Ivootenise
ypotenuse
0 .
tan @ — Opposite
adjacent

adjacent



204 Justin Skycak | Algebra

ing — 4 _3
sin@ = 5,6059— :

For example, in the triangle below, we have

’

4
and tant = 3.

Solving for a Side

Trig functions can be used to solve for unknown side lengths in right
triangles. For example, if we know that an angle is 25°, the opposite
side has a length of 10, and we want to find the hypotenuse, we can
set up and solve an equation using sine.
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25°

Sine equation | sin25° = 10

_ 10
Solve | ¢ = 555

Evaluate via calculator | ¢ ~ 23.66

To find the remaining side, we can use any of three methods:
Pythagorean theorem, cosine, or tangent.

No matter which technique we use, we will end up with the same

result (though if we use our approximation of ¢ =~ 23.66, we might
be slightly off due to rounding error).
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23.66

25°
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10

Pythagorean theorem

Cosine

Tangent

Solving for an Angle

102 + b2 = 23.662
b =+/23.662 — 102
b~ 21.44

o __ b
cos 25° = 3366

b = 23.66 cos 25°
b~ 21.44

tan 25° = %

10
b tan 25°
b~ 21.45

Similarly, using inverse trig functions, we can solve for unknown

angles in right triangles.
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For example, if we know that the adjacent side is 5 and the opposite
side is 7, we can set up an equation with tangent and then use
inverse tangent to find the angle.

Tangent equation | tan A = g
Inverse tangent | A — tan~—! (%)

Evaluate via calculator | A ~ 54.46°

To find the remaining angle, we can use any of three methods: sum
of degrees in a triangle, tangent, or Pythagorean theorem followed
by sine or cosine. Regardless of which method we choose, we will
end up with the same result.
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54.46°

Sum of degrees in triangle | 54.46° + B 4 90° = 180°
B =~ 35.54°

Inverse tangent | tan B = %
_ —-1(5
B = tan (7)
B =~ 35.54°

Pythagorean theorem | 72 + 52 = (2

c=+T4

Inverse sine | sin B = —2

V74
-1

=~

B = sin

B ~ 35.54°

/N
S
Ny

N—

Inverse cosine | cos B =

S
N

B = cos™

B ~ 35.54°

—_
/~
3
N
~—
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The Unit Circle

To gain a better understanding of trig functions, we can imagine
putting a triangle inside of a circle on the coordinate plane.

(z,9)

The coordinates of the corner point (Z,9) on the circle then tell us
the other two sides of the triangle: the horizontal side has length =
and the vertical side has length ¥. If we make the circle have radius
1, then the hypotenuse of the triangle is 1, and we have

cos =% =z

=l =8

sinf =4 =y

and our point (Z,9) can be written as (cos¢,sin6).
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(cos @, sin )

N
N

Immediately, we notice two important things. First, using the
Pythagorean theorem on the triangle, we see that

sin? @ + cos?26 = 1.

This is a handy equation that can be useful in simplifying
trigonometric expressions. For example, the expression

(sinf + cos 0)* + (sin 6 — cos§)? i actually just equivalent to 2.

(sin@ + cos 0)? + (sin@ — cos #)? = (sin? @ + 2sin @ cos O + cos? §)
+ (sin® @ — 2sin @ cos f 4 cos 0)
= 2sin% 0 + 2 cos? 0
=2

Second, angles repeat every 360°, since going 360° around the
circle brings us back to the starting point of 0°.
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That means, for example, that sin 390° and sin —330° are both
equivalent to sin 30°.

390° = 30° + 360°
—330° = 30° — 360°

Special Angles

For most angles, a calculator is needed to compute the
corresponding trig function values. However, at particular angle
measures, the trig functions have simple, exact values:

sin0° =0 cos0° =1 tan0° =0

sin 30° = % cos 30° = @ tan 30° = ?

sin 45° = @ cos 45° = 72 tan45° =1

sin60° = Y2 cos60° =3 tan 60° = v/3
sin90° =1 cos90° =0 tan 90° = undefined

We can remember which values correspond to which angles and
which trig functions by thinking about them visually in the unit circle
N3
and mentally pairing "2~ with 2.
e At 30°, the x-coordinate is bigger than the y-coordinate, so

V3 1
the x-coordinate must be "2~ and the y-coordinate must be 2.
e At 60°, this is reversed.


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20390%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20%5C%5C%20-330%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20-%20360%5E%5Ccirc%20%5Cend%7Balign*%7D%0
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e At 45°, the x-coordinate and y-coordinate are the same, so

they both are @

e At 0°, we'’re on the x-axis, so the x-coordinate is 1 and the
y-coordinate is 0.

e At 90°, we're on the y-axis, so the y-coordinate is 1 and the
x-coordinate is 0.

To get tangent, we can just take the ratio of the y-coordinate to the
x-coordinate.

Y
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Using symmetry, we can label angles in the other three quadrants of
the circle.

Derivation of Special Angles

w

. . 1 V2 V3
You might be wondering where the values 2, 27, and "2 come
from in the first place.

To see where "2~ comes from, we can construct a right triangle with
a hypotenuse of 1 and an angle of 45°.

The other angle must also be 45°, so the triangle’s two legs must be
equal in length, and we can use the Pythagorean theorem to

. V2
discover that the length of each legis "2 .
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45°

45°

Pythagorean theorem | 22 + 22 = 1?2

Simplify | 222 =1

1
Solve | 22 = 3
_ /1

z=1/}
Simplify =5
_ V2

r =7

o 1 V3
Likewise, to see where 2 and "2 come from, we can construct a
right triangle with a hypotenuse of 1 and an angle of 60°.

The other angle must be 30°, which is exactly half -- consequently,
we can combine two of these triangles to form an equilateral
triangle whose side lengths are all equal to the hypotenuse of 1.



Justin Skycak | Algebra 215

The shortest sides of the two triangles together make up a side of
the equilateral triangle, which we know has length 1, so the shortest

1
sides of the two triangles must each be 2. Using the Pythagorean

3
theorem, we find that the length of the other leg is %

30°| 30°

DN

60°

D[ =

60°

Pythagorean theorem (%)2 42 = 12
Simplify | 1 +2%2=1

Solve | z= 2

Simplify | » = @
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Graphs

The graphs of sine, cosine, and tangent are drawn below. They
repeat every 360°, since 360° is one full revolution around the unit
circle and thus brings us full-circle back to the starting point.

Tangent actually repeats twice every 360° (or once every 180°)

because it goes from positive to negative from the first to second
guadrant, and again positive to negative from the third to fourth
quadrant.

To make sense of the shapes of the graphs, try to trace out the trig
function values while following around the unit circle.

f(z) =sinz f(x) =cosx

ANAWARNAWANWAY
VAV IV ERVEVIRVERN
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Y f(z) =tanz

Radians

The standard way to measure angles is actually not in degrees --
rather, it is in radians. One radian is equivalent to the angle whose
arc is equal to one radius of a circle.

) 71 rad
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Since the full arc length (circumference) of the circle is 27 times the
radius, a full 360° around the circle is equivalent to 27 radians.

Below is a copy of the unit circle, using radians instead of degrees.
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The trig functions are graphed in terms of radians below. Nothing
changes, except for the units of the x-axis.

f(z) =sinz f(z) =cosx

ANAWANAWIWAN
VARV IV YA VARVER

Reciprocal Trigonometric Functions

There are three other trig functions: secant, cosecant, and
cotangent. They are just the reciprocals of cosine, sine, and tangent.
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Consequently, they can be understood by thinking about the
properties of cosine, sine, and tangent. We will not explore them
further, but we include their graphs below.

Y

cscw =

sinx

{ ; : + } s
o Eooor
i e : v i

'
i

'

'
S
'

'

L

i

1

cotr = ——
tanx
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Exercises

Use trigonometry to find the missing sides and angles of the
triangles.

1) 2)

40°

70° A

221
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Use the unit circle to find the exact values of the following

trigonometric expressions.

5)

7)

9)

11)
13)
15)
17)
19)
21)
23)
25)
27)

29)

cos0°

sin 60°

cos 135°

sin 135°
sin 720°
tan 765°
sin —150°

o 5T
sm6

COoS T

sin 27

9
tan T

in —37
sin — <5

s
tan—§

6)

8)

10)
12)
14)
16)
18)
20)
22)
24)
26)
28)

30)

sin 270°

tan 30°
tan 270°
cos 240°
cos 480°
cos —45°
cos g

27
tan 3

T
tan 5

Ccos DT

5w
COS 5

s
COS 6

5w
tan — T
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6.5 Piecewise Functions

A piecewise function is pieced together from multiple different
functions.

For example, the absolute value function is a piecewise function
because it consists of the line ¥ = —Z for negative ,and ¥ = %
for positive x.

Case Notation

More generally, piecewise functions can be defined using case
notation, which tells which functions to use as pieces and where to
use them as pieces.
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The absolute value function, for example, can be written in case
notation as follows:

T ifxz>0
|z = .
—z ifx<O

This case notation just tells us that for negative inputs (z < 0) we
should use the function ¥ = —Z to calculate the function output,
and for nonnegative inputs (Z = 0) we should use the function

Y = Z to calculate the function output.

Two more equivalent case notation forms for the absolute value
function are shown below.

) x ifx>0
T ifz>0 .

) |z =¢0 ifz=0
—z ifx<0

—x ifzx<0
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Sometimes, piecewise functions have breaks in them. For example,
if we modify the case notation of the absolute value function so that
the right piece is elevated, the graph has a break in it. This looks
unusual, but it is a perfectly valid function.

z+3 ifxz>0
fw) = {—:1: ifz <0 !

Many Function Types

There is no limit to what types of functions a piecewise function can
consist of. For example, the equation and graph of a more
complicated piecewise function are shown below.

sinyg ifz>2
logoxz if0<z<?2
fla)=3 7

x if —2<2<0
r+8 fzx< -2
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Many Cases

Likewise, there is no limit to the number of pieces a piecewise
function can have. For example, rounding is an example of a
piecewise function with infinitely many pieces.

2 if1.5 <z <25
if0.b<x<1.5
fley=40 if —05<2<05
-1 if —15<x<-05
-2 if —25<r<-1.5
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[ ]
8

Exercises

Graph the following piecewise functions.

2¢ ifxz>0

1) ﬂ@Z{l

5T ifz <O

r—5 ifx>2
2 = -
) @) {:17+5 ifx <2

22 —4 ifx>2
3) fle)=<2—-2 if0<z<?2
2 —4 ifz>0
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( -
sinx

ifx>0
if —2<x2<0
ifrz< -2

ifz>1
ifo<ze<1
ifx=0

if —1<2<0
ife < —1

ifx>1
ifo<ae <1
if —m<z<0

fez<—m

Justin Skycak | Algebra
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Chapter 7
Transformations of Functions
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7.1 Shifts

When a function is shifted, all of its points move vertically and/or
horizontally by the same amount. The function’s size and shape are
preserved -- it is just slid in some direction, like sliding a book across
a table.

Shifts Outside the Function

Shifts occur when a constant term is added in a function. When the
constant term is added on the outside of a function, e.g. when

_ .2, . ) . .
f(x) = 2% is transformed into f(%) = 2° + 5, the function shifts up
by that many units. (If a negative term is added, the function moves
down.)
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Shifts Inside the Function

On the other hand, when the constant term is added on the inside
2
of a function, e.g. when f(z) = 2% is transformed into

f(z)=(z+ 4)2, the function shifts left by that many units. (If a
negative term is added, the function moves right.)

Y f(z) =22

A W 4

f(@) = (x +4)? fx) = (x - 9)?

Intuition

Vertical shifts are very intuitive: if we add a number to a function,
that number is added to every output of the function. If the number
is positive, every output y-value is increased by that amount. If the
number is negative, every output y-value is decreased by that
amount.
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The intuition behind horizontal shifts is a little less straightforward,
because ADDING a number inside a function moves it left in the
NEGATIVE direction along the x-axis.

But think about it this way: when we transform flz) = 2 into
f(z) = (z+ 4)2, the output originallyat = = 4 isnow at = = 0,

. 2 . . -
because 42 is the same as (0 + 4)°. Similarly, the output originally

. . 2
at z = 0 is now at x = —4, because 02 is the same as (—4+4)%,

Every input needs to move 4 units left, to keep its output the same.

Combining Shifts

When we have both vertical and horizontal shifts, it doesn’t matter
which we perform first.

For example, to transform f(x) = VT jnto f(x) = Vo + 7+ 3'

we can either shift it left 7 units and then up 3 units, or up 3 units
and then left 7 units. Either way, we get the same result.

Yy

f@) = VaFT+3 fl@)=va+3

fle)y=Va+T7
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Exercises

Use shifts to graph the following functions.

1) flx)=22+3 2)  f(z) = (z +8)?

3) fle)=a’-5 4)  fla)=(z—4)

5) fl@)=Vz—-3+7 6) flz)=Vz+4+6

7)) flz)=2"t2—4 8) f(z) =logy(x+5)—3
9)  f(x)=sin(z —2) — 4 10)  f(z) = tan(z —7) + 3

11)  f(zx)=|z+4] -7 12)  f(x)=|z—8|—2
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7.2 Rescalings

When a function is rescaled, it is stretched or compressed along one
of the axes, like a slinky. The function’s general shape is preserved,
but it might look a bit thinner or fatter afterwards.

Rescalings Outside the Function

Rescalings occur when a constant term is multiplied in a function.

When the constant term is multiplied on the outside of a function,

the function stretches or compresses along the y-axis.

For example, multiplying outside by 3 with the transformation
f(z) =sinz — f(x) = 3sinz

stretches the function outward vertically, away from the x-axis.

1
On the contrary, multiplying outside by 3 with the transformation
f(x) =sinz — f(x) = %sin:z:

compresses the function inward vertically, towards the x-axis.
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Yy

3sinx

sinx

L sin x
/|3 sinx

Rescalings Inside the Function

On the other hand, when the constant term is multiplied on the

inside of a function, the function stretches or compresses

horizontally along the x-axis.

For example, multiplying inside by 3 with the transformation
f(z) =sinz — f(x) =sin3z

compresses the function inward horizontally, towards the y-axis.

1
On the contrary, multiplying inside by 3 with the transformation
f(z) =sinz — f(z) =sin iz

stretches the function outward horizontally, away from the y-axis.
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i 1
ST sin Sx

SVRVASRVAN

sin 3z

For functions that are more linear than curvy, such as flz) = \/E,
vertical and horizontal rescalings can have similar effects on the
graph.
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Intuition

Similar to vertical shifts, vertical rescalings are very intuitive: if we
multiply a function by a number, every output of the function is
multiplied by that number.

If the number is greater than 1, every output y-value is increased by
the multiplier. If the number is less than 1, every output y-value is
decreased by the multiplier.

Similar to horizontal shifts, the intuition behind horizontal rescalings
is not as straightforward. Multiplying a BIG number inside a function
COMPRESSES it, rather than stretching it.

Think about it this way: when we transform f (%) = /T into
flz)=v 32 the output originally at z = 3 isnow at = = 1,
because V3 is the same as V/3(1) | Similarly, the output originally

_1
at x = 1 isnow at ¥ = 3, because \/I is the same thing as

fa (1
3 (3) . Every input needs to be divided by 3, to keep its output
the same.

Combining Rescalings and Shifts

When we have both vertical and horizontal rescalings, it doesn’t
matter which we perform first.
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However, when dealing with rescalings and shifts simultaneously, it’s
important to perform horizontal shifts first, then rescalings, and
lastly vertical shifts. This way, horizontal shifts are themselves
rescaled, and vertical shifts are not.

To see why horizontal shifts themselves need to be rescaled,

consider the function transformation of f(f’?) = Z into

flx) =3z -1,

In the original function, we have V1 =1, If we rescale first and then
1
shift 1 right, then the input = = 1 is rescaled to © = 3 and shifted

_ 4
to? = 3.

When we input the transformed input into the transformed
function, it should produce the same result as the original input in

— 4
the original function -- but this is not the case for ¥ = 3.

VB —1=vB#1

On the other hand, if we first shift 1 right and then rescale, then the

—2
input 2 = 1 is shifted to # = 2 and rescaled to * = 3.

— 2 S .
Indeed, ¥ = 3 produces the same result as the original input in the
original function.

33)—1=vi=i


https://www.codecogs.com/eqnedit.php?latex=1%0
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Exercises
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Use rescalings (followed by shifts) to graph the following functions.

1)

3)

() =327
fz) = 32
f(r) =4V
f(z) = 43°

flz) =4sinz

f(z) = |32+ 3]

fa) = 2(4)3~

fe) =590 =3 -5

2)
4)
6)
8)
10)
12)
14)

16)

f@) = (32)°
fz) = (22)°
f(x) = V/bzx
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7.3 Reflections

When a function is reflected, it flips across one of the axes to
become its mirror image.

Reflections occur when a function is made negative -- when the
negative is outside the function, the reflection is over the y-axis; and
when the negative is inside the function, the reflection is over the
X-axis.

Yy

The intuition behind reflections is that, depending where it is
placed, the negative sign switches positive and negative values of
the x or ¥ variable.

If the negative is outside the function, then the output y-value
switches sign, essentially reflecting every point over the x-axis.
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On the other hand, if the negative is inside the function, then the
input x-value switches sign, essentially reflecting every point over
the y-axis.

Order of Function Transformations

When we have both vertical and horizontal reflections, it doesn’t
matter which we perform first. Likewise, when dealing with
reflections and rescalings simultaneously, it doesn’t matter which
we perform first.

However, when dealing with reflections and shifts simultaneously,
it’s important to perform horizontal shifts first, then reflections, and
lastly vertical shifts.

We are left with an order of function transformations, similar to the
concept of order of operations in arithmetic, but different in actual
order:

1. Horizontal shifts

2. Rescalings and reflections (interchangeable)

3. Vertical shifts
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Exercises

Use reflections and rescalings (followed by shifts) to graph the
following functions.

) flz)=V-= 2)  f(x) = —cos(—x)

3) fla)=—V-x 4)  flz) = —tan(z)

5)  f(z)=5y/-1iz 6) flx)=-3(3)"

7)  f(z) = —%cos(i2) 8) f(zx) = —2logs(—4x)

9)  f(z)=-8|iz+2| 10)  f(z) =logy(—3x +5)+7
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7.4 Inverse Functions

Inverting a function entails reversing the outputs and inputs of the
function.

For example, if inputting = = 1 into a function ./ produces an
output f(1) = 3, then inputting = 3 into the inverse function

S results in the output 713 =1,

Computing Inverse Functions

We can compute inverse functions by switching  and ¥ in the
equation for a function, and then solving for ¥ again.

Original function | f(z) =2z +3

Replace f@) withy | ¥y =2x+3
Switch z and ¥ | © =2y + 3

Solvefor ¥ | y = 5=

Replace ¥ with fH ) | ) = 52

Testing our inverse function on a few sample inputs, we see that it
does indeed reverse the outputs and inputs of the original function.



246 Justin Skycak | Algebra

f(4)=2(4)+3=11 F(—6) =2(—6) +3 = —9
ISIDES S 0 = =5 = 6

Graphing Inverse Functions

Graphing inverse functions is even easier than computing them: we
just have to reflect the original function over the line ¥ = 2.

This makes sense, intuitively, since computing the inverse function

involves switching ¥ and .

flx)=2x+3 ) /

Case when No Inverse Exists

Graphically, we can see that some functions don’t have inverse
functions. If reflecting the graph over the line ¥ = % causes multiple
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y-values to be associated with a single x-value, then this breaks the
definition of a function, and the resulting graph is not a function.

Algebraically, an inverse function is supposed to take original
outputs back to original inputs, but it can’t do this if it can’t
distinguish which input x-value caused the output y-value.

For example, the function flz) = 2 has f<2) = f(_Q) = 4, SO
when a supposed inverse function takes an output of 4, it will not

know whether the output came from the input 2 or —2. Therefore,

. . )
no inverse function can be constructed for /(%) = z°,

Domain Restrictions

That being said, inverse functions can be created if we restrict the
domain, the set of allowed inputs.
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. . . _ .2 -
For example, if we restrict the domain of f(z) = 2% o only positive
inputs, then the inverse function would know that an output of 4
comes from an input of 2.

. . . _ .2
We can also see this graphically -- if we graph flx) ==z only for
positive values of x, then no x-value has multiple y-values when we
reflect the graph over the line ¥ =

Exercises

Sketch the original function and the graph of the supposed inverse
by reflecting the original function f over the line ¥ = * . Then, if

. . -1 . - .
the inverse function Jf exists, use algebra to find its equation.

1) f(x)=2x 2) f(x)=3xz-3
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3) fla)=VI

5 f(z)=a3+1

9)  f(x) ==
11)  f(x) = %logz(m +3)

13)  f(z) = =322

restriction: * > 0

15) ()= [22 3]

3
restriction: x > 3

14)

16)

249

fl@)=a?+1
f(a) = Io

f(@) = 5
fla)=3% +4
fla) =1
fla) = 5a?

restriction: x <0

1— -z

fla)=~|1-3

restriction: z > 3
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7.5 Compositions

Compositions of functions consist of multiple functions linked
together, where the output of one function becomes the input of
another function.

Demonstration

For example, the function 2z can be thought of as the composition
of two functions: the first function squares the input, and then the
second function doubles the input.

Using formal notation, we can define the first function that squares
. _ .2 .

the input as flx) =2 , and the second function that doubles the

input as g(z) =2z,

Then the composition can be computed by using the output of ./ as
the input to 9. Starting at the end, we can compute the composition
by evaluating 9 in terms of ./, and then evaluating ./ in terms of .

(g0 () = g(f(x)) = 2f(z) = 22°
Or, we can start at the beginning, computing J in terms of = and

then evaluating 9 in terms of the result. Either way, we end up with
the same formula for the composition.

(9o @) =g(f(2)) = g(a?) = 227


https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%202f(x)%20%3D%202x%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%20g(x%5E2)%20%3D%202x%5E2%0
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Order of Composition

The order of composition is very important and is not

interchangeable.

e The function computed above is 9 © /', which applies I first

and then 9.

e On the other hand, the function J © g applies 9 first and then
f,and consequently evaluates to something different:

(f o g)(z) = 4a?,

Compositions of Many Functions

For compositions of more than two functions, we can compute one

step at a time.

Given functions

Input [ into 9
Input g © [ into h

Input hogo finto p

f(x) =sinzx
g(z) = 2*
h(z) =5z +1
plz) =z

(g0 f)(x) =sin’x

(hogo f)(x) =5sin®x + 1

(pohogo f)(x) =+/5sin’z + 1


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df(x)%26%3D%5Csin%20x%20%5C%5C%20g(x)%26%3Dx%5E2%20%5C%5C%20h(x)%26%3D5x%2B1%20%5C%5C%20p(x)%26%3D%5Csqrt%7Bx%7D%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20%5Csin%5E2%20x%0
https://www.codecogs.com/eqnedit.php?latex=g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=h%0
https://www.codecogs.com/eqnedit.php?latex=(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%205%5Csin%5E2%20x%20%2B%201%0
https://www.codecogs.com/eqnedit.php?latex=h%20%5Ccirc%20g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=(p%20%5Ccirc%20h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Csqrt%7B5%5Csin%5E2%20x%20%2B%201%7D%0
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Exercises

Find the expression for the indicated composition.

1) (9o f)z)=__ 2) (9o f)(z)=__
f@) = +5 f@) =5
o(z) = 202 g(x) = [4—al
3) (hogof)(z)=__ 4) (hogof)(z)=__
f(z)=-2% flx) =2z
o(x) = o +4] .
h(z) =z L=
() =ve h(z) =sinz
5) (pohogof)(z)=__ 6) (pohogof)(z)=__
f(z) =sinz fla) =V
g(x) = x? g(z) =tanz
h(z) =1+ Jx h(z) = logz
(2) (z)


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D1)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3Dx%2B5%20%5C%5C%20%26g(x)%3D2x%5E2%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D2)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D5%5Ex%20%5C%5C%20%26g(x)%3D%7C4-x%7C%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D3)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D-2%5Ex%20%5C%5C%20%26g(x)%3D%7Cx%2B4%7C%20%5C%5C%20%26h(x)%3D%5Csqrt%7Bx%7D%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D4)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D2x%20%5C%5C%20%26g(x)%3D%5Cfrac%7Bx%7D%7Bx-1%7D%20%5C%5C%20%26h(x)%3D%5Csin%20x%20%5Cend%7Balign*%7D%0
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Solutions
to Exercises
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z=4
T =2
r=-3
rT =25
r=—6

257

Part 1

Chapter 1.1

2) xz=1

4)  no solution

6) infinitely many solutions
8) infinitely many solutions

10)  no solution

Chapter 1.2

2)
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7) 8)
Yy
RN R S r

9) y=-3z+38

11) y=4z—-1

13) y=3x—2 14)

17) y=—-35x+3 18)

19) y=28%z-1 20)
Chapter 1.3

1) y—5=2xz—-1) 2)

y—3=28(z+2)
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e 1S

y—8=3(z—1)
ory+7=23(x+4)
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11) 12)

Chapter 1.4
1) 3x—4y=14 2) 22-3y=-4
3) z—3y=6 4) br—4y=1

5 xz+y=2 6) 12x+3y=1
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Chapter 1.5

1) (2,1) 2)  no solution
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3) (3,-1)

5) infinitely many solutions

o (1%53)
9) (%%

263

4) (=1,7)
6) (1,1)

8)  no solution

)

[=2)
ot

10) (32,

s

[\
w

<
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Part 2

Chapter 2.1

el




266
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3) y=-—a®+4x -2

down (2,2) —2

y

4) y=22>+8x
up (—2,-8) 0

7\ z
yi
f \
W
.......... frleerd
...... fy
5 y=—3z2+9r—4 6) y=—-bz’—5x+4
3
d
own (2,4

— E) —4 down (—1 21) 4

2" 4
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7 y=a’+Tx+2 8) y=10z%+ 10z

7 41 1 5
P (‘5"?) ? P <‘§"§) 0

,*
S
e

9) y=3z%+ 122+ 13 10) y=-3z2—4z+1

up (=2,1) 13 down <—g,z) 1
33
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Chapter 2.2

1) (x+3)(x+4)=0 2) (z+7)(z+2)=
r=—-3orx=—4 r=—-7o0orx=-—2

3) | x—>5)= 4) (x—6)(x—3)=0
r=2o0orx =25 r=6orx=3

5 (z+4)(z—-2)= 6) (z+7)(x—3)=
r=—4orx= r=-—-70rzxz=

7 (x+2)(z—-5)= 8) (z+4)(z—9) =
r=—-2o0rx= r=—4orx=

9) dx(x+13)=0 10) 8z(x—8)=0
xr=0orz=-13 r=0orz=28

11) (z+5)(z—5)=0 12) (x+12)(z—12) =0
r=-5orx=>5 r=—12o0rx =12

13) (4z+1)(Bz+2)=0 14) (2z-5)(5z—1)=0
- 1 - 2 _5 _1
r = 401’.7)— 3 .Z‘—2OI'£L'—5
15) Bz+4)(2x—-1)=0 16) (7Tx—2)(3z+5)=0
4 1 2 5

$:—§Orx:§ {L‘:?Orx:_g

Chapter 2.3

1) T = 73:|:\@ 2) T =

(]S
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_ 2
_ 7
9) 3i1\6@

9) no solution

1) y=(x+1)2*+2
(_172) up

Chapter 2.4

2)

10)

Chapter 2.5

2)

269

no solution

1++10
3

no solution

_
=7

—

no solution

_ _ 3 29
T = —15 £ /100

_ _ 1 85
T =—11%1/196

y=(v-3)"-5
(37 _5) up
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y=2(z +5)% - 55

Justin Skycak | Algebra

4) y=-3@x-1)>°>+4

(—=5,—55) up (1,4) down
2
yzg(x_%) N Lt
1 3 (=3,=7) down
2 9 up
3 4\* 5 2 2
S 2 8) y=—(x+6)"+7
Y71 (‘” 3) T3 3
33) P
Chapter 2.6
(2,16) (3,24) 2) (~5,23)
(1,19) (-1,5) 4)  no solution
(%a %) 6) (_an) (_5a0)
no solution 8) (5.-2) (3,-11)
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Part 3

Chapter 3.1

1) <2 (—,2 2) x>-5 (—5,00)

3) x>-3 (-3,00) 4) =<7 (—00,7)

5) 23 [5,0) 6) z<-3 (—o0—3]
7) T <9 (—00,9) 8) x>—1—72 (—1—72,00)

Chapter 3.2

1) 2)
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7) 8)

Chapter 3.3

1) (=00, —2]U[2,00) 2)  (-00,00)
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3)

7)

9)

1)

(=00, —3) U (3,00)

Justin Skycak | Algebra

4)  (2,7)

%, 00 8) (-10,3)
10)  (—o00,0)
Chapter 3.4
2)
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3) 4)
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Y Yy
# 2 :
/ {
N b \iin/
e !
Ll .‘
‘ z 7 z
|l !
1
Ii T
|57 v
[ | i o
l| ! ¥
y Y t" il A
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Part 4
Chapter 4.1

p(x) = 32t + 82% — T
p(x) = 400 as x — 400
p(z) = 400 as z — —o0

pla) =a° =2z +1
p(x) — +o0 as x — 400
p(z) - —o0 as z — —o0

p(z) = —2® — 92 + 323 + 2
p(z) = —o0 as x — 400
p(z) = —o0 as x — —o0

p(z) = —102" + 52 — 23 — 2
p(x) = —oc0 as © — 400

p(z) = +o00 as x — —o0

p(z) = —4a® + 62° — 22 + 1
p(x) = —o0 as x — +0o0
p(z) = 400 as . — —o0

p(x) =2t + 423 — 5 +1
p(z) — 400 as z — 00
p(xr) = 400 as x — —o0

277



278

10)

11)

12)

p(z) = =528 —62° + 21 + 8z — 1
p(z) = —o0 as © — 400
p(z) - —o0 as © — —o0

p(z) =M —32% — 21 + 2
p(z) = 400 as ¢ — 400

p(zr) = —oc0 as ¢ — —oo

plr)=2+2* +z+1
p(z) = 400 as © — 400
p(z) - —o0 as z — —o0

p(z) = —2® +32° + 2 — 3
p(z) = —o0 as x — +00

p(x) = +o00 as z — —00

p(z) = 228 — 42° + 23 — 2
p(z) = +00 as x — +o0
p(z) = +o00 as r — —o0

p(z) = =227 — 42° + 323 + 622
p(z) = —o0 as z — +00

p(x) — +o00 as x — —0o0

Chapter 4.2

N

2) -

No[~3

Justin Skycak | Algebra

[\l Ne)
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2 16
3) —35.4 4) -5z
5 5 6) —3,4
11 _
7) -4,F 8) 5,7
Chapter 4.3

1) 3z+1)(z+2)(z+3) 2) (2r—-1)(z+1)(z—3)

L1 o 1
zeros: — 1,—2,—3 Zeros: 5,—173

3) (+D@-1)(=z-22% 4 @2+3)(z—1)(z-2)
zeros: + 1,2 zeros: 1,2

5 (r—-1*z+vV2)(x-v2) 6) (22— 1)(z+2)(z+1)?

zeros: 1,+£v2 ZETOS: 1 _9 1
* 27 )

7 2z —1)(x—3)(z®+2)

zeros: 1,3

8) (z+42)(x—2)(Tx+3)Bz2+z+1)

3
2, ——
Zeros -
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Chapter 4.4

1) 2)
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5) 6)
Yy Yy
i 2 .
9~ a g xr \ g
-3 3 \/ 3
7) 8)
Yy Yy
1 VAR
013\ 71
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10)

11)

Part 5

Chapter 5.1

r(a:):2x3+£—|—%

3
r(z) = —=3a° + 2 — Sz 4+ L4}

r(az):x—l—l—miﬁ,)

r(x) =3 — m—j_l

r(x) :2364—3:3—}—21'2—31'—!—5—2%2
r(x) :—2x3—x2+2—%

r(z) =322 4+ 5+ 3;32:?

r(r) = —3z* + 23 — 222 + xgqf;f_l

— 2 _ x3—-3x—2
r(r) =2 —2r— 1+ 2220

r(m):2x5+x2—3+m

T($)2$7+6$3—2$+7+%



284 Justin Skycak | Algebra

12)  r(x) = 228 4+ 32+t —3x+2+ 2° 430’ yo—2

9zt —x34z+1
Chapter 5.2
3) none 4) y=0
) y=3 6) y=-3
7 y=0 8) none
9) y= g 10) y=-2
Chapter 5.3
_ _5
3) mnone 4) r=-1,-2
5 x=3 6) x=-4,-3.3
7 r=1,2 8) z=-1,4
9) none 10) x:—%,%,%
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Chapter 5.4
1) 2)
Yy Yy
y=3
e Vo |
x . x
E I 4
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Chapter 5.5
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i y=—a*+102%2 -9
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Part 6

Chapter 6.1

Y f(x) = Vad y
/ y=z
o) = Va?
. y=1
y=a3 | /7 e ST
y=a’
,,,,,,,,, P

Yy=x,
y=a? |
,’/ / I,"ly =ux
f(z) = Va?
y=1
x T



https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0
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5) 6)
fla)= V=2 v Y
\ / Yy=x
Yy = .T4 13,
y=1 @) = Vall
y=—2% \} | e
""""""""""""""""""""""""" y——1
7N x=1 8) x=-27
9) no solution 10) = 3—2\/5
11) x=-3 12) x=6
13)  no solution 14) x=-2

15) =z = 3£/6 16) z=6-—2V11
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Chapter 6.2

1) 2)

feodiodo Sk

Ly



https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0
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ofein

<l

7)  logs 10 = 2.096 8) logs 7~ 1.209
9) log: & ~ 2.096 10)  logy 1 ~0.431
11)  logs 9 ~5.419 12)  logz 1 ~3.969

13)  f(z) =logzx 14)  f(z) =logsx




Justin Skycak | Algebra 293

15)  f(z) = log% x 16) f(x) = log% x

17)  f(z) = logyx
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19)  f(z) =logyx 20)  f(z) =logyx

Chapter 6.3
- _ _ 4
1) z=-1,7 2) z=4-2
3)  no solution 4) x=+1
—9 _ 2
5) x=2,—4 6) z=22
1
7 =03 8) w=1,-3 147
9) w=—3 10) =03
11) z=42 12) z=+21-3
-14+3
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a =~ 6.58
b~ 2.39
B = 20°

c= \/5 ~ 2.24
A~ 63.43°
B =~ 26.57°

1

- . 6
LIS

—_

M

Chapter 6.4

2)

8)

10)
12)
14)
16)
18)
20)
22)

24)

a =~ 5.96
c~T7.78
A = 50°

b=26
A~ 53.13°
B ~ 36.87°

-1

“f%

undefined

N =

295
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25) 1 26) 0

27) 1 28) Y3

29) —+/3 300 —1
Chapter 6.5

1) 2)
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3) 4)
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Part 7

Chapter 7.1
1) 2)
3) 4)
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5) 6)
/ //
7) 8)
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9) 10)

11) 12)
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Chapter 7.2

1) 2)
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5) 6)
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11)
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13) 14)

15) 16)
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Chapter 7.3

1) 2)
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5) 6)
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10)

11)

12)
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Chapter 7.4

1) i) =da 2) fl(z)=22

4)  no inverse function

restriction: x > 0

Yy @) = ge?
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5 fHz)=Vr -1 6) no inverse function
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9) o inverse function 10)  f~Yx) = logs(x — 4)

1) flz)=25"—3 12)  no inverse function
Y
f(z) = 3 logy(x + 3) . iad
[ w23
i
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—1 — ./
13)  fHw)=/—3% SO
1 f@=4at
1@ =4
™ @) = -3 T o) ==/
15)  f'(a) =5 16) f7i(x) =32 +3
1 f@) =l2e -3 1

i (z)=-32+3

Chapter 7.5

1) 2(z+5)? 2)  |4— 27



Justin Skycak | Algebra 313

3) V-2 +4] 4) Sin( 2z >

2x—1

5) V1+ Vsinlz 6) [log (tan (v))|”
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